
Generalizations of the
Projective Reconstruction Theorem

Behrooz Nasihatkon

A thesis submitted for the degree of
Doctor of Philosophy,

The Australian National University

July 2014

c© Behrooz Nasihatkon 2014

Declaration

The contents of this thesis are mainly extracted from the following papers:

• Behrooz Nasihatkon, Richard Hartley and Jochen Trumpf, “On Projective Re-
construction In Arbitrary Dimensions” submitted to CVPR 2014.

• Behrooz Nasihatkon, Richard Hartley and Jochen Trumpf, “A Generalized
Projective Reconstruction Theorem” submitted to the International Journal of
Computer Vision (IJCV).

In addition to the above, the author has produced the following papers during
his PhD studies.

• Behrooz Nasihatkon and Richard Hartley, “Move-Based Algorithms for the Op-
timization of an Isotropic Gradient MRF Model,” International Conference on
Digital Image Computing Techniques and Applications (DICTA), 2012.

• Behrooz Nasihatkon and Richard Hartley “Graph connectivity in sparse sub-
space clustering,” IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2011.

Except where otherwise indicated, this thesis is my own original work.

Behrooz Nasihatkon
25 July 2014

iii

to my parents and my wife...

Acknowledgments

I had the great opportunity to work under the supervision of Professor Richard Hart-
ley. I like to thank him for his supportive attitude, superb guidance and helpful
advice. I learnt from him how to think analytically and systematically when deal-
ing with research problems, and how to merge intellect and intuition to tackle them.
His mathematical comprehension, immense knowledge, clarity of thought and vision
made my PhD studies a great experience.

I also like give my special thanks to Dr. Jochen Trumpf, my co-supervisor, for his
guidance and help, and for the valuable discussions we had during my PhD studies.
His mathematical expertise, brilliant questions, invaluable comments, and inspiring
tips and suggestions have significantly improved the quality of my PhD.

I like to thank Professor Rene Vidal for offering me a visiting research scholar
position at the Computer Vision Lab in the Johns Hopkins University, and also for
his help and support, and the insightful discussions we had during my visit. I also
thank Dr. Hongdong Li for his feedback and comments on this thesis.

I would like to acknowledge the academic, technical and financial support of the
Australian National University and National ICT Asutralia. I also want to thank
my fellow labmates Khurrum, Samunda, Mohammad, Sara, Dana, Adnan, Ahmed,
Cong, Lin and others for their kindness and the friendly atmosphere they contributed
to. In particular, I like to express my gratitude to my close friend Khurrum Aftab for
his caring attitude and cheerful character both inside and outside the Lab.

I consider myself incredibly lucky to have been surrounded by a fabulous group
of friends who made my time at the ANU enjoyable and with whom I share
many cherished memories. I like to thank my good friends Morteza, Mohammad
Esmaeilzadeh, Hamid, Mohammad Najafi, Ehsan, Mohammad Saadatfar, Mehdi,
Mohmmadreza, Alireza, and their family for the good times we had together. Espe-
cially, I am grateful to Mostafa Moghaddam, Mohsen Zamani and Ehsan Abbasnejad
for their friendship and care. I appreciate the help and support of my good friends
Mohammad Deghat, Alireza Motevalian and Zahra Zamani who helped me get set-
tled in Canberra and whose friendship I have enjoyed to this day. Particularly, I like
to thank my close friend Mohammad Deghat for his nice personality and helpful
attitude.

I am very grateful to my wife, Fatemeh for all the sacrifices she made to help me
finish my PhD. I thank her for her love, patience and caring. My deepest gratitude
belongs to my parents for their love, encouragement and support throughout all
stages of my life.

vii

Abstract

We present generalizations of the classic theorem of projective reconstruction as a
tool for the design and analysis of the projective reconstruction algorithms. Our
main focus is algorithms such as bundle adjustment and factorization-based tech-
niques, which try to solve the projective equations directly for the structure points
and projection matrices, rather than the so called tensor-based approaches. First,
we consider the classic case of 3D to 2D projections. Our new theorem shows that
projective reconstruction is possible under a much weaker restriction than requiring,
a priori, that all estimated projective depths are nonzero. By completely specifying
possible forms of wrong configurations when some of the projective depths are al-
lowed to be zero, the theory enables us to present a class of depth constraints under
which any reconstruction of cameras and points projecting into given image points is
projectively equivalent to the true camera-point configuration. This is very useful for
the design and analysis of different factorization-based algorithms. Here, we analyse
several constraints used in the literature using our theory, and also demonstrate how
our theory can be used for the design of new constraints with desirable properties.

The next part of the thesis is devoted to projective reconstruction in arbitrary di-
mensions, which is important due to its applications in the analysis of dynamical
scenes. The current theory, due to Hartley and Schaffalitzky, is based on the Grass-
mann tensor, generalizing the notions of Fundamental matrix, trifocal tensor and
quardifocal tensor used for 3D to 2D projections. We extend their work by giving
a theory whose point of departure is the projective equations rather than the Grass-
mann tensor. First, we prove the uniqueness of the Grassmann tensor corresponding
to each set of image points, a question that remained open in the work of Hartley
and Schaffalitzky. Then, we show that projective equivalence follows from the set
of projective equations, provided that the depths are all nonzero. Finally, we clas-
sify possible wrong solutions to the projective factorization problem, where not all the
projective depths are restricted to be nonzero.

We test our theory experimentally by running the factorization based algorithms
for rigid structure and motion in the case of 3D to 2D projections. We further run
simulations for projections from higher dimensions. In each case, we present ex-
amples demonstrating how the algorithm can converge to the degenerate solutions
introduced in the earlier chapters. We also show how the use of proper constraints
can result in a better performance in terms of finding a correct solution.

ix

x

Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Thesis Statement . 1
1.2 Introduction . 1
1.3 Thesis Outline . 6

2 Background and Related Work 9
2.1 Conventions and problem formulation 9

2.1.1 Notation . 9
2.1.2 Genericity . 9
2.1.3 The projection-point setup . 9

2.2 Projective Reconstruction Algorithms . 11
2.2.1 Tensor-Based Algorithms . 11
2.2.2 Bundle Adjustment . 12
2.2.3 Projective Factorization . 13
2.2.4 Rank Minimization . 16

2.3 Motivation . 17
2.3.1 Issues with the tensor-based approaches and theorems 17
2.3.2 Projective Factorization Algorithms 20
2.3.3 Arbitrary Dimensional Projections 21

2.3.3.1 Points moving with constant velocity 23
2.3.3.2 Motion Segmentation . 23
2.3.3.3 Nonrigid Motion . 23

2.4 Correspondence Free Structure from Motion 24
2.5 Projective Equivalence and the Depth Matrix 24

2.5.1 Equivalence of Points . 25
2.5.2 The depth matrix . 26

2.6 Summary . 28

3 A Generalized Theorem for 3D to 2D Projections 29
3.1 Background . 29

3.1.1 The Fundamental Matrix . 29
3.1.2 The Triangulation Problem . 31
3.1.3 The Camera Resectioning Problem 31

xi

xii Contents

3.1.4 Cross-shaped Matrices . 33
3.2 A General Projective Reconstruction Theorem 34

3.2.1 The Generic Camera-Point Setup 36
3.2.2 The Existence of a Nonzero Fundamental Matrix 37
3.2.3 Projective Equivalence for Two Views 43
3.2.4 Projective Equivalence for All Views 45
3.2.5 Minimality of (D1-D3) and Cross-shaped Configurations 46

3.3 The Constraint Space . 48
3.3.1 Compact Constraint Spaces . 51

3.3.1.1 The Transportation Polytope Constraint 51
3.3.1.2 Fixing the Norms of Rows and Columns 52
3.3.1.3 Fixed Row or Column Norms 53
3.3.1.4 Fixing Norms of Tiles . 53

3.3.2 Linear Equality Constraints . 55
3.3.2.1 Fixing Sums of Rows and Columns 55
3.3.2.2 Fixing Elements of one row and one column 56
3.3.2.3 Step-like Mask Constraint: A Linear Reconstruction

Friendly Equality Constraint 57
3.4 Projective Reconstruction via Rank Minimization 59
3.5 Iterative Projective Reconstruction Algorithms 61
3.6 Summary . 62

4 Arbitrary Dimensional Projections 63
4.1 Background . 63

4.1.1 Triangulation . 63
4.1.2 An exchange lemma . 64
4.1.3 Valid profiles and the Grassmann tensor 65

4.2 Projective Reconstruction . 68
4.2.1 The uniqueness of the Grassmann tensor 69
4.2.2 Proof of reconstruction for the special case of αi ≥ 1 71
4.2.3 Proof of reconstruction for general case 71

4.3 Restricting projective depths . 72
4.4 Wrong solutions to projective factorization 75

4.4.1 A simple example of wrong solutions 77
4.4.2 Wrong solutions: The general case 78

4.4.2.1 Dealing with the views in I and J 78
4.4.2.2 Dealing with the views in K 81
4.4.2.3 Constructing the degenerate solution 84

4.4.3 The special case of P3 → P2 . 85
4.5 Proofs . 86

4.5.1 Proof of Proposition 4.2 . 86
4.5.2 Proof of Theorem 4.3 (Uniqueness of the Grassmann Tensor) . . 87
4.5.3 Proof of Lemma 4.7 . 91

4.6 Summary . 101

Contents xiii

5 Applications 103
5.1 Motion Segmentation . 103

5.1.1 Affine Cameras . 103
5.1.2 Subspace Clustering . 105
5.1.3 Projective Cameras . 110

5.1.3.1 The pure relative translations case 110
5.1.3.2 The coplanar motions case 111
5.1.3.3 General rigid motions . 113

5.2 Nonrigid Shape Recovery . 115
5.3 Correspondence Free Structure from Motion 116
5.4 Summary . 118

6 Experimental Results 119
6.1 Constraints and Algorithms . 119
6.2 3D to 2D projections . 121

6.2.1 Synthetic Data . 121
6.2.2 Real Data . 122

6.3 Higher-dimensional projections . 125
6.3.1 Projections P4 → P2 . 125
6.3.2 Projections P9 → P2 . 128

6.4 Summary . 130

7 Conclusion 131
7.1 Summary and Major Results . 131
7.2 Future Work . 132

xiv Contents

List of Figures

1.1 Examples of 4×6 cross-shaped matrices. 3
1.2 Step-like matrices. 4
1.3 Examples of valid tiling. 4

3.1 Examples of 4×6 cross-shaped matrices. 33
3.2 The inference graph for the proof of Lemma 3.7. 38
3.3 An example of a cross-shaped configuration. 48
3.4 A 4×6 cross-shaped depth matrix Λ̂ centred at (r, c) with r = 3, c = 4. . 52
3.5 Examples of valid tiling. 54
3.6 Examples of the procedure of tiling a 4×5 depth matrix. 55
3.7 Examples of 4×6 matrices, both satisfying Λ̂1n = n1m and Λ̂T1m = m1n. 56
3.8 Step-like matrices. 58
3.9 Why step-like mask constraints are inclusive? 58
3.10 Examples of 4×6 edgeless step-like mask matrices. 59

6.1 Four constraints implemented for the experiments. 120
6.2 An example where all algorithms converge to a correct solution. 122
6.3 An example of converging to a wrong solution. 123
6.4 An example of converging to an acceptable solution 124
6.5 An example of converging to a wrong solution. 124
6.6 The result of one run of the experiment for projections P4 → P2. 126
6.7 Another run of the experiment for projections P4 → P2 127
6.8 Repeating the experiment of Fig. 6.7 for 200,000 iterations. 127
6.9 First experiment for projections P9 → P2 129
6.10 Second experiment for projections P9 → P2 130

xv

xvi LIST OF FIGURES

Chapter 1

Introduction

1.1 Thesis Statement

The subject of this thesis is generalizations to the Theorem of Projective Reconstruc-
tion with the purpose of providing a theoretical basis for a wider range of projective
reconstruction algorithms, including projective factoirization. We investigate the clas-
sic case of 3D to 2D projections in detail, and further, extend the theory to the general
case of arbitrary dimensions.

1.2 Introduction

The main purpose of this thesis is to extend the theory of projective reconstruction
for multiple projections of a set of scene points. A set of such projections can be
represented as

λijxij = PiXj (1.1)

for i = 1, . . . , m and j = 1, . . . , n, where Xj ∈ Rr are high-dimensional (HD) points,
Pi ∈ Rsi×r are projection matrices, xij ∈ Rsi are image points and λij-s are nonzero
scalars known as projective depths. Each point Xj ∈ Rr is a certain representation of a
projective point in Pr−1 in homogeneous coordinates. Similarly, each xij ∈ Rsi repre-
sents a point in Psi−1. In the classic case of 3D to 2D projections we have r = 4 and
si = 3 for all i. The problem of projective reconstruction is to obtain the projection ma-
trices Pi, the HD points Xj and the projective depths λij, up to a projective ambiguity,
given the image points xij.

The relations (1.1) can be looked at from a factorization point of view. By writing
(1.1) in matrix form we have

Λ� [xij] = P X, (1.2)

where the operator “�” multiplies each element λij of the depth matrix Λ by
its corresponding image point xij, that is Λ � [xij] = [λijxij], the matrix P =

stack(P1, P2, . . . , Pn) ∈ R(∑i si)×r is the vertical stack of the projection matrices Pi, and
X = [X1, X2, . . . , Xn] ∈ Rr×n is the horizontal concatenation of the HD points Xj. This

1

2 Introduction

relation expresses the idea behind the factorization-based approaches to projective re-
construction: find Λ such that Λ� [xij] can be factorized as the product of a (∑i si)×r
matrix P by an r×n matrix X, or equivalently, the rank of Λ� [xij] is less than or equal
to r.

Tensor-based techniques The conventional way of dealing with the projective re-
construction problem is using the tensor-based approaches. In such approaches, first
a specific tensor is estimated from image point correspondences in a subset of views.
The projection matrices then are extracted from the tensor. Having the projection
matrices, the points can be estimated through a triangulation procedure. In 3D to
2D projections, the possible tensors are the bifocal tensor (fundamental matrix), tri-
focal tensor and quadrifocal tensor which are respectively created from the point
correspondences among pairs, triples and quadruples of images [Hartley and Zis-
serman, 2004]. Similarly, other types of tensors can be used for projections in other
dimensions. Hartley and Schaffalitzky [2004] unify different types of tensors used
for different dimensions under the concept of the Grassmann tensor.

Tensor-based projective reconstruction is sometimes not accurate enough, espe-
cially in the presence of noise. One problem is imposing necessary nonlinear re-
strictions on the form of the tensor in the course of its computation from image
point correspondences. As a simple example, the fundamental matrix (bifocal ten-
sor) needs to be of rank 2. This is the only required constraint. The number of such
internal constraints increases dramatically with the dimensionality of the multi-view
tensor. For example, the trifocal tensor is known to have 8 internal constraints. For
the quadrifocal tensor this number is 51 (see [Hartley and Zisserman, 2004, Sect.
17.5]). Another issue is that for projections from Pr−1, at most r views can contribute
to the computation of each tensor. For example, for 3D to 2D projections, a tensor
can be defined only for up to four views. This prevents us from making use of the
whole set of image points from all views to reduce the estimation error. This has
led to the use of other approaches such as bundle adjustment [Triggs et al., 2000]
and projective factorization [Sturm and Triggs, 1996; Triggs, 1996; Mahamud et al.,
2001; Oliensis and Hartley, 2007], in which the projection equations (1.1) are directly
solved for projection matrices Pi, HD points Xj and projective depths λij. Analysing
such methods requires a theory which derives the projective reconstruction from the
projection equations (1.1), rather than from the Grassmann tensor. Providing such a
theory is the main object of this thesis.

Projective Factorization We consider, in detail, the classic case of 3D to 2D pro-
jections from a projective factorization point of view illustrated in (1.2). Many
factorization-based approaches have been suggested to solve (1.2) [Sturm and Triggs,
1996; Triggs, 1996; Ueshiba and Tomita, 1998; Heyden et al., 1999; Mahamud et al.,
2001; Oliensis and Hartley, 2007; Dai et al., 2013]. However, in such algorithms, it
is hard to impose the geometric constraints such as full-row-rank camera matrices
Pi and all nonzero projective depths λij. Completely neglecting such constraints,
however, allows wrong solutions to (1.2) which are not projectively equivalent to the

§1.2 Introduction 3


a
b

c d x e f g
h




a b c x d e
f
g
h




a
b
c
x d e f g h


Figure 1.1: Examples of 4×6 cross-shaped matrices. In cross-shaped matrices all
elements of the matrix are zero, except those belonging to a special row r or a special
column c of the matrix. The elements of the r-th row and the c-th column are all
nonzero, except possibly the central element located at position (r, c). In the above
examples, the blank parts of the matrices are zero. The elements a, b, . . . , h are all
nonzero, while x can have any value (zero or nonzero). We will show that one class
of degenerate solutions to the projective factorization problem (1.2) happens when

the estimated depth matrix Λ̂ takes a cross-shaped form.

true configuration of camera matrices and points. Therefore, without putting extra
constraints on the depth matrix the above problem can lead to false solutions.

Degenerate solutions The main source of the false solutions in the factorization-
based methods is the possibility of having zero-elements in Λ. One can simply see
that setting Λ, P and X all equal to zero provides a solution to (1.2). Another trivial
solution, as noted by Oliensis and Hartley [2007], occurs when Λ has all but four
zero columns. In general, it has been noticed that false solutions to (1.2) can happen
when some rows or some columns of the depth matrix are zero. There has been no
research, however, specifying all possible false solutions to the factorization equation
(1.2). Here, in addition to the cases where the estimated depth matrix has some zero
rows or some zero columns, we present a less trivial class of false solutions where the
depth matrix has a cross-shaped structure (see Fig. 1.1). We shall further show that
all possible false solutions to the projective factorization problem (1.2) are confined
to the above cases, namey when

1. the depth matrix Λ̂ has one or more zero rows,

2. the depth matrix Λ̂ has one or more zero columns,

3. the depth matrix Λ̂ is cross-shaped.

Therefore, by adding to (1.2) a constraint on the depth matrix which allows at least
one correct solution, and excludes the three cases above, any solution to the factor-
ization problem (1.2) is a correct projective reconstruction.

Constraining projective depths Here, we do not thoroughly deal with the question
of how to solve (1.2) and are mostly concerned about the classification of its false so-
lutions, and the constraints which can avoid them. However, we have to be realistic
about choosing proper constraints. The constraints have to possess some desirable
properties to make possible the design of efficient and effective algorithms for solv-
ing (1.2). As a trivial example it is essential for many iterative algorithms that the

4 Introduction


1 1

1 1 1
1 1

1 1




1 1 1
1
1
1 1 1 1




1
1
1
1 1 1 1 1 1


(a) (b) (c)

Figure 1.2: Examples of 4×6 step-like mask matrices. Blank parts of the matrices
indicate zero values. A step-like matrix contains a chain of ones, starting from its
upper left corner and ending at its lower right corner, made by making rightward
and downward moves only. An exclusive step-like mask is one which is not cross-
shaped. In the above, (a) and (b) are samples of an exclusive step-like mask while
(c) is a nonexclusive one. Associated with an m×n step-like mask M, one can put a
constraint on an m×n depth matrix Λ̂ in the form of fixing the elements of Λ̂ to 1
(or some nonzero values) at sites where M has ones. For an exclusive step-like mask,
this type of constraint rules out all the wrong solutions to the factorization-based

problems.

b b b b b b

b

b

b

b

b

bb

b

bb

b

bb

b

bb

b

b

b b b b b b

b

b

bbbbbb

b

b b b b b

bbbb

b b b b b b

(a) (b) (c)

b

b

b

b

bbbb bbbb

(d) (e) (f)

Figure 1.3: Examples of tiling a 4×6 depth matrix with row and column vectors. The
associated constraint is to force every tile of the depth matrix to have a unit (or a

fixed) norm. This gives a compact constraint space. (More details in Sect. 3.3.1.4.)

constraint space is closed. As nearly all factorization-based algorithms are solved
iteratively, this can guarantee that the algorithm does not converge to something
outside the constraint space.

