Probabilistic Graphical Models Midterm Exam - Spring 1403 (2024)	Instructor: B. Nasihatkon	
Name:	ID:	

Question 1 - Bayes Nets, Message Passing (60 points, 60 minutes)
Consider the following Bayesian Network on variables $X_{1}, X_{2^{2}}, \ldots, X_{n^{\prime}} X_{n+1^{\prime}} X_{n+2}$.

A) Write the joint distribution $p\left(X_{1}, X_{2}, \ldots, X_{n^{\prime}} X_{n+1^{\prime}} X_{n+2}\right)$ in terms of the CPDs. (5 points)
B) Create a cluster tree (junction tree) with exactly n clusters, such that cluster \boldsymbol{i} contains the variables $X_{i^{\prime}} X_{i+1}, X_{i+2}$. Remember to draw the sepsets and assign factors (CPDs) to each cluster. (10 points)
C) Derive all the backward sum-product messages $\tau_{i \rightarrow i-1}$ for $i=2,3, \ldots, n$ for performing belief propagation. (10 points)
D) Now, assume that all the variables are binary $\left(X_{i} \in\{0,1\}\right)$ and the CPDs are $p\left(X_{1}\right)=\exp \left(X_{1}\right) /(1+e)$,
$p\left(X_{2} \mid X_{1}\right)=\exp \left(X_{1} X_{2}\right) /\left(1+\exp \left(X_{1}\right)\right)$,
$p\left(X_{i+2} \mid X_{i+1}, X_{i}\right)=\exp \left(X_{i} X_{i+1} X_{i+2}\right) /\left(1+\exp \left(X_{i} X_{i+1}\right)\right)$ for $i=1,2, \ldots, n$.
Derive the first forward message $\tau_{1 \rightarrow 2}$ as a function of the sepset. Simplify as much as you can. (15 points)
E) Following part (D), obtain the sum-product beliefs β_{1} and β_{2} for clusters 1 and 2. (10 points)
F) Using the CPDs introduced in part (D), compute the max-sum message $\sigma_{n \rightarrow n-1}$ from cluster n to cluster $n-1$. (10 points)

Question 2 - MRF / Variable Elimination (40 points, 35 minutes)

Consider the following MRF on binary variables $X_{1}, X_{2}, \ldots, X_{n} \in\{0,1\}$.

The joint distribution is defined as $p\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{z} \prod_{i=1}^{n-1} \exp \left(X_{i} X_{i+1}\right)$. We are to perform variable elimination in the order $X_{1}, X_{2}, \ldots, X_{n}$.
A) Show that the immediate factor created after eliminating X_{i} is in the form of $\tau_{i}\left(X_{i+1}\right)=a_{i}+b_{i} \exp \left(X_{i+1}\right)$. To do this first derive the first factor $\tau_{1}\left(X_{2}\right)$. Then obtain τ_{i+1} from τ_{i} by eliminating X_{i+1} assuming that $\tau_{i}\left(X_{i+1}\right)=a_{i}+b_{i} \exp \left(X_{i+1}\right)$. Find a recursive formula to obtain $\left(a_{i+1}, b_{i+1}\right)$ from $\left(a_{i^{\prime}} b_{i}\right)$. (20 points)
B) Write the vector $\left[a_{i+1} ; b_{i+1}\right]$ as a 2 by 2 matrix times the vector $\left[a_{i} ; b_{i}\right]$. (5 points)
C) Derive the partition function Z for $n=4$ by eliminating all the variables. (15 points)