Linear equality constraints A major class of desirable constraints for projective
factorization problems consists of linear equality constraints. The corresponding
affine constraint space is both closed and convex, and usually leads to less com-
plex iterations. We shall show that the linear equality constraints that are used so
far in factorization-based reconstruction allow for cross-shaped depth matrices and
hence cannot rule out false solutions. We shall further introduce step-like constraints, a
class of linear equality constraints of a form fixing certain elements of the depth ma-
trix, which provably avoid all the degenerate cases in the factorization problem (see
Fig. 1.2). The element-wise nature of these constraints makes the implementation of

§1.2 Introduction 5

the associated factorization-based algorithms very simple.

Compact constraints Another desirable property for the constraint space, which is
mutually exclusive with being an affine subspace, is compactness. The importance of
a compact constraint space is that certain convergence properties can be proved for
a large class of iterative descent algorithms when the sequence of solutions lie inside
a compact set. One can think of many compact constraints, however, the important
issue is that the constraint needs to be efficiently implementable with a factorization
algorithm. Two examples of such constraints are presented in [Heyden et al., 1999]
and [Mahamud et al., 2001], in which, respectively, all rows and all columns of the
depth matrix are forced to have a fixed (weighted) l2-norm. In each case, every itera-
tion of the factorization algorithm requires solving a number of eigenvalue problems.
Mahamud et al. [2001] prove the convergence of their algorithm to local minima us-
ing the General Convergence Theorem [Zangwill, 1969; Luenberger, 1984]. However,
these constraints allow zero columns or zero rows in the depth matrix, as well as
cross-shaped structures. In this thesis, we combine the constraints used in [Heyden
et al., 1999] and [Mahamud et al., 2001], in the sense of tiling the matrix with row and
column vectors and requiring each tile to have a unit (or fixed) norm (see Fig. 1.3).
With a proper tiling, convergence to configurations with zero rows and zero columns
is ruled out. Such tilings still allow for cross-shaped structures, however, as shown
in Fig. 1.3, the number of possible cross-shaped structures is limited.

Arbitrary dimensional projections The rest of the thesis is devoted to the projec-
tions in arbitrary dimensions. The job is harder in this case because the theory has
not been developed to the extent it has been for 3D to 2D projections.

The need for projective reconstruction in higher dimensions comes from the ap-
plications in the analysis of dynamic scenes, when the motion in the scene is not
globally rigid. Wolf and Shashua [2002] consider a number of different structure
and motion problems in which the scene observed by a perspective camera is non-
rigid. They show that all the given problems can be modeled as projections from a
higher-dimensional projective space Pk into P2 for k = 3, 4, 5, 6. They use tensorial
approaches to address each of the problems. Xiao and Kanade [2005], Vidal and
Abretske [2006] and Hartley and Vidal [2008] considered the problem of perspective
nonrigid deformation, assuming that the scene deforms as a linear combination of
k different linearly independent basis shapes. They show that the problem can be
modeled as projections from P3k to P2.

Such applications demonstrate the need for a general theory of projective recon-
struction for arbitrary dimensional spaces. Hartley and Schaffalitzky [2004] present
a novel theory to address the projective reconstruction for general projections. Their
theory unifies the previous work by introducing the Grassmann tensor, which gen-
eralizes the concepts of bifocal, trifocal and quadrifocal tensors used in P3 → P2

projections, and other tensors used for special cases in other dimensions. The central
theorem in Hartley and Schaffalitzky [2004] suggests that the projection matrices can

6 Introduction

be obtained up to projectivity from the corresponding Grassmann tensor. As we dis-
cussed, the tensor methods sometimes have problems with accuracy which leads to
the use of other methods such as bundle adjustment and projective factorization, in
which the projection equations (1.1) are directly solved for projection matrices Pi, HD
points Xj and projective depths λij. The current theory of projective reconstruction,
however, is not sufficient for the analysis of such methods.

Here, we give a theory which deduces projective reconstruction from the set of
equations (1.1). As a first step, we need to answer a question which is left open
in [Hartley and Schaffalitzky, 2004], namely whether, for a general setup, the set of
image points xij uniquely determine the Grassmann tensor, up to a scaling factor.
Notice that this is important even for tensor-based projective reconstruction. Our
theory in section 4.2.1 gives a positive answer to this question.

The second question is whether all configurations of projective matrices and HD
points projecting into the same image points xij (all satisfying (1.1) with nonzero
depths λij) are projectively equivalent. This is important for the analysis of bun-
dle adjustment as well as factorization-based approaches. Answering such a simple
question is by no means trivial. Notice that the uniqueness of the Grassmann tensor
is not sufficient for proving this, as it does not rule out the existence of degenerate
solutions {Pi} whose corresponding Grassmann tensor is zero. This thesis gives a
positive answer to this question as well, as a consequence of the theory presented in
section 4.3.

The last issue, which only concerns the factorization-based approaches, is classi-
fying all the degenerate solutions to the projective factorization equation (1.2). The
factorization-based approaches has been used for higher dimensional projections, for
example, for the recovery of nonrigid deformations [Xiao and Kanade, 2005]. Being
aware of possible degenerate solutions can help us with the design of the reconstruc-
tion algorithms which are able to avoid such solutions. It turns out that the wrong
solutions for arbitrary dimensional spaces can be much more complex compared to
the case of 3D to 2D projections. We analyse such degenerate solutions in Sect. 4.4.

1.3 Thesis Outline

The thesis continues with Chapter 2 which gives the reader the required background,
including the previous work, motivation and a more detailed explanation of the need
for a generalized theory and a review of the theory and algorithms of projective re-
construction. In chapter 3 we give our theorem for the special case of 3D to 2D
projections, and demonstrate how the theory can be used for the design and analysis
of factorization-based projective reconstruction algorithms. Chapter 4 considers the
general case of projections in arbitrary dimensional spaces. We extend the current
theory on this subject and also show how some results from 3D to 2D projections fol-
low as special cases of our theory for arbitrary dimensions. In chapter 5 we present
some of the applications of higher-dimensional projections, including motion seg-
mentation, non-rigid motion recovery and correspondence-free structure from mo-

§1.3 Thesis Outline 7

tion. Chapter 6 contains the experimental results, where we study the application of
factorization-based algorithms for the case of 3D to 2D projections for the recovery
of rigid structure and motion. We also run experiments on higher-dimensional pro-
jections, and demonstrate how degenerate solutions can occur using the projective
factorization algorithms.

8 Introduction

Chapter 2

Background and Related Work

The aim of this section is to provide readers with the required background on pro-
jective reconstruction, help them with the conventions used in the thesis and make
clear the importance of the research done. A review of the previous work is done in
different occasions throughout the chapter.

2.1 Conventions and problem formulation

2.1.1 Notation

We use typewriter letters (A) for matrices, bold letters (a, A) for vectors, normal letters
(a, A) for scalars and upper-case normal letters (A) for sets, except for special sets
like the real space R and the projective space P. We use calligraphic letters (A) for
both tensors and mappings (functions). To refer to the column space, row space
and null space of a matrix A we respectively use C(A), R(A) and N (A). The vertical
concatenation of a set of matrices A1, A2, . . . , Am with compatible size is denoted by
stack(A1, . . . , Am).

2.1.2 Genericity

We make use of the terms “generic” and “in general position” for entities such as
points, matrices and subspaces. By this term we mean that they belong to an open
and dense subset of their ambient space. This generic subset in some occasions are
explicitly determined using a set of generic properties, and in some cases, we just use
the term generic without mentioning any properties. In such cases the generic subset
is implicitly determined from the properties assumed as a consequence of genericity
in our proofs.

2.1.3 The projection-point setup

Here, we are dealing with multiple projection from a higher-dimensional space
Pr−1 to lower-dimensional spaces Psi−1. More precisely, we have a set of n higher-
dimensional (HD) projective points X̃1, X̃2, . . . , X̃n ∈ Pr−1 and a set of m projective

9

10 Background and Related Work

transformations P1,P2, . . . ,Pm with Pi : Pr−1 → Psi−1. Each point X̃j is mapped by
each projection Pi to a lower-dimensional projective point x̃ij ∈ Psi−1, that is

x̃ij = Pi(X̃j). (2.1)

The problem of projective reconstruction is to recover the projective maps Pi and HD
points X̃j given the projected points x̃ij. Obviously, the best we can do given only
x̃ij-s is the recovery of Pi-s and X̃j-s up to a projective ambiguity, as one can write

x̃ij = Pi(X̃j) = Pi(H(H−1(X̃j))) (2.2)

for any invertible projective transformation H : Pr−1 → Pr−1. Therefore,
if ({Pi}, {X̃j}) is one possible solution to projective reconstruction, so is
({PiH}, {H−1(X̃j)}).

To deal with the projections algebraically, we use homogeneous coordinates
representing the projective points X̃j ∈ Pr−1 and x̃ij ∈ Psi−1 by the real vector
Xj ∈ Rr and xij ∈ Rsi respectively. We also represent each projective transforma-
tion Pi : Pr−1 → Psi−1 by an si×r matrix Pi. The projection relations (2.1) can then be
represented as

λijxij = PiXj (2.3)

for nonzero scalars λij called the projective depths. The task of projective reconstruc-
tion can be restated as recovering the HD points Xj, the projection matrices Pi and
the projective depths λij, up to a projective ambiguity, from the image points xij (see
Sect. (2.5) for a formal definition of projective ambiguity).

Here, the setup ({Pi}, {Xj}) is usually referred to as the true configuration or the
ground truth. We sometimes use a second setup of projection matrices and points
({P̂i}, {X̂j}). This new setup, denoted by hatted quantities, in most occasions is re-
ferred to as the estimated configuration, meaning that it is an estimation of the true
setup, usually achieved by some algorithm. The object of our main theorems here is
to show that if the setup ({P̂i}, {X̂j}) projects into the same set of image points xij
introduced in (2.3), that is

λ̂ijxij = P̂iX̂j, (2.4)

then ({P̂i}, {X̂j}) and ({Pi}, {Xj}) are projectively equivalent.

The reader must keep in mind that, here, the projection matrices Pi, P̂i, HD points
Xj, X̂j and image points xij are treated as members of a real vector space, even though
they might represent quantities in a projective space. The equality sign “=” here is
strict and never implies equality up to scale.

§2.2 Projective Reconstruction Algorithms 11

2.2 Projective Reconstruction Algorithms

2.2.1 Tensor-Based Algorithms

Perhaps the most widely used example of multi-view tensors is the fundamental ma-
trix [Faugeras, 1992; Hartley et al., 1992; Hartley and Zisserman, 2004] used in epipo-
lar (two-view projective) geometry. Consider the classic case of 3D to 2D projections
with two views. If each scene point Xj ∈ R4 is viewed by two cameras with camera
matrices P1, P2 ∈ R3×4 as image points x1j, x2j ∈ R3, then we have

λijxij = PiXj (2.5)

for i = 1, 2 and nonzero scalars λij. One can show that the above induces a bilinear
relation between the corresponding image points x1j and x2j:

xT
2j F x1j = 0, (2.6)

such that the 3×3 matrix F, known as the fundamental matrix only depends on the
camera matrices P1 and P2. The relation (2.6) defines a linear relation on the elements
of F. It can be shown that having images xij of sufficient number of scene points Xj
in general location, the relations (2.6) determine the fundamental matrix F uniquely
up to scale [Hartley and Zisserman, 2004].

Given the fundamental matrix, the projection matrices P1 and P2 can be obtained
up to a projective ambiguity. Having the camera matrices P1 and P2, the scene points
Xj can be determined, up to scale, by triangulation.

The tensor-based projective reconstruction involving more than two views, or
dealing with projections in other dimensions, more or less follows a similar proce-
dure. A tensor is made from the point correspondences between a subset of views,
camera matrices are extracted from the tensor and the HD points are constructed by
triangulation.

For 3D to 2D projections, only two other types of tensors exist, namely the trifocal
tensor and quadrifocal tensor, representing multilinear relations between triples and
quadruples of image point correspondences. For three views indexed by 1, 2 and 3,
the following relation holds for each triple of point correspondences x1j, x2j, x3j

T (x1j, l2j, l3j) = 0 (2.7)

where l2j and l3j represent any projective lines passing through x2j and x3j respec-
tively, and T is a trilinear mapping known as the trifocal tensor. One can write the
above in tensor notation

x1j,p lq
2j lr

3j T
p

qr = 0 (2.8)

where x1j,p represents the p-th entry of x1j, lq
2j and lr

3j respectively represent the q-th
and r-th entries of l2j and l3j, and T p

qr represents the pqr-th element of the trifocal
tensor T .

12 Background and Related Work

Notice that unlike the case of fundamental matrix, the trifocal tensor is not di-
rectly defined as a relation on the entries of points, but rather as a relation among
points and lines1. As more than one line can pass through each point, for each triple
of point correspondences one can have more than one relation in the form of 2.8.
Again, each relation (2.8) gives a linear equation on the elements of the tensor. With
sufficient point correspondences the tensor can be determined up to a scaling fac-
tor. In the same way, the quadrifocal tensor defines a quadrilinear relation among
quadruples of views. There are no higher order multilinear relations between corre-
spondences of views.

The tensor methods can be used for projections in other dimensions. The compre-
hensive work of Hartley and Schaffalitzky [2004] gives a general theory for tensor-
based projective reconstruction in arbitrary dimensions. They show that multilinear
relations exist for point, line or subspace correspondences among subsets of views,
described by the so-called Grassmann tensor. The Grassmann tensor can be obtained
linearly using the multilinear relations between the Grassmann coordinates of sub-
spaces passing through the corresponding points in different views. Hartley and
Schaffalitzky [2004] give a proof for the uniqueness of the reconstruction of the pro-
jective matrices, up to a projective ambiguity, given the Grassmann tensor. Using the
procedure explained in their constructive proof, one can reconstruct the projective
matrices from the Grassmann tensor.

2.2.2 Bundle Adjustment

In bundle adjustment given the image points xij, one finds an estimate ({P̂i}, {X̂j}) of
projection matrices Pi and HD points Xj by minimizing the following target function

∑
i,j
D(xij, P̂iX̂j) (2.9)

where D is a distance function. The question is what is a proper choice for D. Con-
sidering the relation λijxij = PiXj, one might choose D as D(x, y) = minλ̂

∥∥x− y/λ̂
∥∥.

However, a proper choice of D is problem dependent. One should consider the phys-
ical phenomenon behind the projection model and the nature of the noise process.
For example, for the common 3D to 2D perspective projections with a Gaussian noise
on the 2D images, the optimal choice of D in the sense of Maximum Likelihood is

∑
i,j
D(x, y) = (x1/x3 − y1/y3)

2 + (x2/x3 − y2/y3)
2, (2.10)

defined over the pair of vectors with a nonzero last entry. Bundle adjustment is usu-
ally used as a post processing stage for fine tuning given an initial solution obtained
from other reconstruction algorithms.

Besides targeting the Maximum Likelihood cost function, bundle adjustment has

1It is however possible to write tensor relations directly on the entries of points, with more than one
relation for each point correspondence.

§2.2 Projective Reconstruction Algorithms 13

the advantage of handling missing data. One issue with bundle adjustment is that it
can fall in local minima, and therefore, it requires good initialization. Another issue
is that the associated optimization problem gets very large when large numbers of
cameras and points are involved. Several solutions have been proposed to address
the scalability problem. We refer the reader to [Hartley and Zisserman, 2004, sections
18, A6] and also [Agarwal et al., 2010] for further information.

2.2.3 Projective Factorization

Consider the projection equation

λijxij = PiXj (2.11)

for m projection matrices Pi ∈ Rsi×r and n points Xj ∈ Rr. The projective depths
λij ∈ Rsi , i = 1, . . . , m, j = 1, . . . , n, can be arranged as an m×n array to form the
depth matrix Λ = [λij]. Similarly, the image data {xij} can be arranged as a (∑i si)×n
matrix [xij] called here the data matrix. In this way, the above equation can be written
in the matrix form

Λ� [xij] = P X, (2.12)

where P = stack(P1, P2, · · · , Pm) is the vertical concatenation of the camera matri-
ces, X = [X1X2 · · ·Xn] and Λ � [xij] = [λijxij], that is the operator � multiplies
each element λij of Λ by the corresponding si×1 block xij of the matrix [xij]. From
(2.12) it is obvious that having the true depth matrix Λ, the weighted data matrix
Λ� [xij] = [λijxij] can be factored as the product of a (∑i si)×r matrix P by an r×n
matrix X. Equivalently, the matrix Λ� [xij] has rank r or less. This is where the un-
derlying idea of factorization-based algorithms comes from. These algorithms try to
find an estimation Λ̂ of the depth matrix for which the matrix Λ̂� [xij] has rank r or
less, and thus, can be factored as the product of (∑i si)×r and r×n matrices P̂ and X̂:

Λ̂� [xij] = P̂ X̂. (2.13)

One hopes that by solving the above problem, dividing P̂ into blocks P̂i ∈ Rsi×r as
P̂ = stack(P̂1, P̂2, · · · , P̂m) and letting X̂j be the j-th column of X̂, the camera-point
configuration ({P̂i}, {X̂j}) is equal to the true configuration ({Pi}, {Xj}) up to a pro-
jective ambiguity. However, it is obvious that given the data matrix [xij] not every
solution to (2.13) gives a true reconstruction. A simple reason is the existence of
trivial solutions, such as Λ̂ = 0, P̂ = 0, X̂ = 0, or when Λ̂ has all but r nonzero
columns (see [Oliensis and Hartley, 2007] for r = 4). In the latter case it is obvious
that Λ̂ � [xij] can be factored as (2.13) as it has a rank of at most r. This is why
we see that in almost all projective factorization algorithms the depth matrix Λ̂ is
somehow restricted to some constraint space. The constraints are used with the hope
of preventing the algorithm from ending up in wrong solutions, for which (2.13) is
satisfied, but ({P̂i}, {X̂j}) is not projectively equivalent to ({Pi}, {Xj}). Most of the

14 Background and Related Work

constraints used in the literature can prevent at least the trivial examples of wrong
solutions where the depth matrix has zero columns or zero rows. However, prevent-
ing all types of wrong solutions requires more investigation. In Chapter 3, we will
show that for 3D to 2D projections, besides the case of zero columns or zero rows in
the depth matrix, there exists a third class of wrong solutions when the depth matrix
has a cross-shaped structure. The concept of a cross-shaped matrix was described
in Fig. 1.1 of the Introduction chapter. We refer the reader to Fig. 3.3 in Sect. 3.2.5
for a simple example demonstrating how a cross-shaped solution can happen. The
core contribution of Chapter 3 is showing that wrong solutions to (2.13) are confined
to these three cases, namely where the estimated depth matrix Λ̂ has zero rows, has
zero columns, or is cross-shaped. To give the reader a better understanding, we state
the main theorem of Chapter 3 here

Theorem 2.1. Consider a set of m ≥ 2 generic camera matrices P1, P2, . . . , Pm ∈ R3×4 and
n ≥ 8 points X1, X2, . . . , Xn ∈ R4 in general position, projecting into a set of image points
{xij} according to xij = PiXj/λij for nonzero projective depths λij. Now, for any other
configuration of m camera matrices {P̂i}, n points {X̂j} and mn depths {λ̂ij} related to the
same image data {xij} by

λ̂ijxij = P̂iX̂j, (2.14)

if the depth matrix Λ̂ = [λ̂ij] satisfies the following

(D1) Λ̂ has no zero columns,

(D2) Λ̂ has no zero rows, and

(D3) Λ̂ is not cross-shaped,

then the camera-point configuration ({P̂i}, {X̂j}) is projectively equivalent to ({Pi}, {Xj}).

The above can help us with the design of proper depth constraints for the
factorization-based algorithms dealing with 3D to 2D projections. This will be dis-
cussed in detail in Sect. 2.3. Moving from P3 → P2 projections to the more general
case of arbitrary dimensional projections, the wrong solutions can be much more
complex, as we will show in Chapter 4.

Here, we review different types of projective factorization algorithms proposed in
the literature classified by the constraints they use. All these algorithms are suggested
for 3D to 2D projections (r = 4). Therefore, our discussions for the rest of the section
is in the context of 3D to 2D projections.

Sturm-Triggs Factorization The link between projective depth estimation and pro-
jective reconstruction of cameras and points was noted by Sturm and Triggs [1996],
where it is shown that given the true projective depths, camera matrices and points
can be found from the factorization of the data matrix weighted by the depths. How-
ever, to estimate the projective depths Sturm and Triggs make use of fundamental

§2.2 Projective Reconstruction Algorithms 15

matrices estimated from pairwise image correspondences. Several papers have pro-
posed that the Sturm-Triggs method can be extended to iteratively estimate the depth
matrix Λ̂ and camera-point configuration P̂ and X̂ [Triggs, 1996; Ueshiba and Tomita,
1998; Heyden et al., 1999; Mahamud et al., 2001; Hartley and Zisserman, 2004]. It has
been noted that without constraining or normalizing the depths, such algorithms can
converge to false solutions. Especially, Oliensis and Hartley [2007] show that the ba-
sic iterative generalization of the Sturm-Triggs factorization algorithm can converge
to trivial false solutions, and that in the presence of the slightest amount of noise, it
generally does not converge to a correct solution.

Unit Row Norm Constraint Heyden et al. [1999] estimate the camera-point config-
uration and the projective depths alternatingly, under the constraint that every row
of the depth matrix has unit l2-norm. They also suggest a normalization step which
scales each column of the depth matrix to make the first row of the matrix have
all unit elements. However, they do not use this normalization step in their experi-
ments, reporting better convergence properties in its absence. It is clear that by just
requiring rows to have unit norm, we allow zero columns in the depth matrix as well
as cross-shaped configurations. If all rows except the first are required to have unit
norm, and the first row is constrained to have all unit elements, then having zero
columns is not possible, but still a cross-shaped depth matrix is allowed. We refer
the reader to Sect. 6.2 for experiments on this constraint.

Unit Column Norm Constraint Mahamud et al. [2001] propose an algorithms
which is in some ways similar to that of Heyden et al. [1999]. Again, the depths
and camera-point configuration are alternatingly estimated, but under the constraint
that each column of the weighted data matrix has a unit l2-norm. The convergence to
a local minimum is proved, but no theoretical guarantee is given for not converging
to a wrong solution. In fact, the above constraint can allow zero rows in the depth
matrix in addition to cross-shaped depth matrices.

Fixed Row and Column Norms Triggs [1996] suggests that the process of estimat-
ing depths and camera-point structure in the Sturm-Triggs algorithm can be done
iteratively in an alternating fashion. He also suggests a depth balancing stage after
the depth estimation phase, in which it is sought to rescale rows and columns of
the depth matrix such that all rows have the same Euclidean length and similarly
all columns have a common length. The same balancing scheme has been suggested
by Hartley and Zisserman [2004]. The normalization step is in the form of rescaling
rows to have similar norm and then doing the same to columns. At each iteration,
this can either be done once each, or in a repeated iterative fashion. If an lp-norm
is used for this procedure, alternatingly balancing rows and columns is the same as
applying Sinkhorn’s algorithm [Sinkhorn, 1964, 1967] to a matrix whose elements are
|λ̂ij|p and thereby forcing all rows of the depth matrix to eventually have the same
norm, and similarly all columns to have the same norm. In Sect. 3.3 we will show

16 Background and Related Work

that forcing the matrix to have equal nonzero column norms and equal nonzero row
norms will prevent all types of false solutions to the factorization-based algorithm
for 3D to 2D projections. However, the direct implementation of this constraint is dif-
ficult. Implementing it as a balancing stage after every iteration can prevent descent
steps in the algorithm. Oliensis and Hartley [2007] report that the normalization step
can lead to bad convergence properties.

CIESTA Oliensis and Hartley [2007] prove that if the basic iterative factorization is
done without putting any constraint on the depth matrix (except possibly retaining
a global scale), it can converge to trivial false solutions. More interestingly, they
show that in the presence of noise it always converges to a wrong solution. They
also argue that many variants of the algorithm, including [Mahamud et al., 2001]
and [Hartley and Zisserman, 2004] either are likely to converge to false solutions or
can exhibit undesirable convergence behavior. They propose a new algorithm, called
CIESTA, which minimizes a regularized target function. Although some convergence
properties have been proved for CIESTA, the solution is biased as it favors projective
depths that are close to 1. For this choice, even when there is no noise present, the
correct solution does not generally coincide with the global minimum of the CIESTA
target function. Here, we do not deal with such approaches.

Fixing Elements of a Row and a Column Ueshiba and Tomita [1998] suggest es-
timating the projective depths through a conjugate gradient optimization process
seeking to make the final singular values of the weighted image data matrix small,
thus making it close to a rank-four matrix. To avoid having multiple solutions due
to the ambiguity associated with the projective depths, the algorithm constrains the
depth matrix to have all elements of the r-th row and the c-th column equal to one
for some choice of r and c, that is λ̂ij = 1 when i = r or j = c. This constraint can
lead to cross-shaped configurations, although there is only one possible location for
the centre of cross, namely (r, c).

2.2.4 Rank Minimization

The rank minimization approach is actually a variant of the factorization-based ap-
proach. In this approach instead of finding Λ̂ such that Λ̂� [xij] has rank r or less, one
tries to find Λ̂ so as to minimize the rank of Λ̂� [xij]. Again, the rank minimization
must be done subject to some constraints to avoid false solutions like Λ̂ = 0. Here,
we review some of such methods, again classified by the constraint employed. Like
the previous section, statements made here are for the case of 3D to 2D projections.

Transportation Polytope Constraint Dai et al. [2010, 2013] note that for any solution
to the factorization-based problems, the weighted data matrix Λ̂� [xij] is restricted
to have rank four or less. They formulated the problem as a rank minimization ap-
proach, where one seeks to minimize the rank of Λ̂� [xij] subject to some constraints.
As a constraint, they require the depth matrix Λ̂ to have fixed row and column sums.

§2.3 Motivation 17

In addition, this approach also enforces the constraint λ̂ij ≥ 0, that is the projec-
tive depths are all nonnegative2. In [Angst et al., 2011] it has been noted that the
corresponding constraint space is known as the Transportation Polytope.

Dai et al. [2010, 2013] solve the rank minimization problem by using the trace
norm as a convex surrogate for the rank function. The relaxed optimization problem
can be recast as a semi-definite program. One drawback of this approach is the use
of inequality constraints, preventing it from taking advantage of the fast rank min-
imization techniques for large scale data such as [Lin et al., 2010; Yang and Yuan,
2013]. The same idea is used in [Angst et al., 2011], however, a generalized trace
norm target function is exploited to approximate the rank. While Angst et al. [2011]
mention the transportation polytope constraint space, for implementation they just
fix the global scale of the depth matrix. As this constraint is prone to giving degen-
erate trivial solutions, the authors add inequality constraints whenever necessary. In
Sect. 3.3 we shall show that for 3D to 2D projections the transportation polytope
constraint avoids false solutions to the factorization methods if the marginal values
to which rows and columns must sum up are chosen properly.

Fixed Row and Column Sums As noted before, the inequality constraint used in
[Dai et al., 2010, 2013] can prevent the design of fast algorithms. This might be the
reason why, when it comes to introducing scalable algorithms in [Dai et al., 2013], the
inequality constraint has been neglected. We will show that neglecting the inequality
constraint and just constraining rows and columns of Λ̂ to have specified sums always
allows for cross-shaped structures and thus for false solutions. However, as discussed
in Sect. 3.3, it is difficult to converge to such a structure starting from a sensible initial
solution.

2.3 Motivation

2.3.1 Issues with the tensor-based approaches and theorems

In Sect. 2.2.1 we had a quick review of the tensor-based approaches. As briefly
discussed in the Introduction, tensor-based approaches have some limitations. One
issue is that a multi-view tensor can be defined only for up to a limited number of
views. For example for 3D to 2D projections, only up to four views can be analysed
with a tensor [Hartley and Zisserman, 2004]. In general, for multiple projections
from Pr−1, at most r views can be involved in multilinear relations corresponding
to a single tensor [Hartley and Schaffalitzky, 2004]. This can prevents us from hav-
ing more exact estimations by considering the projected data from all views when
having a large number of views. This can be a problem especially in the presence
of noise. There are other issues as well, such as imposing certain internal constraints
on the tensors. This is because the actual dimensionality or degrees of freedom of a

2Actually, in [Dai et al., 2010, 2013] the constraint is given as imposing strictly positive depths:
λ̂ij > 0, giving a non-closed constraint space. However, what can be implemented in practice using
semi-definite programming or other iterative methods is non-strict inequalities like λ̂ij ≥ 0 or λ̂ij ≥ δ.

18 Background and Related Work

multi-view tensor is less than its number of elements minus one. The “minus one”
here is due to the fact the tensor is determined up to a scaling factor. For example,
it is known that the 3×3 fundamental matrix (bifocal tensor) has rank 2, and thus,
a zero determinant. This imposes a polynomial constraint on its elements, which
is the only required constraint. As a 3×3 matrix defined up to scale has 9− 1 = 8
degrees of freedom, the fundamental matrix, has 7 degrees of freedom. The num-
ber of internal constraints grows rapidly with the dimensionality of the tensor. For
example, it is known that the 3×3×3 trifocal tensor has only 18 degrees of freedom.
This gives 33 − 1− 18 = 8 internal constraints. The quadrifocal tensor has 34 = 81
elements. However, it only has 29 degrees of freedom, giving 51 internal constraints
(we refer the reader to [Hartley and Zisserman, 2004, Sect. 17.5] and [Heinrich and
Snyder, 2011] for more details). As the tensors are usually estimated linearly, impos-
ing such constraints can be an issue when data is noisy. Because of such issues, other
projective reconstruction algorithms are used either with conjunction with the tensor-
based methods or independently. These algorithms usually either fall in the category
of Bundle Adjustment [Triggs et al., 2000] and or Projective Factorization [Sturm and
Triggs, 1996; Triggs, 1996; Mahamud et al., 2001; Oliensis and Hartley, 2007]. As we
saw in Sect. 2.2, these methods try to solve the projection equations

λijxij = PiXj (2.15)

directly for projection matrices Pi, points Xi and projective depths λij. Analysing
such methods requires a theory which derives the projective reconstruction from
the projection equations (2.15), rather than from the multi-view tensor. The object
of this work is to provide a theoretical basis for the analysis of such reconstruction
algorithms. To see why such a theorem is needed, let us have a look at the present
theorems of projective reconstruction, both in the case of 3D to 2D projections and
arbitrary dimensional projections. We make minor changes to the statements of the
theorems to make them compatible with the conventions used here.

First, we consider the Projective Reconstruction Theorem stated in [Hartley and
Zisserman, 2004, Sect. 10.3] for 3D to 2D projections in two views. One can extend
the theorem to arbitrary number of views, for example, by considering different pairs
of views and stitching the reconstructions together.

Theorem 2.2 (Projective Reconstruction Theorem [Hartley and Zisserman, 2004]).
Suppose that x1j ↔ x2j is a set of correspondences between points in two images and that
the fundamental matrix F is uniquely determined by the condition xT

2jFx1j = 0 for all j. Let
(P1, P2, {Xj}) and (P̂1, P̂2, {X̂j}) be two reconstructions of the correspondences x1j ↔ x2j,
which means

λijxij = PiXj

λ̂ijxij = P̂iX̂j

for i = 1, 2 and j = 1, 2, . . . , n with nonzero scalars λij and λ̂ij. Then there exists nonzero

§2.3 Motivation 19

scalars τ1, τ2 and ν1, ν2, . . . , νn and a non-singular matrix H such that

P̂1 = τ1 P1 H (2.16)

P̂2 = τ2 P2 H (2.17)

X̂j = νj H
−1 Xj (2.18)

except for those j such that F x1j = FTx2j = 0.

Notice that Fx1j = FTx2j = 0 occurs when the x1j and FTx2j are images of a 3D
point lying on the projective line connecting the centres of the two cameras. This is
known as a triangulation ambiguity.

The next theorem given by [Hartley and Schaffalitzky, 2004] deals with the case
of projections in arbitrary dimensions. The basic finding is that the camera matrices
can be obtained up to projectivity from the corresponding multi-view (Grassmann)
tensor.

Theorem 2.3 (Hartley and Schaffalitzky [2004]). Consider a set of m generic projection
matrices P1, P2, . . . , Pm, with Pi ∈ Rsi×r, such that m ≤ r ≤ ∑i si − m, and an m-tuple
(α1, α2, . . . , αm) of integers αi such that 1 ≤ αi ≤ m− 1 for all i and ∑m

i=1 αi = r. Then if
at least for one i we have si ≥ 3, the matrices Pi are determined up to a projective ambiguity
from the set of minors of the matrix P = stack(P1, P2, . . . , Pm) chosen with αi rows from each
Pi (that is the elements of the Grassmann tensor). If si = 2 for all i, there are two equivalence
classes of solutions.

We see that in these theorems, the main focus is on the uniqueness of the recon-
struction given the multi-view tensor. This can be particularly an issue for the case
of arbitrary dimensional projections for which the theory has not been developed to
the extent it has for 3D to 2D projections. We argue that the current theorems are
not sufficient for the analysis of algorithms like bundle adjustment and projective
factorization whose aim is to directly solve the set of projective equations

λ̂ijxij = P̂iX̂j, i = 1, . . . , m, j = 1, . . . , n (2.19)

for camera matrices P̂i, HD points X̂j and projective depths λ̂ij. The obstacles for
getting from the above theorems to the point we can analyse such algorithms are as
follows:

1. Proving that the multi-view tensor is uniquely determined from the image data
xij, in a generic configuration with sufficiently many points.

2. Proving that there is no solution ({P̂i}, {X̂j}, {λ̂ij}) to (2.19) for which the multi-
view tensor corresponding to {P̂i} is zero.

3. If some of the estimated projective depths λ̂ij are not restricted to be nonzero,
what types of degenerate solutions to (2.19) can happen.

The third issue above is especially needed for the projective factorization algo-
rithms for which it is inefficient to enforce nonzero constraints on all projective

20 Background and Related Work

depths λ̂ij. This has been considered in detail in the next subsection. After that,
in Sect. 2.3.3 we elaborate on all the above three issues for the case of arbitrary
dimensional projections.

2.3.2 Projective Factorization Algorithms

In Sect. 2.2.3 we discussed that in the factorization problem one tries to solve

Λ̂� [xij] = P̂ X̂. (2.20)

where the image points xij are obtained through a projection process xij =
1

λij
PiXj. We

also argued that without the use of proper constraints, some solutions to (2.20) are
not projectively equivalent to the true camera-point configuration. By reviewing the
literature in Sect. 2.2.3, we observed that all of the current methods, either implicitly
or explicitly, try to solve the above equation subject to some constraint on Λ̂. We gave
examples of the so-called trivial solutions, such as Λ̂ = 0, P̂ = 0, X̂ = 0, or when Λ̂ has
all but r zero columns. One can also easily show the existence of false solutions in
which one or more rows of Λ̂ or one or more of its columns are zero. For example, by
setting λ̂ij = λij for i = 2, 3, . . . , m and all j, λ̂1j = 0 for all j, P̂i = Pi for i = 2, 3, . . . , m,
P̂1 = 0 and X̂j = Xj for all j, we have a wrong solution satisfying (2.20) for which the
first row of Λ̂ = [λ̂ij] is zero.

It is not obvious, however, (and we shall prove it false) if possible false solutions
to (2.20) are restricted to these trivial cases. Therefore, factorization-based algorithms
lack a proper theoretical basis for finding possible false solutions allowed by given
constraints or to determine what constraints on the depth matrix make every solution
to (2.20) projectively equivalent to the ground truth.

For 3D to 2D projections, the main theoretical basis for the analysis of projective
reconstruction are theorems like the Projective Reconstruction Theorem [Hartley and
Zisserman, 2004] discussed briefly in Sect. 2.3.1. It says that, under certain generic
conditions, all configurations of camera matrices and 3D points yielding a common
set of 2D image points are equal up to a projective ambiguity. This theorem is derived
from a geometric perspective and therefore presumes assumptions like the estimated
camera matrices P̂i having full row rank and all the estimated projective depths λ̂ij
being nonzero. While these are useful enough for the so-called tensor-based recon-
struction approaches, they are not a good fit for the analysis of algebraic algorithms,
especially projective factorization. Obviously, these geometric assumptions can be
reasonably assumed for the true set of depths {λij} and the true camera-point con-
figuration ({Pi}, {Xj}). However, for most of the factorization-based algorithms, at
least in the case of large-scale problems, it is hard to impose these constraints on the
estimated depths {λ̂ij} and camera-point configuration ({P̂i}, {X̂j}) a priori, during
the estimation process.

For 3D to 2D projections, one can show that the basic assumption for the proof of
the classic Projective Reconstruction Theorem [Hartley and Zisserman, 2004] is that
the estimated depths λ̂ij are all nonzero. Other geometric assumptions like full-row-

§2.3 Motivation 21

rank estimated camera matrices P̂i follow from this assumption under reasonable
conditions. Therefore, one might like to enforce λ̂ij 6= 0 as a constraint for any al-
gorithm for solving (2.20), and make use of this theorem to show that the algorithm
avoids false solutions. However, this type of constraint space cannot be easily imple-
mented in most of the iterative algorithms. Since this constraint space is not closed,
it is possible for the procedure to converge to a solution outside the constraint space,
even if all iterations lie inside the constraint space. This means that some of the
projective depths can converge to zero, resulting in a degenerate solution. Making
use of the scale ambiguity of the projective depths, the constraint space can be made
closed by using |λ̂ij| ≥ δ for some positive number δ rather than λ̂ij 6= 0. However,
this non-connected constraint space again cannot be easily handled by many of the
iteration based algorithms. Actually, in practice, when there is no missing data, it is
usually the case that all true depths λij are positive, as all the 3D points are in front
of the cameras. In this case, we can have a convex constraint space by forcing all-
positive depths, that is λ̂ij > 0. Obviously, due to the scale ambiguity, the constraint
space can be made closed by using λ̂ij ≥ δ instead, for some δ > 0. This gives a set
of linear inequalities.

One problem with the inequality constraints is that they are hard to implement for
fast and efficient factorization-based algorithms, especially for large-scale problems.
Thus, we seek even simpler constraints making the optimization-based techniques
more efficient and easier to solve. For example, linear equality constraints, which
are easier to handle and for which usually much faster algorithms exist compared to
inequality constraints. This can be seen, for example, in state-of-the-art algorithms
designed for the convex relaxation of large scale rank minimization problems which
work with linear equality constraints [Lin et al., 2010; Yang and Yuan, 2013]. We ob-
served the use of linear equality constraints in papers like [Ueshiba and Tomita, 1998]
(by fixing special elements of the depth matrix Λ̂) and also [Dai et al., 2010, 2013] (by
fixing the row and column sums of Λ̂) when it comes to large scale problems. We also
observed other examples of constraints like requiring rows of Λ̂ [Heyden et al., 1999],
or columns of Λ̂� [xij] [Mahamud et al., 2001] to have a unit l2-norm, which allowed
for efficient factorization-based algorithms. However, as these constraints, per se,
are unable to guarantee all depths to be nonzero or strictly positive, we cannot take
advantage of the classic theorem of projective reconstruction to analyse their effec-
tiveness. This shows the need to finding weaker conditions under which projective
reconstruction succeeds. The new conditions must allow the verification of the con-
straints that fit the factorization-based algorithms. We will introduce such a theorem
for 3D to 2D projections in Sect. 4.2. The case of arbitrary dimensional projections is
discussed in the next subsection.

2.3.3 Arbitrary Dimensional Projections

A major application of projective reconstruction in higher dimensions is the analysis
of dynamic scene problems such as motion segmentation [Wolf and Shashua, 2002]
and non-rigid deformation recovery [Xiao and Kanade, 2005; Vidal and Abretske,

22 Background and Related Work

2006; Hartley and Vidal, 2008]. These problems can be modeled as projections from
higher-dimensional projective spaces to P2. Such applications illustrate the need
for developing the theory and algorithms of projective reconstruction in higher di-
mensions. The first comprehensive study of projective reconstruction for general
projections in arbitrary dimensions is due to Hartley and Schaffalitzky [2004]. They
introduce the Grassmann tensor as a generalization of the concepts of bifocal, trifo-
cal and quadrifocal tensor used for 3D to 2D projections, and also special cases of
multi-view tensors introduced for projections from other dimensions. As discussed
in Sect. 2.3.1, their main result is a theorem asserting that the projection matrices
can be uniquely determined up to projectivity from the corresponding Grassmann
tensor.

As discussed earlier, the tensor methods suffer from some issues such as lim-
ited number of views handled by each tensor and the internal constraints of the
tensors. Especially, for higher-dimensional projective spaces, the number of internal
constraints of the multi-view tensors becomes very large. Such problems encourage
the use of other techniques such as bundle adjustment and projective factorization,
in which the projection equations

λ̂ijxij = P̂iX̂j, i = 1, . . . , m, j = 1, . . . , n (2.21)

are directly solved for projection matrices P̂i, HD points X̂j and projective depths λ̂ij.
To analyse such methods one needs to further develop the current theory of pro-
jective reconstruction. In this thesis, we present an extended theory which deduces
projective reconstruction from the set of equations (2.21), rather than the multi-view
tensor.

A number of obstacles must be tackled to give a theory for analysing such algo-
rithms. First, we need to prove that sufficiently many image points xij obtained from
a generic projection-point configuration uniquely determine the Grassmann tensor.
While this fact is known for 3D to 2D projections, no proof has yet been given for
arbitrary dimensional projections. We will give a proof in Sect. 4.2.1. Notice that this
result is important even for tensor-based methods.

The second problem is to show that if a second configuration of projection ma-
trices and points project into the same image points xij (with nonzero depths λ̂ij) it
is projectively equivalent to the true configuration form which the image points are
created. Besides projective factorization, this result is also important for the analysis
of bundle adjustment. To prove this, in addition to the uniqueness of the Grassmann
tensor up to scale, one has to show that the Grassmann tensor corresponding to the
second set of camera matrices is nonzero. This will be proved in Sect. 4.3.

Finally, to be able to analyse the projective factorization problem

Λ̂� [xij] = P̂ X̂, (2.22)

one has to understand the nature of the wrong solutions which can happen and
classify them. This helps to properly constrain the depth matrix in projective fac-

§2.3 Motivation 23

torization algorithms, and also enables us to verify the final solution given by such
algorithms. We mentioned that for the case of 3D to 2D projections, except the trivial
solutions where Λ̂ has zero rows or zero columns, the only possible false solution
happens when Λ̂ is cross-shaped. As we will show, the wrong solutions in arbitrary
dimensional case can be in general much more complicated. The classification of
such degenerate solutions is done in Sect. 4.4.

The rest of this section reviews some of the applications of higher-dimensional
projective reconstruction in the literature.

2.3.3.1 Points moving with constant velocity

Wolf and Shashua [2002] consider the following cases in which points moving with
a constant velocity are seen by perspective cameras:

2D constant velocity Points moving independently within a 2D plane, each with a
constant velocity along a straight line. They show that this problem can be modeled
with projections P4 → P2.

3D constant collinear velocity Each point moves with a constant velocity along a
straight line. All line trajectories are parallel. They demonstrate that this can be
modeled as projections P4 → P2.

3D constant coplanar velocity Each point moves with a constant velocity along a
straight line. The velocity vectors are coplanar. It is shown that this can be generally
modeled as projections P5 → P2.

3D constant velocity Each point moves with a constant velocity along a straight
line. It is shown that, generically, this can be modeled as projections P6 → P2.

2.3.3.2 Motion Segmentation

Wolf and Shashua [2002] consider a configuration of 3D points consisting of two
rigid bodies whose relative motion to each other consists only of pure translation,
that is the rotation in two objects is the same. They show that this can be modeled as
projections P4 → P2. This approach can be generalized to the case of more general
types of motion and more than two rigid bodies. We will discuss this further in Sect.
5.1.

2.3.3.3 Nonrigid Motion

Hartley and Vidal [2008] consider the problem of perspective nonrigid deformation.
They show that nonrigid deformations can be modeled as linear combinations of
a number of rigid prototype shapes. They demonstrate that this problem can be
modeled as projections from P3k to P2, where k is the number of prototype basis

24 Background and Related Work

shapes. Using this fact, they gave a solution to the problem of perspective nonrigid
motion recovery using a tensor-based approach. We give more details on this in Sect.
5.2.

2.4 Correspondence Free Structure from Motion

Angst and Pollefeys [2013] study a configuration of multiple cameras which are all
fixed in their place, or undergo a global rigid motion. Each camera observes a subset
of scene points, producing tracks of image points over time. The proposed algorithm
recovers the structure and motion of the scene using the image point tracks given
by the cameras. However, no knowledge about the point correspondences between
different cameras are required. In fact, the cameras may observe non-overlapping
portions of the scene. What links the data obtained by different cameras is the fact
that they are all observing a common rigid motion. The proposed algorithm assumes
an affine camera model. Particularly, they show that, assuming affine cameras, the
image point tracks lie on a 13-dimensional subspace when the scene undergoes a
general rigid motion. If the motion is planar, it has been shown that the tracks lie
on a 5-dimensional subspace. The proposed algorithm involves a rank-13 (or rank-5)
factorization of the image data matrix to decouple the motion from the camera-point
setup.

This idea can be generalized to projective cameras. One can show that the recov-
ery of the 3D structure and motion involves a projective reconstruction for projections
P12 → P2 (or P4 → P2 for planar motion). We will talk more about this in Sect. 5.3.

2.5 Projective Equivalence and the Depth Matrix

As was stated before, for a set of projection matrices P1, P2, . . . , Pm with Pi ∈ Rsi×r, a
set of points X1, X2, . . . , Xn in Rr, and a set of image data xij ∈ Rsi formed according
to the projection relation

λijxij = PiXj (2.23)

with nonzero projective depths λij 6= 0, projective reconstruction (finding Pi-s and
Xj-s) given only the image points xij is possible only up to a projective ambiguity.
This means that the solution is in the form of a projective equivalence class. Here,
we formalize the concept of projective equivalence in the context of the formulation
used here. Readers can refer to [Hartley and Zisserman, 2004] for more details.

Definition 2.1. Two sets of projection matrices {Pi} and {P̂i}, with Pi, P̂i ∈ Rsi×r for i =
1, 2, . . . , m are projectively equivalent if there exist nonzero scalars τ1, τ2, . . . , τm and an r×r
non-singular matrix H such that

P̂i = τi Pi H, i = 1, 2, . . . , m. (2.24)

§2.5 Projective Equivalence and the Depth Matrix 25

Two sets of points {Xj} and {X̂j} with Xj, X̂j ∈ Rr for j = 1, 2, . . . , n, are projectively
equivalent if there exist nonzero scalars ν1, ν2, . . . , νn and a non-singular r×r matrix G such
that

X̂j = νj GXj, j = 1, 2, . . . , n. (2.25)

Two setups ({Pi}, {Xj}) and ({P̂i}, {X̂j}) are projectively equivalent if both (2.24)
and (2.25) hold, and furthermore G = H−1. In other words, there exist nonzero scalars
τ1, τ2, . . . , τm and ν1, ν2, . . . , νn, and an invertible matrix H such that

P̂i = τi Pi H, i = 1, 2, . . . , m. (2.26)

X̂j = νj H
−1 Xj, j = 1, 2, . . . , n. (2.27)

2.5.1 Equivalence of Points

The following lemma about the projective equivalence of the points will be used later
on in the thesis.

Lemma 2.1. Consider a set of points X1, X2, . . . , Xn ∈ Rr with n > r with the following
generic properties

(P1) span(X1, . . . , Xn) = Rr, and

(P2) the set of points {Xi} cannot be partitioned into p ≥ 2 nonempty subsets, such that
subspaces defined as the span of each subset are independent3.

Now, for any set of points {X̂i} projectively equivalent to {Xi}, the matrix G and scalars νj
defined in (2.25) are unique up to a scale ambiguity of the form (βG, {νj/β}) for any nonzero
scalar β.

Notice that (P2) is generic only when n > r, as for n ≤ r the set of points
X1, . . . , Xn always can be split such that the spans of the partitions form indepen-
dent linear subspaces. For example, if Xj-s are linearly independent, then the sub-
spaces span(X1), span(X2), . . . , span(Xn) form independent subspaces. This lemma
will be used to prove projective equivalence for the whole set of views given projec-
tive equivalence for subsets of views.

Proof of Lemma 2.1. Assume there are two sets of nonzero scalars {νj} and {ν′j} and
two invertible matrices G and G′ such that

X̂j = νjGXj, (2.28)

X̂j = ν′jG
′Xj. (2.29)

3Subspaces U1, . . . , Up are independent if dim(∑
p
j=1 Uj) = ∑

p
j=1 dim(Uj), where ∑

p
j=1 Uj =

{∑p
j=1 uj | uj ∈ Uj}.

26 Background and Related Work

This gives

RXj = β j Xj, (2.30)

where R = G−1G′ and β j = νj/ν′j . Thus, X1, X2, . . . , Xn are the eigenvectors of
R with the corresponding eigenvalues β1, β2, . . . , βn. As an r×r matrix can have
at most r eigenvalues, the set of indices {1, 2, . . . , n} can be partitioned into p
nonempty subsets J1, J2, . . . , Jp such that for each subset Jk, the corresponding eigen-
values β j are equal to a common value β(k). Moreover, for each k, the subspace
Uk = span({Xj}j∈Jk) is a subset of the corresponding eigenspace of the eigenvalue
β(k). It is known that the sum of eigenspaces corresponding to different eigenvalues
of a matrix is a direct sum. This means that the eigenspaces are independent. As
each Uk is a subset of one eigenspace, the subspaces U1, U2, . . . , Up are also inde-
pendent. Now, according to the condition (P2), we must have p = 1, and therefore,
all eigenvalues β(1), β(2), . . . , β(p), and thus β1, . . . , βn have a common value, name
it β. The corresponding eigenspace of β is span(X1, . . . , Xn) which is equal to the
whole ambient space Rr according to (P1). This means that R = βI, where I is the
identity matrix. Now, from the definition of R and β j (= β) in (2.30) we get G′ = βG

and ν′j = νj/β for all j. Notice that β is nonzero, as νj and ν′j are both nonzero and
β = β j = νj/ν′j

2.5.2 The depth matrix

We will need to know the implications of projective equivalence of ({Pi}, {Xj}) and
({P̂i}, {X̂j}) on the depth matrices Λ = [λij] and Λ̂ = [λ̂ij]. First, we define the concept
of diagonal equivalence for matrices:

Definition 2.2. Two m×n matrices Λ and Λ̂ are diagonally equivalent if there exist nonzero
scalars τ1, τ2, . . . , τm and ν1, ν2, . . . , νn such that

Λ̂ = diag(τ) Λdiag(ν) (2.31)

where τ = [τ1, τ2, . . . , τm]T, ν = [ν1, ν2, . . . , νn]T and diag(·) arranges the entries of a
vector on the diagonal of a diagonal matrix.

The concepts of projective equivalence of projections and points and diagonal
equivalence of depth matrices are related by the following lemma

Lemma 2.2. Consider two configurations of m projection matrices and n points ({Pi}, {Xj})
and ({P̂i}, {X̂j}), with Pi, P̂i ∈ Rsi×r and Xj, X̂j ∈ Rr, such that

(i) PiXj 6= 0 for all i, j,

(ii) span(X1, X2, . . . , Xn) = Rr, and

(iii) P = stack(P1, P2, . . . , Pm) has rank r (full column rank).

§2.5 Projective Equivalence and the Depth Matrix 27

Also, consider two m×n matrices Λ = [λij] and Λ̂ = [λ̂ij]. If the relations

λijxij = PiXj (2.32)

λ̂ijxij = P̂iX̂j (2.33)

hold for all i = 1, . . . , m and j = 1, . . . , n, then ({Pi}, {Xj}) and ({P̂i}, {X̂j}) are projec-
tively equivalent if and only if the matrices Λ and Λ̂ are diagonally equivalent.

Proof. First, assume that ({Pi}, {Xj}) and ({P̂i}, {X̂j}) are projectively equivalent.
Then, there exist nonzero scalars τ1, τ2, . . . , τm and ν1, ν2, . . . , νn and an invertible ma-
trix H such that (2.26) and (2.27) hold. Therefore we have

λ̂ijPiXj = λ̂ijλijxij = λijP̂iX̂j

= λijνjτi Pi H H
−1 Xj = λijνjτi Pi Xj.

where the first, second and third equations above hold respectively from (2.32), (2.33)
and (2.26, 2.27). By condition (i) in the lemma, that is Pi Xj 6= 0, it follows from the
above that λ̂ij = λijνjτi for all i and j. This is equivalent to (2.31) and hence Λ and Λ̂

are diagonally equivalent.
To prove the other direction, assume that Λ and Λ̂ are diagonally equivalent. Then

from (2.31) we have λ̂ij = λijνjτi. This along with (2.32) and (2.33) gives

P̂iX̂j = λ̂ijxij = λijνjτixij = τiνjPiXj = (τiPi)(νjXj) (2.34)

for i = 1, . . . , m and j = 1, . . . , n. Let Qi = τiPi and Yj = νjXj, so we have P̂iX̂j = QiYj.
Denote by Q and P̂ the vertical concatenations of Qi-s and P̂i-s respectively and denote
by Y and X̂ respectively the horizontal concatenations of Yj-s and X̂j-s. From P̂iX̂j =
QiYj we have

P̂X̂ = QY
def
= A. (2.35)

From conditions (ii) and (iii) in the lemma along with the fact that τi and νj are
nonzero, we can conclude that Q has full column rank and Y has full row rank.
Therefore, A

def
= QY has rank r, and hence, the matrices P̂ and X̂ must both have

maximal rank r. As QY and P̂X̂ are two rank-r factorizations of A, having P̂ = Q H and
X̂ = H−1Y for some invertible matrix H is the only possibility4. This is the same thing
as

P̂i = QiH = τiPiH (2.36)

X̂j = H−1Yj = νjH
−1Xj (2.37)

4The proof is quite simple: The column space of Q, P̂ and A must be equal and therefore we have
P̂ = QH for some invertible 4×4 matrix H. Similarly, we can argue that X̂ = GY for some invertible G.
Therefore, we have Q Y = Q H G Y. As Q has full column rank and Y has full row rank, the above implies
H G = I and hence, G = H−1.

28 Background and Related Work

Therefore, ({Pi}, {Xj}) and ({P̂i}, {X̂j}) are projectively equivalent.

2.6 Summary

In this section, we gave the reader a general background for understanding this
thesis. We also showed the need for generalizing the current theory of projective
reconstruction, both in the case of 3D to 2D projections and arbitrary dimensional
projections. We also have a separate background section at the beginning of each
of our main chapters which is specific to that chapter. The next chapter, Chapter
3, presents a generalized theory for projections from 3D to 2D. Chapter 4 studies
arbitrary dimensional projections.

Chapter 3

A Generalized Theorem for 3D to
2D Projections

In this chapter we consider the popular case of P3 → P2 projections. Therefore,
during the whole chapter it is assumed Xj ∈ R4, xij ∈ R3 and Pi ∈ R3×4 for all i, j.

3.1 Background

3.1.1 The Fundamental Matrix

An important entity used in this chapter is the fundamental matrix. For two cameras,
the fundamental matrix gives a bilinear relation between pairs of corresponding im-
age points. To see the existence of a bilinear relation consider the projection relation
for two views i = 1, 2

λ1jx1j = P1Xj (3.1)

λ2jx2j = P2Xj (3.2)

for nonzero projective depths λ1j and λ2j. One can write the above in matrix form:

[
x1j 0 P1

0 x2j P2

] λ1j
λ2j
−Xj

 = 0. (3.3)

As λ1j and λ2j are nonzero, the above implies that the 6×6 matrix on the left hand
side has a nonzero null vector, and therefore, a zero determinant:

det
[

x1j 0 P1

0 x2j P2

]
= 0. (3.4)

This implies a bilinear relation between x1j and x2j in the form of

xT
2j F x1j = 0, (3.5)

29

30 A Generalized Theorem for 3D to 2D Projections

in which the ik-th element of the 3×3 matrix F is

fki = (−1)i+k det
[
P1,−i
P2,−k

]
(3.6)

where P1,−i ∈ R2×4 is formed by removing the i-th row of P1, and similarly,
P2,−k ∈ R2×4 is the matrix P2 with its k-th row removed. The matrix F is called
the fundamental matrix corresponding to camera matrices P1 and P2. Here, we use a
function F : R3×4 ×R3×4 → R3×3 to show the mapping (3.6) between the camera
matrices and the fundamental matrix, that is F = F (P1, P2).

Definition 3.1. For two 3×4 matrices Q and R, the fundamental matrix represented by
F (Q, R), is defined as

[F (Q, R)]ki = (−1)i+k det
[
Q−i
R−k

]
(3.7)

where Q−i ∈ R2×4 is formed by removing the i-th row of Q and R−k is defined similarly.

For more details on this definition we refer the reader to [Hartley and Zisserman,
2004, Sect. 17.1]. Notice that in (3.7) the fundamental matrix is the output of the
function F applied to Q and R and not the mapping F itself. One of the advantages
of using the above definition for fundamental matrix is that it is not restricted to
the case of proper full-rank camera matrices. It can be defined for any pair of 3×4
matrices. Also, the reader must keep in mind that, like other entities in this thesis,
the fundamental matrix here is treated as a member of R3×3, not as an up-to-scale
equivalence class of matrices. Basically, the above definition says that the elements of
the fundamental matrix of two matrices Q, R ∈ R3×4 are minors of stack(Q, R) made
by choosing two rows from Q and two rows from R. This gives the following lemma

Lemma 3.1. For two 3×4 matrices Q and R, the fundamental matrix F (Q, R) is nonzero if
and only if there exists a non-singular 4×4 submatrix of stack(Q, R) made by choosing two
rows from Q and two rows from R.

The next two lemmas about the fundamental matrix will be used later on in this
chapter.

Lemma 3.2 ([Hartley and Zisserman, 2004]). Consider two pairs of camera matrices Q, R
and Q̂, R̂ such that Q and R both have full row rank and also have distinct null spaces, that
is N (Q) 6= N (R). Then (Q, R) and (Q̂, R̂) are projectively equivalent according to Definition
2.1 if and only if F (Q, R) and F (Q̂, R̂) are equal up to a nonzero scaling factor.

Notice that, unlike (Q, R), no assumptions are made in the above about (Q̂, R̂).

Lemma 3.3 ([Hartley and Zisserman, 2004]). Consider two full-row-rank matrices Q and
R such that N (Q) 6= N (R). If for a matrix F ∈ R3×3 the relation

QTFR+ RTFTQ = 04×4

§3.1 Background 31

holds (or equivalently XT(QTFR)X = 0 holds for all X ∈ R4), then F is equal to F (Q, R) up
to a scaling factor.

3.1.2 The Triangulation Problem

Triangulation is the process of determining the location of a 3D point given its images
in two or more cameras with known camera matrices. The following lemma states
that the solution to triangulation is unique in generic cases:

Lemma 3.4 (Triangulation). Consider two full-row-rank camera matrices P1, P2 ∈ R3×4,
two points X, Y ∈ R4, and scalars λ̂1 and λ̂2 satisfying

P1Y = λ̂1P1X, (3.8)

P2Y = λ̂2P2X. (3.9)

Take nonzero vectors C1 ∈ N (P1) and C2 ∈ N (P2). If the three vectors C1, C2 and X are
linearly independent, then Y is equal to X up to a scaling factor.

Notice that the condition of C1, C2 and X being linearly independent means
that the two camera centres are distinct and X does not lie on the projective line
joining them1. A geometric proof of this is given in [Hartley and Zisserman, 2004,
Theorem 10.1]. Here, we give an algebraic proof as one might argue that [Hartley
and Zisserman, 2004] has used projective equality relations which cannot be fully
translated to our affine space equations since we do not assume that λ̂1 and λ̂2 are
nonzero in (3.8) and (3.9).

Proof. Since P1 and P2 have full row rank they have a 1D null space. Thus, relations
(3.8) and (3.9) respectively imply

Y = α1C1 + λ̂1X, (3.10)

Y = α2C2 + λ̂2X, (3.11)

for some scalars α1 and α2. These give α1C1 + λ̂1X = α2C2 + λ̂2X or

α1C1 − α2C2 + (λ̂1 − λ̂2)X = 0 (3.12)

As the three vectors C1, C2 and X are linearly independent, (3.12) implies that α1 = 0,

α2 = 0 and λ̂1 = λ̂2. Define ν
def
= λ̂1 = λ̂2. Then, from (3.10) we have Y = νX.

3.1.3 The Camera Resectioning Problem

Camera resectioning is the task of computing camera parameters given the 3D points
and their images. It can be shown that with sufficient 3D points in general locations,

1For simplicity of notation, we are being a bit sloppy here about the projective entities like projective
lines, quadric surfaces and twisted cubics. The reader must understand that when talking about a point
X ∈ R4 lying on a projective entity, what we really mean is that the projective point in P3 represented
by X in homogeneous coordinates lies on it.

32 A Generalized Theorem for 3D to 2D Projections

the camera matrix can be uniquely determined up to scale [Hartley and Zisserman,
2004]. Here, we consider a slightly revised version of this problem, which fits our
case where the projective depths are not necessarily all nonzero and the second (es-
timated) set of camera matrices need not be assumed to have full rank, as stated in
the following lemma:

Lemma 3.5 (Resectioning). Consider a 3×4 matrix Q of rank 3 and a set of points
X1, X2, . . . , Xp such that for a nonzero vector C ∈ N (Q) we have

(C1) Any four vectors among C, X1, X2, . . . , Xp are linearly independent, and

(C2) the set of points {C, X1, X2, . . . , Xn} do not lie on a twisted cubic (see footnote 1) or
any of the degenerate critical sets resulting in a resection ambiguity (set out in [Hartley
and Zisserman, 2004, Sect. 22.1]).

Now, for any Q̂ ∈ R3×4 if we have

αjQXj = β jQ̂Xj (3.13)

for all j = 1, 2, . . . , p where scalars αj and β j are such that the vector (αj, β j) is nonzero for
all j, then Q̂ = aQ for some scalar a.

Proof. First, since 6 points in general position completely specify a twisted cubic
[Semple and Kneebone, 1952], (C2) implies that p + 1 ≥ 7, or p ≥ 6.

If Q̂ = 0, then Q̂ = aQ with a = 0, proving the claim of the lemma. Thus, in what
follows we only consider the case of Q̂ 6= 0.

By (C1), for all j we have QXj 6= 0. Therefore, β j 6= 0, as otherwise if β j = 0 from
(αj, β j)

T 6= 0 we would have α 6= 0 and therefore 0 = β jQ̂Xj = αjQXj 6= 0, which
is a contradiction. From β j 6= 0 and (3.13) it follows that if αj = 0 for some j, then
Xj ∈ N (Q̂). Now, if for 4 indices j we have αj = 0, from (C1) it follows that Q̂ has
a 4D null space, or equivalently Q̂ = 0. Since we excluded this case, we conclude
that there are less than 4 zero-valued αj-s. As p ≥ 6, it follows that there are at
least three nonzero αj-s, namely αj1 , αj2 and αj3 . Since β j-s are all nonzero, αj 6= 0
along with (3.13) implies that QXj is in C(Q̂), the column space of Q̂. Therefore, we
have span(QXj1 , QXj2 , QXj3) ⊆ C(Q̂). From (C1) we know that span(Xj1 , Xj2 , Xj3) is 3-
dimensional and does not contain the null space of Q. Therefore, span(QXj1 , QXj2 , QXj3)
is also 3-dimensional. From span(QXj1 , QXj2 , QXj3) ⊆ C(Q̂) then we conclude that Q̂ has
full row rank.

As Rank(Q̂) = 3, we can consider it as a proper camera matrix in multiple view
geometry, talking about its camera centre represented by its null space. Therefore,
for two camera matrices Q and Q̂ and all the points Xj for which αj 6= 0 we can
apply the results of the classic camera resectioning problem: It is known that for two
(up to scale) distinct camera matrices Q and Q̂ to see the points Xj equally up to a
possible nonzero scaling factor, the points Xj and the camera centres must lie on a
common twisted cubic (or possibly some other specific degenerate sets, see [Hartley
and Zisserman, 2004; Buchanan, 1988]).

§3.1 Background 33


a
b

c d x e f g
h




a b c x d e
f
g
h




a
b
c
x d e f g h


Figure 3.1: Examples of 4×6 cross-shaped matrices. In cross-shaped matrices all
elements of the matrix are zero, except those belonging to a special row r or a special
column c of the matrix. The elements of the r-th row and the c-th column are all
nonzero, except possibly the central element located at position (r, c). In the above
examples, the blank parts of the matrices are zero. The elements a, b, . . . , h are all

nonzero, while x can have any value (zero or nonzero).

Notice that, as Rank(Q̂) = 3, (C1) implies that among the points Xj at most one
lies on the null-space of Q̂ and therefore, by (3.13) we can say that at most one αj
can be zero. By possibly relabeling the points we assume that α1, . . . , αp−1 are all
nonzero.

Now to get a contradiction, assume that there is a resection ambiguity. We con-
sider two cases namely αp 6= 0 and αp = 0. If αp 6= 0 then by αjQXj = β jQ̂Xj we know
that X1, . . . , Xp are viewed equally up to scale by both Q and Q̂ and thus X1, . . . , X6

along with the camera centre of Q must lie on a twisted cubic (or other degenerate
sets leading to a resection ambiguity), which is impossible due to (C2). If α6 = 0,
implying X6 ∈ N (Q̂), then again the camera center of Q, X1, . . . , X5 and X6 (this time
as the camera centre of Q̂) must lie on a twisted cubic (or the degenerate sets), con-
tradicting with (C2). Hence there can be no resection ambiguity and Q and Q̂ must be
equal up to a scaling factor.

3.1.4 Cross-shaped Matrices

The concept of cross-shaped matrices is important for the statement of our main theo-
rem and the characterization of false solutions to the projective factorization problem.

Definition 3.2. A matrix A = [aij] is said to be cross-shaped, if it has a row r and a column
c for which 

aij = 0 i 6= r, j 6= c,
aij 6= 0 i = r, j 6= c,
aij 6= 0 i 6= r, j = c.

(3.14)

The pair of indices (r, c) is called the centre of a cross-shaped matrix and arc is called its
central element, which can be either zero or nonzero. A cross-shaped matrix can be zero-
centred or nonzero-centred depending on whether the central element arc is zero or nonzero.

A cross-shaped matrix has all of its elements equal to zero except the elements
of a certain row r and a certain column c. The r-th row and the c-th column have all
nonzero elements, except at their junction where the element can be zero or nonzero.

34 A Generalized Theorem for 3D to 2D Projections

Examples of cross-shaped matrices are depicted in Fig. 3.1. Notice that any permu-
tation to rows and columns of a cross-shaped matrix results in another cross-shaped
matrix.

Lemma 3.6. (i) Any two m×n nonzero-centred cross-shaped matrices with a common centre
(r, c) are diagonally equivalent. (ii) any two m×n zero-centred cross-shaped matrices with a
common centre (r, c) are diagonally equivalent.

Proof. Consider two m×n cross-shaped matrices A = [aij] and B = [bij] with a com-
mon centre (r, c). According to Definition 2.2, to prove diagonal equivalence we need
to show that B = diag(τ) Adiag(ν) for some vectors τ and ν with all nonzero entries.
If A and B are both zero-centred, that is arc = brc = 0, then we choose the vectors
τ = (τ1, τ2, . . . , τm)T and ν = (ν1, ν2, . . . , νn)T, such that τr = νc = 1, τi = bic/aic
for i 6= r, and νj = brj/arj for j 6= c. If A and B are both nonzero-centred, that is
arc 6= 0 and brc 6= 0, then the vectors τ = (τ1, τ2, . . . , τm)T and ν = (ν1, ν2, . . . , νn)T

are chosen such that τi = bic/aic for i = 1, . . . , m, νc = 1, and νj = brj/(arjτr) for
j 6= c. In either cases, one can easily check that τ and ν have all-nonzero entries and
B = diag(τ) Adiag(ν).

Now, we have the required tools to state our main theorem on projective recon-
struction.

3.2 A General Projective Reconstruction Theorem

Here, we give a projective reconstruction theorem which is more general than the
classic theorem in the sense that it does not assume, a priori, that the estimated
depths λ̂ij are all nonzero. This provides significantly more flexibility in the choice
of depth constraints for the projective depth estimation algorithms.

Theorem 3.1. Consider a set of m ≥ 2 camera matrices {Pi} and n ≥ 8 points {Xj} which
are generic in the sense of conditions (G1-G4) which will be introduced later, and project into
a set of image points {xij} according to

λijxij = PiXj, (3.15)

for nonzero depths λij 6= 0 for i = 1, . . . , m and j = 1, . . . , n. Now, consider any other
configuration of m camera matrices {P̂i}, n points {X̂j} and mn depths {λ̂ij} related to the
same image data {xij} by

λ̂ijxij = P̂iX̂j. (3.16)

If the depth matrix Λ̂ = [λ̂ij] satisfies the following conditions

(D1) Λ̂ has no zero rows,

(D2) Λ̂ has no zero columns, and

§3.2 A General Projective Reconstruction Theorem 35

(D3) Λ̂ is not a cross-shaped matrix (see Definition 3.2),

then the camera-point configuration ({P̂i}, {X̂j}) is projectively equivalent to ({Pi}, {Xj}).

Loosely speaking, by true camera matrices Pi and points Xj being generic, we
mean that the camera matrices have full row rank and the points and camera centres
are in general position. In Sect. 3.2.1 we will be more specific about the required
genericity conditions and mention four generic properties (G1-G4) under which The-
orem 3.1 is true. To understand the results, it is essential to notice that the gener-
icity assumptions only apply to the ground truth data ({Pi}, {Xj}). No assump-
tion is made about the estimated (hatted) quantities P̂i and X̂j except the relation
λ̂ijxij = P̂iX̂j. We do not a priori rule out the possibility that P̂i-s or X̂j-s belong to
some non-generic set. Referring to P̂i-s as camera matrices carries no implications
about them whatsoever other than that they are 3×4 real matrices. They can be
rank-deficient or even zero unless the opposite is proven.

At a first glance, theorem (3.1) might seem contradictory, as it says that only some
small subset of the elements of Λ̂ = [λ̂ij] being nonzero is sufficient for ({Pi}, {Xj})
and ({P̂i}, {X̂j}) being projectively equivalent. On the other hand, from Lemma 2.2
we know that if ({Pi}, {Xj}) and ({P̂i}, {X̂j}) are projectively equivalent, then Λ̂ must
be diagonally equivalent to Λ and hence have all nonzero elements. The matter is
that one has to distinguish between the implications of depth assumptions (D1-D3)
in their own rights and their implications combined with the relations λ̂ijxij = P̂iX̂j.
Theorem 3.1, therefore, implies that if a special subset of depths {λ̂ij} are known to
be nonzero, then all of them are. This provides a sound theoretical base for choosing
and analysing depth constraints for factorization-based projective reconstruction.

Here, we state the general outline of the proof. Each part of the proof will then
be demonstrated in a separate subsection.

Sketch of the Proof for Theorem 3.1. Under the theorem’s assumptions, we shall show
the following:

• There exist at least two views k and l for which the fundamental matrix
F (P̂k, P̂l) is nonzero (section 3.2.2).

• If F (P̂k, P̂l) 6= 0 then the two configurations (Pk, Pl , {Xj}) and (P̂k, P̂l , {X̂j}) are
projectively equivalent (section 3.2.3).

• If for two views k and l, (Pk, Pl , {Xj}) and (P̂k, P̂l , {X̂j}) are projectively equiv-
alent, then ({Pi}, {Xj}) and ({P̂i}, {X̂j}) are projectively equivalent (section
3.2.4).

This completes the proof.

Furthermore, we shall show in Sect. 3.2.5 that if any of the depth assumptions
(D1), (D2) or (D3) is relaxed, it allows the existence of a configuration ({P̂i}, {X̂j}),
satisfying the relations λ̂ijxij = P̂iX̂j and projectively non-equivalent to ({Pi}, {Xj}).
The reader can jump to Sect. 3.2.5 if they are not interested in the details of the proof.

36 A Generalized Theorem for 3D to 2D Projections

Before stating the different parts of the proof, it is worth mentioning that for
proving Theorem 3.1 one may simply assume that the set of true depths λij are all
equal to one. This can be seen by a simple change of variables x′ij = λijxij, λ′ij = 1 and
λ̂′ij = λ̂ij/λij, implying λ′ijx

′
ij = x′ij = PiXj and λ̂′ijx

′
ij = P̂iX̂j. Notice that λ̂′ij = λ̂ij/λij

is zero if and only if λ̂ij is zero. Therefore, (D1-D3) are true for the λ̂′ij-s if and
only if they hold for the λ̂ij-s. This change of variables requires λij 6= 0 which was
among the assumptions of the theorem (and even if it was not, it would follow as a
simple consequence of PiXj 6= 0 from (G2-1) below and the relations λijxij = PiXj).
Throughout the proof of Theorem 3.1, we assume λij = 1. With this assumption, the
equations (3.15) and (3.16) are combined into

P̂iX̂j = λ̂ijPiXj. (3.17)

Theorem 3.1 is proved as a conjunction of several lemmas. Therefore, to avoid
redundancy, we assume the following assumptions throughout all steps of the proof:

There exist m ≥ 2 camera matrices P1, P2, . . . , Pm ∈ R3×4 and n ≥ 8 points
X1, X2, . . . , Xn ∈ R4 (called the true sets of camera matrices and points, or the ground
truth), and an estimated setup of m camera matrices and n points ({P̂i}, {X̂j}), related
by (3.17) for a set of scalars {λ̂ij}.

Each of the genericity assumptions (G1-G4) about the ground truth ({P̂i}, {X̂j})
and the depth assumptions (D1-D3) about the estimated depths {λ̂ij} will be men-
tioned explicitly whenever needed.

3.2.1 The Generic Camera-Point Setup

It is known that projective reconstruction from image data can be problematic if the
(true) camera matrices and points belong to special degenerate setups [Hartley and
Kahl, 2007]. The Projective Reconstruction Theorem is then said to be generically
true, meaning that is can be proved under some generic assumptions about how the
ground truth is configured. Here, we list the generic assumptions made about the
ground truth for the proof of our theorem.

We assume that there exist m ≥ 2 camera matrices P1, P2, . . . , Pm ∈ R3×4 and n ≥ 8
points X1, X2, . . . , Xn in R4. They are generically configured in the following sense:

(G1) All camera matrices P1, P2, . . . , Pm ∈ R3×4 have full row rank.

(G2) Taking any two views i and k, and two nonzero vectors Ci ∈ N (Pi) and Ck ∈
N (Pk), any four vectors among Ci, Ck, X1, X2, . . . , Xn, are linearly independent.

(G3) For any view i, and a nonzero vector Ci ∈ N (Pi), no n points among
Ci, X1, X2, . . . , Xn lie on a twisted cubic (see footnote 1), or any of the degener-
ate critical sets resulting in a resection ambiguity, (see [Hartley and Zisserman,
2004, Sect. 22.1] and [Hartley and Kahl, 2007]).

(G4) For any two views i and k, and two nonzero vectors Ci ∈ N (Pi) and Ck ∈
N (Pk), the points {Ci, Ck} ∪ {Xj}j=1,...,n do not all lie on any (proper or degen-

§3.2 A General Projective Reconstruction Theorem 37

erate) ruled quadric surface (see [Hartley and Zisserman, 2004, Sect. 22.2] and
[Hartley and Kahl, 2007], also look at footnote 1).

Obviously, condition (G1) makes the choice of Ci and Ck in conditions (G2-G4)
unique up to scale. It implies that that any nonzero Ci ∈ N (Pi) represents the camera
centre of Pi. Notice that conditions (G3) and (G4) are generic for n ≥ 8, because of
the facts that 6 points in general position completely specify a twisted cubic and 9
points in general position determine a quadric surface [Semple and Kneebone, 1952].
Condition (G1-G4) are not tight for the proof of Theorem 3.1. One might find tighter
generic conditions under which our projective reconstruction theorem is still true.
However, we avoid doing this as it unnecessarily complicates the proofs.

Condition (G2) has many implications when combined with (G1). Here, we list
the ones needed in the proofs:

(G2-1) For all i and j we have PiXj 6= 0 (as for any nonzero Ci ∈ N (Pi), Ci and Xj are
linearly independent). Geometrically, Xj does not coincide with the camera
centre of Pi.

(G2-2) For any two views i, k we have N (Pi) 6= N (Pk), and hence, no pair of cameras
share a common camera centre.

(G2-3) For any two views i, k, stack(Pi, Pk) has full row rank, and therefore, so does
P = stack(P1, P2, . . . , Pm).

(G2-4) For any two views i, k, and any point Xj, the three nonzero vectors Ci, Ck and
Xj are linearly independent and therefore, Xj does not lie on the projective
line (see footnote 1) joining the camera centres of Pi and Pk.

(G2-5) For any view i, any three vectors among PiX1, PiX2, . . . , PiXn are linearly inde-
pendent (as Ci /∈ span(Y1, Y2, Y3) for any three distinct vectors Y1, Y2, Y3 ∈
{Xj} and any nonzero vector Ci ∈ N (Pi)).

3.2.2 The Existence of a Nonzero Fundamental Matrix

The object of this section is to prove the following lemma:

Lemma 3.7. If the genericity assumptions (G1-G4) hold for ({Pi}, {Xj}), and depth as-
sumptions (D1-D3) hold for {λ̂ij}, there exist two views k and l such that the corresponding
fundamental matrix F (P̂k, P̂l) is nonzero.

We remind the reader that, as mentioned at the beginning of this section, all
the lemmas here are under the assumption that there exist two sets of camera-point
configurations ({Pi}, {Xj}) and ({P̂i}, {X̂j}) with m ≥ 2 views and n ≥ 8 points both
projecting into the same image points {xij} through λijxij = PiXj and λ̂ijxij = P̂iX̂j for
all i and j.

Using Lemma 3.1, one can say that what is claimed in Lemma 3.7 is equivalent to
the existence of an invertible 4×4 submatrix of stack(P̂k, P̂l) for some views k and l,

38 A Generalized Theorem for 3D to 2D Projections

Lemma 3.7

Lemma 3.5

Lemma 3.10

Lemma 3.14Lemma 3.9

Lemma 3.11

Lemma 3.13 Lemma 3.12

Figure 3.2: The inference graph for the proof of Lemma 3.7. Lemma 3.8 has been
omitted due to its frequent use.

made by choosing two rows from P̂k and two rows from P̂l . This lemma is essential
for the proof of our last theorem. One reason is that the case of zero fundamental
matrices for all pairs of views happens in the cross-shaped degenerate solutions. We
will see later in section 3.2.5 that a cross-shaped depth matrix Λ̂ happens when for
one special view r we have Rank(P̂r) = 3 and Rank(P̂i) = 1 for all other views
i 6= r. One can easily see from Lemma 3.1 that in this case all pairwise fundamental
matrices are zero.

Surprisingly, Lemma 3.7 is the hardest step in the proof of Theorem 3.1. We prove
this lemma as a consequence of a series of lemmas. Fig. 3.2 can help the reader to
keep track of the inference process. The reader might notice that there are different
ways of proving some of the lemmas here. Part of this is because the genericity
conditions (G1-G4) are not tight. First, we state a lemma giving some simple facts
about the second configuration of cameras, points and depths ({P̂i}, {X̂j}, {λ̂ij}).

Lemma 3.8. Under (G1, G2) and (D1, D2) The following hold

(i) For all j we have X̂j 6= 0, and for all i we have P̂i 6= 0,

(ii) λ̂ij = 0 if and only if X̂j ∈ N (P̂i), where N (P̂i) is the null space of P̂i.

(iii) Rank(P̂i) ≥ min (3, ni), where ni is the number of nonzero elements among
λ̂i1, λ̂i2, . . . , λ̂in,

(iv) If Rank(P̂i) = 3, then for any other view k 6= i, either the matrix stack(P̂i, P̂k) has
full column rank or for all j, λ̂ij = 0 implies λ̂ik = 0.

(v) If Rank(P̂i) = 3, all the points X̂j for which λ̂ij = 0 are equal up to a nonzero scaling
factor.

Proof. To see (i), notice that for any i and j if we have λ̂ij 6= 0, then from P̂iX̂j = λ̂ijPiXj
and PiXj 6= 0 (G2-1) we conclude that X̂j 6= 0 and P̂i 6= 0. Then (i) follows from the
fact that at each row and each column of Λ̂ = [λ̂ij] there exists at least one nonzero
element due to (D1, D2).

§3.2 A General Projective Reconstruction Theorem 39

(ii) is obvious by P̂iX̂j = λ̂ijPiXj from (3.17) and the fact that PiXj 6= 0 from (G2-1).
To prove (iii), notice that if λ̂ij is nonzero for some i and j, from P̂iX̂j = λ̂ijPiXj

we conclude that PiXj ∈ C(P̂i), where C(P̂i) denotes the column space of P̂i. Now, if
there are ni nonzero λ̂ij-s for view i, which (by a possible relabeling) we assume they
are λ̂i1, λ̂i2, . . . , λ̂ini , then span(PiX1, PiX2, . . . , PiXni) ⊆ C(P̂i). By (G2-5) then we have
min(3, ni) = dim (span(PiX1, PiX2, . . . , PiXni)) ≤ dim(C(P̂i)) = Rank(P̂i).

To see (iv), notice that as Rank(P̂i) = 3, if the matrix stack(P̂i, P̂k) has a rank of
less than 4, the row space of P̂i includes that of P̂k, that is R(P̂k) ⊆ R(P̂i), and thus
N (P̂i) ⊆ N (P̂k). Hence, from part (ii) of the lemma we have λ̂ij = 0⇔ Xj ∈ N (P̂i)⇒
Xj ∈ N (P̂k)⇔ λ̂ik = 0.

(v) simply follows from parts (i) and (ii) of this lemma and the fact that a P̂i of
rank 3 has a 1D null space.

We make extensive use of Lemma 3.8 in what comes next. The reader might want
to keep sight of it while reading this section.

Lemma 3.9. Consider two 3×4 matrices Q and R such thatRank(Q) ≥ 2 andRank(R) ≥ 2.
Then F (Q, R) 6= 0 if and only if stack(Q, R) has rank 4.

Proof. Assume stack(Q, R) has rank 4. If R and Q have both rank 3, then stack(Q, R)
having rank 4 means N (R) 6= N (Q). Geometrically, it means that R and Q are two
rank-3 camera matrices with different camera centres. It is well known that in this
case the fundamental matrix F (Q, R) is nonzero [Hartley and Zisserman, 2004].

If R has rank 2, it has two rows rT
i and rT

j spanning its row space, that is
span(ri, rj) = R(R). Further, as stack(Q, R) has rank 4, there exist at least two rows
qT

k and qT
l of Q such that dim(span(ri, rj, qk, ql)) = 4. The two rows qk and ql can

be chosen by taking the set {ri, rj}, adding rows of Q, one by one, to this set, and
choose the two rows whose addition leads to a jump in the dimension the span of
the vectors in the set. As, the 4×4 matrix stack(rT

i , rT
j , qT

k , qT
l) has rank 4, Lemma 3.1

suggests that F (Q, R) 6= 0.
The other direction of the lemma is proved immediately from Lemma 3.1.

Lemma 3.9 shows that to prove the main Lemma 3.7, it is sufficient to find two
camera matrices both of rank 2 or more, whose vertical concatenation gives a matrix
of rank 4. We will show in Lemma 3.14 that this is possible. But, to get there we
need two extra lemmas. The next lemma relies on the Camera Resectioning Lemma
discussed in Sect. 3.1.3.

Lemma 3.10. Under (G1-G3), if for two distinct views k and l, there are at least n − 1
indices j among the point indices 1, 2, . . . , n, for which the vector (λ̂kj, λ̂l j) is nonzero, we
cannot have R(P̂l) ⊆ R(P̂k), where R denotes the row space of a matrix.

Proof. To get a contradiction, assume R(P̂l) ⊆ R(P̂k). Then there must exist a 3×3
matrix H such that P̂l = HP̂k. Therefore, for all j we have P̂lX̂j = HP̂kX̂j and by
(3.17), that is P̂iX̂j = λ̂ijPiXj, we get λ̂l jPlXj = λ̂kjHPkXj for all j. Now, we can apply

40 A Generalized Theorem for 3D to 2D Projections

Lemma 3.5 on Camera Resectioning (see Appendix 3.1.3) as (λ̂kj, λ̂l j) is nonzero for
at least n− 1 indices j and (G1-G3) hold2. By applying Lemma 3.5 we get

HPk = a Pl . (3.18)

for some scalar a. Now notice that H 6= 0, as otherwise from P̂l = HP̂k we have P̂l = 0,
which is excluded due to Lemma 3.8(i). As H 6= 0 and Pk has full row rank according
to (G1), then the scalar a in (3.18) cannot be zero. Therefore, we have

Pl =
1
a
HPk (3.19)

meaning R(Pl) ⊆ R(Pk). This possibility is excluded by (G1, G2-2) and hence we get
a contradiction. This completes the proof.

Lemma 3.11. If (D1, D2) and (G1, G2) hold, then for at least one view i we have
Rank(P̂i) ≥ 2.

Proof. To get a contradiction, assume that no matrix P̂i has rank 2 or more. As P̂i-
s are nonzero (Lemma 3.8(i)), we conclude that all P̂i-s have rank 1. By (D1) and
Lemma 3.8(iii) then each row of Λ̂ must have exactly one nonzero element. Moreover,
according to (D2), all columns of Λ̂ have at least one nonzero element. These two
facts imply that m ≥ n and that (by a possible relabeling of the views) rows of Λ̂ can
be permuted such that its top n×n block is a diagonal matrix Dn×n with all nonzero
diagonal elements, that is

Λ̂ =

[
Dn×n

A

]
(3.20)

where Dn×n = diag(λ̂11, λ̂22, . . . , λ̂nn) and λ̂jj 6= 0 for all j = 1, . . . , n. Using the
relations P̂iX̂j = λ̂ijPiXj, the above gives

P̂1

P̂2
...
P̂n

 [
X̂1 X̂2 . . . X̂n

]
=


v1

v2
. . .

vn

 (3.21)

where the 3m×n matrix on the right hand side is block-diagonal with nonzero diag-
onal blocks vj = λ̂jjPjXj 6= 0 (as λ̂jj 6= 0 and PjXj 6= 0 due to (G2-1)). This suggests
that on the right hand side there is a matrix of rank n. On the other hand, the left
hand side of (3.21) has rank 4 or less as [X̂1 X̂2 . . . X̂n] is 4×n. This is a contradiction
since n ≥ 8.

2According to (G3) the n − 1 points Xj corresponding to nonzero zero vectors (λ̂kj, λ̂l j) and the
camera centre of Pl do not all lie on a twisted cubic. This is a generic property as n− 1 ≥ 6 (see Sect.
3.2.1). Notice that here the matrices Pl and HPk respectively act as Q and Q̂ in Lemma 3.5. The genericity
conditions (G1-G3) provide the conditions (C1, C2) in Lemma 3.5.

§3.2 A General Projective Reconstruction Theorem 41

Lemma 3.12. If (D1, D2) and (G1, G2) hold, then for at least one view i we have
Rank(P̂i) = 3.

Proof. To get a contradiction, we assume that Rank(P̂i) ≤ 2 for all i. According
to Lemma 3.8(iii), this implies that any row Λ̂ has at most two nonzero element.
Consider an arbitrary view l. We know that among λ̂l1, λ̂l2, . . . , λ̂ln at most two are
nonzero. By relabeling the points {Xj} and accordingly {X̂j} if necessary, we can
assume that λ̂l3 = λ̂l4 = · · · = λ̂ln = 0. Now, by (D2), we know that the third column
of Λ̂ is not zero and therefore, there must be some view k for which λ̂k3 6= 0. As the
k-th row of Λ̂ has at most two nonzero elements, by relabeling the points X4, . . . , Xn

and accordingly X̂4, . . . , X̂n, we can assume that λ̂k5 = λ̂k6 = · · · = λ̂kn = 0. Notice
that this relabeling retains λ̂l3 = λ̂l4 = · · · = λ̂ln = 0.

Now, as n ≥ 8, we consider the points X̂5, X̂6 and X̂7. They cannot be equal up to
scale. The reason is that if they are equal up to scale then by Lemma 3.8(ii), for any
view i, the depths λ̂i5, λ̂i6 and λ̂i7 are either all zero or all nonzero. It follows by (D2)
that there must be a view i for which λ̂i5, λ̂i6 and λ̂i7 are all nonzero. But this means
that Rank(P̂i) = 3 by Lemma 3.8(iii), contradicting our assumption Rank(P̂i) ≤ 2
for all i.

Because X̂5, X̂6 and X̂7 are not equal up to scale, the dimension of span(X̂5, X̂6, X̂7)
is at least 2. As λ̂k3 6= 0 and λ̂k5 = λ̂k6 = λ̂k7 = 0, by Lemma 3.8(ii) we have
X̂3 /∈ N (P̂k) and span(X̂5, X̂6, X̂7) ⊆ N (P̂k). This means that dim span(X̂3, X̂5, X̂6, X̂7)
is at least 3. Now, since λ̂l3 = λ̂l5 = λ̂l6 = λ̂l7 = 0, by Lemma 3.8(ii), we can
say span(X̂3, X̂5, X̂6, X̂7) ⊆ N (P̂l). Since span(X̂3, X̂5, X̂6, X̂7) is either 3D or 4D, this
means that Rank(P̂l) ≤ 1. As we chose l to be any arbitrary view, this means that
Rank(P̂i) ≤ 1 for all i. But according to Lemma 3.11 this cannot happen, and we get
a contradiction.

Lemma 3.13. Assume that (D1, D2) and (G1, G2) hold, and denote by ni the number of
nonzero elements of the i-th row of Λ̂. If for some view r we have nr ≥ n− 1 and ni = 1 for
all i 6= r, then the matrix Λ̂ has to be cross-shaped (see Definition 3.2).

Proof. As m ≥ 2, there exist at least another view k other than r. Assume the (only)
nonzero element on the k-th row of Λ̂ is λ̂kc. We will show that for any view l other
that r and k (if there is any) the only nonzero element in the l-th row of Λ̂ has to be
λ̂lc.

Consider a view l other than r and k. As n ≥ 8, and there is exactly one nonzero
element in the k-th row of Λ̂, one nonzero element in the l-th row of Λ̂, and at most
one zero element in the r-th row of Λ̂, one can find three distinct indices j1, j2, j3 such
that λ̂rj1 6= 0, λ̂rj2 6= 0, λ̂rj3 6= 0, λ̂kj1 = λ̂kj2 = λ̂kj3 = 0 and λ̂l j1 = λ̂l j2 = λ̂l j3 = 0. We
have

P̂r span(X̂j1 , X̂j2 , X̂j3) = span(P̂rX̂j1 , P̂rX̂j2 , P̂rX̂j3)

= span(PrXj1 , PrXj2 , PrXj3). (3.22)

where the product P̂r span(X̂j1 , X̂j2 , X̂j3) represents the set created by multiplying P̂r

by each element of the subspace span(X̂j1 , X̂j2 , X̂j3). The last equality in (3.22) comes

42 A Generalized Theorem for 3D to 2D Projections

from (3.17) and the fact that λ̂rj1 , λ̂rj2 and λ̂rj3 are nonzero. According to (G2-5),
span(PrXj1 , PrXj2 , PrXj3) is 3D, and therefore, (3.22) suggests that span(X̂j1 , X̂j2 , X̂j3)
has to be also 3D. From λ̂kj1 = λ̂kj2 = λ̂kj3 = 0 and λ̂l j1 = λ̂l j2 = λ̂l j3 = 0 respectively
we conclude that span(X̂j1 , X̂j2 , X̂j3) ∈ N (P̂k) and span(X̂j1 , X̂j2 , X̂j3) ∈ N (P̂l) (Lemma
3.8(ii)). As P̂k and P̂l are both nonzero (Lemma 3.8(i)), and hence, of rank one or
more, and their null-spaces include a the 3D subspace span(X̂j1 , X̂j2 , X̂j3), it follows
that N (P̂k) = N (P̂l) = span(X̂j1 , X̂j2 , X̂j3). This means that for any j, λ̂kj and λ̂l j are
either both nonzero or both zero. As λ̂kc 6= 0, we must have λ̂lc 6= 0. Since this is
true for any view l other than k and r, we can say that for all views i 6= r, the (only)
nonzero element is in the c-th column of λ̂ic.

By the assumption of the lemma, the r-th row of Λ̂ can have either no zero element
or one zero element. If it does have one zero element, it has to be λ̂rc, as otherwise, if
λ̂rc′ = 0 for some c′ 6= c, the c′-th column of Λ̂ would be zero, violating (D2). Now, we
have the case where all elements of Λ̂ are zero except those in the r-th row or the c-th
column, and among the elements in the r-th row or the c-th column, all are nonzero
except possibly λ̂rc. This means that Λ̂ is cross-shaped.

Lemma 3.14. Under (D1-D3), (G1-G3) there exist two views i and k such thatRank(P̂i) ≥
2, Rank(P̂k) ≥ 2 and stack(P̂i, P̂k) has rank 4.

Proof. Lemma 3.12 says that under our assumptions, there exists at least one esti-
mated camera matrix P̂i of rank 3. With a possible re-indexing of the views, we can
assume that Rank(P̂1) = 3. Now we consider two cases. The first case is when
among λ̂11, λ̂12, . . . , λ̂1n there exists at most one zero element. In this case there must
be at least another view k with two or more nonzero elements in the k-th row of Λ̂,
as otherwise, according to Lemma 3.13, Λ̂ would be cross-shaped, violating (D3). By
Lemma 3.8(iii) then we have Rank(P̂k) ≥ 2. Because at least for n− 1 point indices j
we have λ̂1j 6= 0, and thus (λ̂1j, λ̂kj)

T 6= 0, from Lemma 3.10 we know that the row
space of P̂k cannot be a subset of the row space of P̂1. Therefore, as Rank(P̂1) = 3

we have Rank
[
P̂1

P̂k

]
= 4. This along with the fact that Rank(P̂1) = 3 ≥ 2 and

Rank(P̂k) ≥ 2 completes the proof for this case.
The only case left is when there are at least two zero elements among

λ̂11, λ̂12, . . . , λ̂1n. By a possible re-indexing we can assume that λ̂11 = λ̂12 = 0. This
means that X̂1 and X̂2 must be equal up to scale (Lemma 3.8(v)). According to (D2),
there must be at least one view k for which λ̂k1 6= 0. As X̂1 and X̂2 are nonzero
(Lemma 3.8(i)) and equal up to scale, λ̂k1 6= 0 implies λ̂k2 6= 0. This means that
Rank(P̂k) ≥ 2 (Lemma 3.8(iii)). As we have Rank(P̂1) = 3, λ̂11 = 0 and λ̂k1 6= 0,

by Lemma 3.8(iv) we get Rank
[
P̂1

P̂k

]
= 4. This completes the proof as we also have

Rank(P̂1) ≥ 2 and Rank(P̂k) ≥ 2.

Lemma 3.7 now follows directly from Lemmas 3.14 and 3.9.

§3.2 A General Projective Reconstruction Theorem 43

3.2.3 Projective Equivalence for Two Views

The main result of this section is the following lemma:

Lemma 3.15. Under (G1, G2, G4) and (D2), If the fundamental matrix F (P̂k, P̂l) is nonzero
for two views k and l, then the two configurations (Pk, Pl , {Xj}) and (P̂k, P̂l , {X̂j}) are pro-
jectively equivalent.

Proof. For simplicity, we take k = 1 and l = 2. The other cases follow by relabeling
the views. For each j we have P̂1X̂j = λ̂1jP1Xj and P̂2X̂j = λ̂2jP2Xj, or equivalently

[
P̂1, P1Xj 0
P̂2, 0 P2Xj

]−X̂j
λ̂1j
λ̂2j

 = 0, j = 1, 2, . . . , n. (3.23)

As, X̂j 6= 0 (Lemma 3.8(i)) the 6×6 matrix on the left hand side of (3.23) has a nontriv-
ial null space, and hence, a vanishing determinant. Define the function S : R4 → R

as

S(X) def
= det

[
P̂1, P1X 0
P̂2, 0 P2X

]
. (3.24)

Using the properties of the determinant and Definition 3.1 of the fundamental matrix,
the above can be written as [Hartley and Zisserman, 2004, Sect. 17.1]:

S(X) = XTPT
1 F̂12 P2X = XT SX (3.25)

where F̂12
def
= F (P̂1, P̂2) is the fundamental matrix of P̂1 and P̂2 as defined in Defini-

tion 3.1, and S
def
= PT

1 F̂12 P2. We shall show that S has to be identically zero (that is
S(X) = 0 for all X). To see this, assume that S is not identically zero. Then the
equation

S(X) = XT SX = 0 (3.26)

defines a quadric surface. From (3.23) we know S(Xj) = 0 for all j = 1, 2, . . . , n
and therefore all the points {Xj} lie on this quadric surface. Also, for any pair of
nonzero vectors C1 ∈ N (P1) and C2 ∈ N (P2) (camera centres) one can easily check
that S(C1) = S(C2) = 0 and therefore, C1 and C2 also lie on the quadric surface.

As the fundamental matrix F̂12
def
= F (P̂1, P̂2) is rank deficient [Hartley and Zisser-

man, 2004], we can have a nonzero vector v ∈ N (F̂12). Since P2 has full row rank
by (G1), we can write v = P2Y for some Y ∈ R4. Then, by taking a nonzero vector

44 A Generalized Theorem for 3D to 2D Projections

C2 ∈ N (P2), one can easily check that for any two scalars α and β we have

S(αY + βC2) = (αY + βC2)
T(PT

1 F̂12 P2)(αY + βC2), (3.27)

= (αY + βC2)
TPT

1 (αF̂12 P2Y + βF̂12 P2C2), (3.28)

= (αY + βC2)
TPT

1 (αF̂12 v + βF̂12 · 0), (3.29)

= (αY + βC2)
TPT

1 (α · 0 + 0). (3.30)

= 0 (3.31)

This, plus the fact that Y and C2 are linearly independent (as C2 6= 0 and P2C2 = 0 6=
v = P2Y), implies that the quadric surface S(X) = 0 contains a projective line and
hence is ruled.

Now, we have the case that the nonzero vectors C1 ∈ N (P1) and C2 ∈ N (P2)
(camera centres) plus the points X1, X2, . . . , Xn all lie on a (proper or degenerate)
ruled quadric surface represented by (3.26). This contradicts the genericity condition
(G4). This only leaves the possibility that S(X) is identically zero or equivalently,
S+ ST = 0, that is

PT
1 F̂12 P2 + PT

2 F̂T
12 P1 = 0 (3.32)

Therefore, according to Lemma 3.3 (whose conditions hold by (G1) and (G2-2))
the matrix F̂12 = F (P̂1, P̂2) is a multiple of F (P1, P2). As we have assumed that
F (P̂1, P̂2) 6= 0, and having (G1) and (G2-2), by Lemma 3.2 we know that (P̂1, P̂2) is
projectively equivalent to (P1, P2) that is

P̂1 = τ1P1H (3.33)

P̂2 = τ2P2H (3.34)

for a non-singular matrix H and nonzero scalars τ1 and τ2. Now, for any point Xj, the
relation (3.17), that is P̂iX̂j = λ̂ijPiXj, gives

τ1P1HX̂j = P̂1X̂j = λ̂1jP1Xj, (3.35)

τ2P2HX̂j = P̂2X̂j = λ̂2jP2Xj. (3.36)

It follows that

P1(HX̂j) =
λ̂1j

τ1
P1Xj, (3.37)

P2(HX̂j) =
λ̂2j

τ2
P2Xj. (3.38)

Having the genericity conditions (G1) and (G2-4), one can apply the Triangulation
Lemma 3.4 to prove that HX̂j is equal to Xj up to a nonzero scaling factor, that is

§3.2 A General Projective Reconstruction Theorem 45

HX̂j = νjXj or

X̂j = νjH
−1Xj. (3.39)

Notice that νj cannot be zero as X̂j 6= 0 (from Lemma 3.8(i)). From (3.33), (3.34) and
(3.39) it follows that (P1, P2, {Xj}) and (P̂1, P̂2, {X̂j}) are projectively equivalent.

3.2.4 Projective Equivalence for All Views

Lemma 3.16. Under (G1-G4) and (D1, D2), if for two views k and l the two configurations
(Pk, Pl , {Xj}) and (P̂k, P̂l , {X̂j}) are projectively equivalent, then for the whole camera matri-
ces and points, the configurations ({Pi}, {Xj}) and ({P̂i}, {X̂j}) are projectively equivalent.

Proof. For convenience, take k = 1 and l = 2 (the other cases follow by relabeling
the views). First of all, notice that as (P1, P2, {Xj}) and (P̂1, P̂2, {X̂j}) are projectively
equivalent, we have

P̂1 = τ1P1H, P̂2 = τ2P2H, (3.40)

X̂j = νjH
−1Xj, j = 1, 2, . . . , n, (3.41)

for an invertible matrix H and nonzero scalars τ1, τ2 and ν1, . . . , νn. From (G2) and
(3.41), we can say that for any four distinct point indices j1, . . . , j4, the points X̂j1 ,
X̂j2 , X̂j3 and X̂j4 span a 4-dimensional space. Therefore, for each view i at most 3
depth scalars λ̂ij can be zero, as otherwise, if we have λ̂ij1 = λ̂ij2 = λ̂ij3 = λ̂ij4 = 0
it means that X̂j1 , X̂j2 , X̂j3 , X̂j4 ∈ N (P̂i) (Lemma 3.8(ii)). This, however, implies P̂i = 0

contradicting Lemma 3.8(i).
Now, since we know that for each view i we have at most 3 zero depths λ̂ij,

from n ≥ 8, we know that there are more than 3 nonzero depths λ̂ij at each row i.
Therefore, according to Lemma 3.8(iii), we can say that Rank(P̂i) = 3 for all i.

Now, notice that as (P1, P2, {Xj}) and (P̂1, P̂2, {X̂j}) are projectively equivalent,
from Lemma 2.2 (whose conditions hold by (G1, G2) and their consequences (G2-1)
and (G2-3)) we have λ̂1j 6= 0 and λ̂2j 6= 0 for all j = 1, 2, . . . , n. Now, for any view
k ≥ 3, consider the pair of matrices (P̂1, P̂k). We have Rank(P̂k) = Rank(P̂1) = 3 and
moreover, the vector (λ̂1j, λ̂kj) is nonzero for all j. Therefore, by Lemma 3.10 we get
Rank (stack(P̂1, P̂k)) = 4. After that, by Lemma 3.14 it follows that the fundamental
matrix F (P̂1, P̂k) is nonzero. Then by Lemma 3.15 we can say that (P1, Pk, {Xj}) and
(P̂1, P̂k, {X̂j}) are projectively equivalent. Therefore,

P̂1 = τ′1P1G, P̂k = τ′kPkG, (3.42)

X̂j = ν′jG
−1Xj, j = 1, 2, . . . , n, (3.43)

for an invertible matrix G and nonzero scalars τ′1, τ′k and ν′1, ν′2, . . . , ν′n. Now, we can
apply Lemma 2.1 for equations (3.41) and (3.43). Notice that according to (G2) every
four points among X1, X2, . . . , Xn ∈ R4 are linearly independent. The reader can
check that this plus the fact that n ≥ 8 implies conditions (P1) and (P2) in Lemma

46 A Generalized Theorem for 3D to 2D Projections

2.1 for r = 4. By applying Lemma 2.1 we get G−1 = H−1/α (or G = αH) and ν′j = ανj

for some nonzero scalar α. This, plus (3.40) and (3.42) gives τ′1 = τ1/α. By using and

τ1 = ατ′1, and defining τk
def
= ατ′k we have

P̂1 = τ1P1H, P̂k = τkPkH, (3.44)

X̂j = νjH
−1Xj, j = 1, 2, . . . , n, (3.45)

Since the above is true for all k = 3, . . . , n, and also for k = 2 by (3.40), we conclude
that the two configurations ({Pi}, {Xj}) and ({P̂i}, {X̂j}) are projectively equivalent.

3.2.5 Minimality of (D1-D3) and Cross-shaped Configurations

From depth assumptions (D1-D3) we see that in order to get the projective recon-
struction working we require that none of the rows or columns of the depth matrix
Λ̂ = [λ̂ij] are zero and that Λ̂ is not cross-shaped. One might wonder whether pro-
jective reconstruction is possible under a priori weaker conditions on the estimated
depth matrix. For example, what happens if we just require that the matrix has no
zero rows and no zero columns.

In this section we shall show that, in some specific sense, (D1-D3) is a minimal
assumption for projective reconstruction. However, by this we do not mean that
it is the weakest possible constraint that guarantees the uniqueness of projective
reconstruction up to projectivity. But, it is minimal in the sense that if any of (D1),
(D2) or (D3) is relaxed completely, and no extra conditions are added, the resulting
constraints cannot rule out false solutions to projective reconstruction. This shows
that the false solutions to the factorization problem Λ̂� [xij] = P̂ X̂ are not limited to
the trivial cases of having depth matrices with some zero rows or columns.

The necessity of (D1) is obvious, as, for example, if we allow the k-th row of Λ̂
to be zero, then we can set λ̂k1 = λ̂k2 = · · · = λ̂kn = 0 and P̂k = 0, as it satisfies
P̂kX̂j = λ̂kjxkj for all j. For the rest of variables we can have X̂j = Xj, P̂i = Pi and
λ̂ij = λij for all i, j where i 6= k. Similarly, if we relax (D2) by allowing the l-th
column of Λ̂ to be nonzero, we can have a configuration in which Xl = 0.

The more difficult job is to show that the relaxation of (D3) can allow a projec-
tively non-equivalent setup. Relaxing this condition means that Λ̂ is cross-shaped. We
show that in this case for any configuration of the true camera matrices Pi, points Xj
and depths λij, we can find a non-equivalent setup ({P̂i}, {X̂j}, {λ̂ij}).

Consider m arbitrary 3×4 projection matrices P1, P2, . . . , Pm and an arbitrary set
of points X1, X2, . . . , Xn ∈ R4 (with m and n arbitrary), giving the image points xij
through the relation λijxij = PiXj. Now, for any arbitrary view r and point index c

§3.2 A General Projective Reconstruction Theorem 47

we can take

λ̂ic = λic, i = 1, 2, . . . , m, (3.46)

λ̂rj = λrj, j = 1, 2, . . . , n, (3.47)

λ̂ij = 0, i 6= r, j 6= c. (3.48)

P̂r = Pr, (3.49)

P̂i = PiXcC̄T
r i 6= r (3.50)

X̂c = (I− C̄rC̄T
r)Xc + C̄r, (3.51)

X̂j = (I− C̄rC̄T
r)Xj j 6= c. (3.52)

where C̄r is a unit vector in the null-space of Pr. Notice that the matrix I− C̄rC̄T
r is

the orthogonal projection onto the row space of Pr. Now, it can be easily checked that

P̂iX̂j = PiXj = λijxij = λ̂ijxij if i = r or j = c (3.53)

P̂iX̂j = 0 = 0 · xij = λ̂ijxij if i 6= r and j 6= c (3.54)

Notice that to derive (3.53) one has to check three cases separately: first i = r, j = c,
second i = r, j 6= c, and third i 6= r, j = c. You can see that with this choice we have
P̂iX̂j = λ̂ijxij for all i and j. It is obvious that ({P̂i}, {X̂j}) is not generally projectively
equivalent to ({Pi}, {Xj}), as, for example, for any i 6= r we have Rank(P̂i) = 1
regardless of the value of Pi. From (3.46-3.48) it follows that

Λ̂ =

 0 1r−1 0

1T
c−1 1 1T

n−c
0 1m−r 0

 ◦ Λ (3.55)

where the zero matrices denoted by 0 are of compatible size and ◦ denotes the
Hadamard (element-wise) product. This shows that Λ̂ = [λ̂ij] is a nonzero-centred
cross-shaped matrix centred at (r, c). An example of such a configuration has been
illustrated in Fig. 3.3 for r = 1, c = 1.

One can observe that instead of (3.51) we can give any arbitrary value to X̂c,
provided that it is not perpendicular to Cr, and still get a setup with a cross-shaped
depth matrix. Especially, we leave it to the reader to check that by taking X̂c equal to
C̄r instead of (I− C̄rC̄T

r)Xc + C̄r in (3.51), we have a setup in which the depth matrix
Λ̂ is arranged as (3.46-3.48) with the exception that the central element λ̂rc is zero,
that is

Λ̂ =

 0 1r−1 0

1T
c−1 0 1T

n−c
0 1m−r 0

 ◦ Λ. (3.56)

This means that Λ̂ is a zero-centred cross-shaped matrix. Obviously for any pair of
vectors τ ∈ Rm and ν ∈ Rn with all nonzero entries, we can find a new configu-
ration with Λ̂′ = diag(τ) Λ̂diag(ν), P̂′i = τiP̂i and X̂′j = νjX̂j, satisfying P̂′iX̂

′
j = λ̂′ijxij

48 A Generalized Theorem for 3D to 2D Projections

=R1X1+C̄1︷︸︸︷
X̂1

X̂j=R1Xj︷ ︸︸ ︷
X̂2 X̂3 X̂4 X̂5 X̂6

P1 = P̂1 λ11 λ2 λ3 λ4 λ5 λ6

P2X1C̄1
T
= P̂2 λ21 0 0 0 0 0

P3X1C̄1
T
= P̂3 λ31 0 0 0 0 0

P4X1C̄1
T
= P̂4 λ41 0 0 0 0 0

P5X1C̄1
T
= P̂5 λ51 0 0 0 0 0︸ ︷︷ ︸

Λ̂

Figure 3.3: An example of a cross-shaped configuration where the cross is centred at
(1,1), that is r = 1 and c = 1, with 6 points and 5 camera matrices. In the above, C̄1
is a unit-length vector in the null space of P1 and R1 = (I− C̄1C̄T

1) is the orthogonal
projection into the row space of P1. One can check that P̂iX̂j = λ̂ijxij = λ̂ij(

1
λij
PiXj) for

all i and j, or equivalently Λ̂� [xij] = P̂ X̂.

(as (τiP̂i)(νjX̂j) = (τiνjλ̂ij) xij). Notice that, according to the above discussion, both
configurations (3.55) and (3.56) can be obtained for any configuration of m views and
n points, and for any choice of r and c. We also know from Lemma 3.6 that any m×n
cross-shaped matrix is diagonally equivalent to either (3.55) or (3.56) for some choice
of r and c. Putting all these together we get the following lemma.

Lemma 3.17. Consider any configuration of m camera matrices and n points ({Pi}, {Xj})
giving the image points {xij} through the relations λijxij = PiXj with nonzero scalars λij 6=
0. Then for any cross-shaped matrix Λ̂ = [λ̂ij], there exists a configuration ({P̂i}, {X̂j}),
such that the relation λ̂ijxij = P̂iX̂j holds for all i = 1, . . . , m and j = 1, . . . , n.

This lemma is used in the next session as a useful test for the assessment of depth
constraints. It says that if a constraint allows any cross-shaped structure for the depth
matrix, then it allows for a false solution.

3.3 The Constraint Space

In this section we will have a closer look at the depth constraints used in factorization-
based projective reconstruction. Consider a set of m ≥ 2 projection matrices
P1, . . . , Pm ∈ R3×4 and a set of n ≥ 8 points X1, . . . , Xn ∈ R4, generically configured
in the sense of (G1-G4) and projecting into a set of image points xij ∈ R3 according
to λijxij = PiXj. Given a constraint space C ⊆ Rm×n we want to assess the solutions
to the problem

findΛ̂, P̂3m×4, X̂4×n
s.t. Λ̂� [xij] = P̂ X̂, Λ̂ ∈ C (3.57)

in terms of whether ({P̂i}, {X̂j}) is projectively equivalent to ({Pi}, {Xj}), where P̂ =
stack(P̂1, P̂2, · · · , P̂m), X̂ = [X̂1X̂2 · · · X̂n] and Λ̂� [xij] = P̂ X̂ represents all the relations
λ̂ijxij = P̂iX̂j in matrix form, as described for (2.12) and (2.13). By P̂3m×4 and X̂4×n we
respectively mean P̂ ∈ R3m×4 and X̂ ∈ R4×n.

§3.3 The Constraint Space 49

Notice that, it is not sufficient that every Λ̂ in C satisfies depth assumptions (D1-
D3). The constraint space must also be inclusive, that is, it must make possible the ex-
istence of {P̂i} and {X̂j} for which Λ̂� [xij] = P̂ X̂ holds for all i and j. In other words,
it must guarantee that (3.57) has at least one solution. One can check that for any
Λ̂ diagonally equivalent to the true depth matrix Λ, there exists a setup ({P̂i}, {X̂j}),
defined by P̂i = τiPi, X̂j = νjXj, which is projectively equivalent to ({Pi}, {Xj}) and
satisfies the relation Λ̂� [xij] = P̂ X̂. Therefore, for (3.57) to have at least one solution,
it is sufficient that the constraint space C allows at least one Λ̂ which is diagonally
equivalent to Λ. Actually, this requirement is also necessary, since, according to
Lemma 2.2, if there exists a setup ({P̂i}, {X̂j}) projectively equivalent to ({Pi}, {Xj})
which satisfies the relations λ̂ijxij = P̂iX̂j, then Λ̂ must be diagonally equivalent to Λ.
As we do not know the true depths Λ beforehand, we would like the constraint Λ̂ ∈ C
to work for any initial value of depths Λ. Hence, we need it to allow at least one di-
agonally equivalent matrix for every depth matrix Λ whose entries are all nonzero. If
we have some prior knowledge about the true depth matrix Λ in the form of Λ ∈ P for
some set P ⊆ Rm×n, the constraint is only required to allow at least one diagonally
equivalent matrix for every depth matrix Λ in P. For example, in many applications
it is known a priori that the true depths λij are all positive. In such cases P is the set
of m×n matrices with all positive elements. The concept of inclusiveness, therefore,
can be defined formally as follows:

Definition 3.3. Given a set P ⊆ Rm×n representing our prior knowledge about the possible
values of the true depth matrix (Λ ∈ P), the constraint space C ⊆ Rm×n is called inclusive
if for every m×n matrix Λ ∈ P, there exists at least one matrix Λ̂ ∈ C which is diagonally
equivalent to Λ.

Definition 3.4. The constraint space C ⊆ Rm×n is called uniquely inclusive if for every
m×n matrix Λ ∈ P, there exists exactly one matrix Λ̂ ∈ C which is diagonally equivalent to
Λ.

Here, whenever we use the term inclusive without specifying P, we mean the
general case of P being the set of all m×n matrices with no zero element. We will
only consider one other case where P is the set of all m×n matrices with all positive
elements.

In addition to inclusiveness as a necessary property for a constraint, it is desirable
for a constraint to exclude false solutions. This property can be defined as follows:

Definition 3.5. For m≥2 and n≥8, a constraint space C ⊆ Rm×n is called exclusive3 if
every Λ̂ ∈ C satisfies (D1-D3).

Now, we can present a class of constraints under which solving problem (3.57)
leads to projective reconstruction:

3In fact, the term exclusive might not be a precise term here, as (D1-D3) holding for all Λ̂ ∈ C is just
a sufficient condition for a constraint to exclude false solutions. While, according to Lemma 3.17, (D3)
holding for all Λ̂ ∈ C is necessary for ruling out false solutions, (D1) and (D2) holding for all members
of C is not necessary for this purpose. This is because there might exist some Λ̂ ∈ C for which (D1) or
(D2) do not hold, but it is excluded by Λ̂� [xij] = P̂X̂. This is why we said in Sect. 3.2.5 that (D1-D3) is
minimal in a specific sense.

50 A Generalized Theorem for 3D to 2D Projections

Definition 3.6. Given integers m ≥ 2 and n ≥ 8, and a set P ⊆ Rm×n representing
our prior knowledge about the true depth matrix, we call the constraint space C ⊆ Rm×n

(uniquely) reconstruction friendly if it is both exclusive and (uniquely) inclusive with
respect to P.

We will apply the same terms (inclusive, exclusive, reconstruction friendly) to
the constraints themselves (as relations), and what we mean is that the correspond-
ing constraint space has the property. The following proposition follows from the
discussion above and Theorem 3.1.

Proposition 3.18. Consider a setup of m ≥ 2 camera matrices and n ≥ 8 points
({Pi}, {Xj}) generically configured in the sense of (G1-G4), and projecting into the image
points {xij} according to λijxij = PiXj with nonzero scalars λij. If C is a reconstruction
friendly constraint space, then problem (3.57) has at least one solution and for any solution
(Λ̂, P̂, X̂), the configuration ({P̂i}, {X̂j}) is projectively equivalent to ({Pi}, {Xj}), where the
matrices P̂i ∈ R3×4 and the points X̂j ∈ R4 come from P̂ = stack(P̂1, P̂2, · · · , P̂m) and
X̂ = [X̂1X̂2 · · · X̂n]. If C is uniquely reconstruction friendly, then there is a unique depth
matrix Λ̂ as the solution to (3.57).

Notice, that the uniqueness is with respect to Λ̂, however a certain solution Λ̂ gives
a class of camera matrices and points, namely (P̂H, H−1X̂) where H is an arbitrary
invertible matrix.

Being reconstruction friendly is a desirable property for a constraint. However,
this does not mean that other constraints are not useful. There can be other ways
of avoiding false solutions, including choosing a proper initial solution for iterative
factorization algorithms or trying different initial solutions or different forms of a cer-
tain class of constraints. What is important for reconstruction unfriendly constraints
is to be aware of possible false solutions and being able to determine whether the
algorithm has fallen into any of them.

Besides giving correct solutions to (3.57), there are other desirable properties one
likes the constraint space to possess. We are specifically talking about the properties
making the constraint usable with practical algorithms. For example, when dealing
with iterative algorithms that converge to the final solution, it is essential that the
constraint space C is closed. This is because for a non-closed constraint space, even
if the sequence of solutions throughout all iterations satisfy all the constraints, they
may converge to something outside C.

In the next subsections, to demonstrate how the theory we developed can be ap-
plied to the analysis of depth constraints, we examine some of the depth constraints
used in the literature on factorization-based algorithms. It turned out that all of the
constraints we could find in the literature either have a compact constraint space or
are in the form of linear equalities. We consider each of these classes in a separate
subsection. For each class, in addition to reviewing the constraints in the literature,
we introduce a new class of constraints with extra desirable properties. This gives
the reader an idea as to how our theory can be exploited for the design of new
constraints. In particular, in Sect. 3.3.2.3, we introduce a class of linear equality
constraints which are reconstruction friendly.

§3.3 The Constraint Space 51

3.3.1 Compact Constraint Spaces

3.3.1.1 The Transportation Polytope Constraint

We consider the constraint used in [Dai et al., 2010, 2013], which is requiring Λ̂ to
have prescribed row and column sums and to have all nonnegative elements. This
can be represented as

Λ̂1n = u, Λ̂T1m = v, (3.58)

Λ̂ � 0, (3.59)

where the vectors u ∈ Rm and v ∈ Rn are such that ui > 0 for all i, vj > 0 for
all j and ∑m

i=1 ui = ∑n
j=1 vj. The relation � means element-wise greater or equal.

Notice that although (3.58) introduces m + n constraints, only m + n− 1 of them are
linearly independent. In [Angst et al., 2011] it has been noted that the corresponding
constraint space is known as the Transportation Polytope. Thanks to a generaliza-
tion of the well-known Sinkhorn’s Theorem [Sinkhorn, 1964] for rectangular matrices
[Sinkhorn, 1967], one can say that for every m×n matrix Λ with all positive elements
and any two vectors u ∈ Rm and v ∈ Rn with all positive entries, there exists a matrix
Λ̂ which is diagonally equivalent to Λ and satisfies the row and column sums con-
straint (3.58). Therefore, (3.58) is inclusive if the true depth matrix Λ is known to have
all positive values, that is the set P representing the prior knowledge in Definition 3.6
is equal to the set of all m×n matrices with all positive elements. It is also obvious
that the constraint (3.58) enforces all rows and all columns of Λ̂ to be nonzero. Hence,
every matrix in the constraint space satisfies depth assumptions (D1, D2). Therefore,
to see if the constraint is exclusive it only remains to see whether or not constraints
(3.58) and (3.59) allow for any cross-shaped depth matrix.

Assume that Λ̂ is a cross-shaped matrix centred at (r, c), as in Fig. 3.4. Then the
elements of Λ̂ are uniquely determined by (3.58) as follows: λ̂ic = ui for all i 6= r,
λ̂rj = vj for all j 6= c and λ̂rc = ur −∑j 6=c vj = vc −∑i 6=r uj (the latter equality is true
due to ∑m

i=1 ui = ∑n
j=1 vj). This has been illustrated in Fig. 3.4. It is easy to check at

all elements of Λ̂ are nonnegative except possibly λ̂rc. Therefore, to satisfy (3.59), we
must have ur −∑j 6=c vj ≥ 0. Therefore, if for any choice of r and c, ur −∑j 6=c vj ≥ 0 is
satisfied, then the constraints (3.58) and (3.59) allow for a cross-shaped structure and
hence, according to Lemma 3.17, allow a false solution to (3.57). Otherwise, (3.58)
and (3.59) together give a reconstruction friendly constraint space, and hence, do not
allow any false solution by Proposition 3.18.

As a major example, if we take u = n1m and v = m1n as chosen in [Dai et al.,
2010, 2013], for any choice of r and c we have ur − ∑j 6=c vj = m + n − mn. This is
always negative by our assumption of having two or more views (m ≥ 2) and 8 or
more points (n ≥ 8). Therefore, with the choice of u = n1m and v = m1n, (3.58)
and (3.59) give a reconstruction friendly constraint space. The disadvantage of this
constraint is that it includes inequalities. This makes it difficult to implement fast
and efficient algorithms for large scale problems.

52 A Generalized Theorem for 3D to 2D Projections

u1

u2

ur=u3

u4

v1 v2 v3 vc v5 v6

r=3

c=4

λ̂1c

λ̂2c

λ̂rc

λ̂4c

λ̂r1 λ̂r2 λ̂r3 λ̂r5 λ̂r6

Figure 3.4: A 4×6 cross-shaped depth matrix Λ̂ centred at (r, c) with r = 3, c = 4.
The blank parts of the matrix indicate zero elements. The only way for the rows and
columns of the matrix to sum up to the marginal values {ui} and {vj} is to have

λ̂ic = ui for i 6= r, λ̂rj = vj for j 6= c, and λ̂rc = ur −∑j 6=c vj = vc −∑i 6=r uj.

3.3.1.2 Fixing the Norms of Rows and Columns

As suggested by Triggs [1996] and Hartley and Zisserman [2004], after each iteration
of a factorization-based algorithm, one can alternatingly scale row and columns of Λ̂
to have prescribed norms. Here, we analyse this case for the cases where the norms
are lp-norms for some real number p ≥ 1 (being real implies p < ∞). Consider the

matrix Γ̂
def
= [|λ̂ij|p], whose ij-th element is equal to |λ̂ij|p. If all λ̂ij-s are nonzero, all

elements of Γ̂ are positive, and hence, alternatingly scaling row and columns of Λ̂ to
have prescribed lp-norms is equivalent to alternatingly scaling rows and columns of
Γ̂ to have prescribed sums, that is applying the Sinkhorn’s algorithm to Γ̂ [Sinkhorn,
1964, 1967], making Γ̂ converge to a matrix with prescribed row and column sums
and hence making Λ̂ converge to a matrix with prescribed row and column lp-norms.
Therefore, applying this iterative procedure after every iteration of a factorization-
based algorithms keeps Λ̂ in the following constraint space

n

∑
j=1
|λ̂ij|p = ui, i = 1, . . . , m (3.60)

m

∑
i=1
|λ̂ij|p = vj, j = 1, . . . , n (3.61)

for vectors u = [u1, . . . , um]T and v = [v1, . . . , vn]T with all positive elements. Notice
that u and v must be taken such that ∑m

i=1 ui = ∑n
j=1 vj. The above constrains Γ̂ =

[|λ̂ij|p] as follows:

Γ̂1n = u, Γ̂T1m = v. (3.62)

Moreover, Γ̂ � 0 is automatically satisfied by the definition of Γ̂. For the true depths

λij, take Γ
def
= [|λij|p] and notice that it has all positive elements as λij-s are all nonzero.

Thus, by applying the generalization of the Sinkhorn’s theorem to rectangular ma-
trices [Sinkhorn, 1967] we can say that there exists vectors τ = [τ1, τ2, . . . , τm]T,

§3.3 The Constraint Space 53

ν = [ν1, ν2, . . . , νn]T with all positive entries such that Γ̂ = diag(τ) Γdiag(ν) sat-
isfies (3.62). Thus, for τ′ = [τ

1/p
1 , τ

1/p
2 , . . . , τ

1/p
m]T, ν′ = [ν

1/p
1 , ν

1/p
2 , . . . , ν

1/p
n]T, the

matrix Λ̂ = diag(τ′) Λdiag(ν′) satisfies (3.60) and (3.61). Therefore, (3.60) and (3.61)
together give an inclusive constraint space. To check for (D1-D3), notice that Γ̂ and Λ̂

have a common zero pattern. Therefore, (D1-D3) are satisfied for Λ̂ if and only if they
are satisfied for Γ̂. By considering (3.62) and Γ̂ � 0, with the same discussion as the
previous subsection we can say that (3.60) and (3.61) form a reconstruction friendly
constraint if and only if ur − ∑j 6=c vj ≥ 0 for all r and c. Specifically, if one requires
rows to have common norms and also columns to have common norms, as sug-
gested by Triggs [1996] and Hartley and Zisserman [2004], then we have u = αn1m

and v = αm1n for some nonzero scaling factor α. A similar argument as in the pre-
vious subsection shows that with this choice of u and v, fixing lp-norms of rows and
columns results in a reconstruction friendly constraint space.

The problem with (3.62) as a constraint is that even simple target functions are
hard to optimize subject to it. Implementing this constraint as a balancing stage
after every iteration of a factorization-based algorithm can prevent us from having a
descent move at every iteration.

3.3.1.3 Fixed Row or Column Norms

Heyden et al. [1999] uses the constraint of fixing the l2-norms of the rows of the depth
matrix. This constraint can be written as

n

∑
j=1
|λ̂ij|2 = ui, i = 1, . . . , m (3.63)

for fixed positive numbers ui. Indeed, this constraint is inclusive as for every matrix
Λ with all nonzero rows one can scale the rows to obtain a matrix Λ̂ = diag(τ)Λ with
prescribed row norms. Every matrix Λ̂ satisfying this constraint cannot have zero
rows. However, the constraint allows for zero columns and cross-shaped solutions.
A similar situation holds for [Mahamud et al., 2001] where the columns of the depth
matrix are required to have a unit (weighted) l2-norm.

The disadvantage of these constraints is allowing for zero columns (or zero rows
in the second case) and cross-shaped structures. The advantage is that they can
be efficiently implemented with iterative factorization-based algorithms, by solving
a number of eigenvalue problems at every iteration [Mahamud et al., 2001]. The
compactness of the constraint space contributes to the proof of special convergence
properties for special factorization-based algorithms [Mahamud et al., 2001].

3.3.1.4 Fixing Norms of Tiles

In this subsection we show how the fixed row and fixed column constraints can be
somehow combined to make more desirable constraints. This is done by tiling the
depth matrix Λ̂ with row and column vectors, and requiring each tile to have a unit
norm (or a fixed norm in general). Examples of tiling can be seen in Fig. 3.5.

54 A Generalized Theorem for 3D to 2D Projections

b b b b b b

b

b

b

b

b

bb

b

bb

b

bb

b

bb

b

b

b b b b b b

b

b

bbbbbb

b

b b b b b

bbbb

b b b b b b

(a) (b) (c)

b

b

b

b

bbbb bbbb

(d) (e) (f)

Figure 3.5: Examples of tiling a 4×6 depth matrix with row and column vectors. The
associated constraint is to force every tile of the depth matrix to have a unit (or a
fixed) norm. This gives a compact constraint space. If the tiling is done according
to (a) every row of the constrained depth matrix has unit norm. Similarly, tiling
according to (b) requires columns with unit norms. Constraints associated with (a)
and (b), respectively, allow zero columns and zero rows in the depth matrix, along
with cross-shaped configurations. The associated constraints for (c-f) do not allow
any zero rows or zero columns, however, they all allow cross-shaped structures. For
each of the cases (a-f), the dots indicate possible locations where the cross-shaped
structures allowed by the associated constraint can be centred. Clearly, for (a) and
(b) the cross can be centred anywhere, whereas for (c-f) they can only be centred at

1×1 tiles.

The process of tiling is done as follow: It starts by putting a single tile (row vector
or column vector) in the matrix. We then keep adding tiles such that the tiled area
stays rectangular. At every stage either a horizontal tile (row vector) is vertically
concatenated or a vertical tile (column vector) is horizontally concatenated to the
already tiled area, with the constraint that the tiled region remains rectangular. The
process is continued until the whole Λ̂ is tiled. This process is illustrated in Fig. 3.6.
By tiling the matrix in this way, the corresponding constraint will be inclusive. We
do not prove this formally here, instead, we show how the proof is constructed by
giving an example in Fig. 3.6.

Fig. 3.5 shows six examples of tiling a 4×6 depth matrix. Looking at Fig. 3.5(a)
one can see that for an m×n matrix, if the tiling begins by placing a 1×n block, all
other tiles have to be also 1×n and the constraint is reduced to the case of requiring
fixed row norms, a special case of which was discussed in the previous subsec-
tion. Similarly, if the first tile is m×1, the constraint amounts to fixing the norms
of columns of the depth matrix Fig. 3.5(b). But the case of interest here is when the
first tile is a 1×1 block, like Fig. 3.5(c-f). In this case, the constraint rules out having
zero rows or zero columns in the depth matrix. It does not rule out cross-shaped
structures, but it constrains the central position of the cross to the location of 1×1
tiles (see Fig. 3.5(c-f)).

If the norms used for the constraints are weighted l2-norms with properly chosen

§3.3 The Constraint Space 55

1

2

345
7

6

ν1 ν2 ν3 ν4 ν5

τ4

τ3

τ2

τ1

3

7

4

ν1 ν2 ν3 ν4 ν5

τ4

τ3

τ2

τ1

2
6 5

1

(a) (b)

Figure 3.6: Examples of the procedure of tiling a 4×5 depth matrix. The numbers
show the order in which the tiles are placed. In these examples, we start by placing a
2×1 tile on the left bottom of the matrix. The tiles are added such that the tiled region
at any time remains a rectangle. Having an m′×n′ rectangular area tiled already, we
either concatenate an m′×1 vertical block to its left, or a 1×n′ block to its top. The
claim is that with this procedure the constraint of every tile having a unit (or a fixed
positive) norm is inclusive. This can be shown as follows: We start by taking Λ̂ = Λ,
and keep updating Λ̂ by scaling one of its rows or one of its columns at a time until
it satisfies all the constraints, that is all of its tiles have a unit norm. For matrix (a),
the updates can be done as follows: choose arbitrary nonzero values for τ3 and τ4
and apply them to the matrix (multiply them respectively by the 3rd and 4th row of
Λ̂). Now, choose ν5 such that tile 1 has a unit norm and apply it. Then choose τ2
and apply it such that tile 2 has a unit norm. Now, choose and apply ν4, ν3 and ν2
such that tiles 3, 4, 5 have a unit norm, and finally choose and apply τ1 and then ν1
to respectively make tiles 6 and 7 have a unit norm. The procedure for (b) is similar,

but the order of finding τi-s and νj-s is as follows: τ3, τ4, ν5, ν4, τ2, ν3, ν2, ν1, τ1.

weights, an efficient factorization algorithm can be implemented. For more details
see Sect. 6.2. Similar convergence properties as in [Mahamud et al., 2001] can be
proved for these constraints given a proper algorithm.

3.3.2 Linear Equality Constraints

3.3.2.1 Fixing Sums of Rows and Columns

In this subsection, we consider constraining Λ̂ to have prescribed row and column
sums, that is

Λ̂1n = u, Λ̂T1m = v, (3.64)

for two m- and n-dimensional vectors u and v with all nonzero entries for which
∑m

i=1 ui = ∑n
j=1 vj. This is similar to the transportation polytope constraint introduced

in Sect. 3.3.1.1, but it does not require Λ̂ � 0. Thus, it has the advantage of allowing
for more efficient algorithms compared to the case where inequality constraints are
also present. We can see this in [Dai et al., 2013], where the inequality constraint
Λ̂ � 0 has been disregarded when proposing fast and scalable algorithms.

With a similar argument as was made in Sect. 3.3.1.1, one can say that (3.64)

56 A Generalized Theorem for 3D to 2D Projections


1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

 ⇒


6

4 4 4 −14 4 4
6
6


(a) (b)

Figure 3.7: Examples of 4×6 matrices, both satisfying Λ̂1n = n1m and Λ̂T1m = m1n.
(a) is a typical initial state for iterative factorization-based algorithm, (b) is the only
cross-shape structure centred at (2,4) allowed by the constraint. If the true depths are
all positive, it can be harder for an algorithm to converge from (a) to (b), compared

to converging to a correct solution with all positive elements.

gives an inclusive constraint space when the true depth matrix Λ is known to have all
positive elements, and u and v are chosen to have all positive entries. The constraint
also enforces all rows and columns of Λ̂ to be nonzero.

However, as noted in Sect. 3.3.1.1, a cross-shaped matrix with any arbitrary centre
(r, c) whose elements are chosen as λ̂ic = ui for all i 6= r, λ̂rj = vj for all j 6= c and
λ̂rc = ur − ∑j 6=c vj = vc − ∑i 6=r uj, satisfies (3.64). Therefore, by Lemma 3.17 we can
say that it always allows for cross-shaped solutions.

The bad thing about this type of constraint is that there is no limitation as to
where the cross-shaped structure can be centred. But the good thing is that according
to our experiments it can be hard for an iterative algorithm to converge to a cross-
shaped solution with the choice of u = n1m and v = m1n. This could be explained
as follows: As noted in Sect. 3.3.1.1, if any cross-shaped structure occurs, the central
element will have to be equal to m + n−mn. Under our assumptions (m ≥ 2, n ≥ 8),
this is a negative number and its absolute value grows linearly both with respect
to m and n. This can make it hard for the algorithm to converge to a cross-shaped
structure starting from an initial solution like a matrix of all ones. This has been
depicted in Fig. 3.7 for a 4×6 matrix, where the central element of the cross has to
be −14. For a fairly small configuration of 20-views and 8-points this value is −132.
This suggests that as the dimension of the depth matrix grows, it is made harder for
the algorithm to converge to a cross-shaped solution.

3.3.2.2 Fixing Elements of one row and one column

Here, we consider the constraint of having all elements of a specific row and a specific
column of the depth matrix equal to one, as used in [Ueshiba and Tomita, 1998]. This
means requiring λ̂rj = 1 for all j, and λ̂ic = 1 for all i. This can be represented as

M ◦ Λ̂ = M. (3.65)

where ◦ represents the Hadamard (element-wise) product and M is a mask matrix,
having all elements of a specific row r and a specific column c equal to 1, and the rest
of its elements equal to zero. This means that the mask matrix M is a cross-shaped

§3.3 The Constraint Space 57

matrix centred at (r, c). We leave it to the reader to check that this is an inclusive
constraint, and also every matrix in the constraint space satisfies depth assumptions
(D1) and (D2). However, one can easily check that, as M itself is a cross-shaped matrix,
the constraint (3.65) allows for cross-shaped depth matrices. Therefore, by using the
above constraint problem (3.57) can admit false solutions.

One advantage of this type of constraint is its elementwise nature. This can make
the formulation of iterative factorization algorithms much easier compared to other
types of constraints. The other advantage is that there is only a single possibility
about where the cross in centred, which is the centre of cross in M. Therefore, the
occurrence of a cross-shaped solution can be easily verified. In the case where a
cross-shaped solution happens, one can try rerunning the algorithm with a different
mask M whose cross is centred elsewhere.

3.3.2.3 Step-like Mask Constraint: A Linear Reconstruction Friendly Equality
Constraint

This section demonstrates a group of linear equality constraints which are recon-
struction friendly, and therefore exclude all possible wrong solutions to the projec-
tive factoriation problem. Like the previous subsection, the linear equalities are in
the form of fixing elements of the depth matrix at certain sites. Therefore, it enjoys
all the benefits of elementwise constraints.

To present the constraint, we first define the concept of a step-like mask. Consider
an m×n matrix M. To make a step-like mask, we have a travel starting from the upper-
left corner of the matrix (location 1, 1) and ending at its lower-right corner (location
m, n). The travel from (1, 1) to (m, n) is done by taking m + n− 2 moves, such that
at each move we either go one step to the right or go one step down. In total, we
will make m− 1 downward moves and n− 1 moves to the right. Therefore, the travel
can be made in (m+n−2)!/((m−1)! (n−1)!) ways. After doing a travel, we make the
associated step-like mask by setting to 1 all (m + n− 1) elements of M corresponding
to the locations that we have visited and setting to zero the rest of the elements.
Examples of step-like masks are shown in Fig. 3.8 for m = 4 and n = 6.

Notice that a step-like mask has m + n− 1 nonzero elements which are arranged
such that the matrix has no zero rows and no zero columns. An exclusive step-like
mask is defined to be a step-like mask which is not cross-shaped (see Fig. 3.8). With
an m×n step-like mask we can put linear equality constraints on a depth matrix Λ̂ as
follows

M ◦ Λ̂ = M. (3.66)

where ◦ represents the Hadamard (element-wise) product. In other words, it enforces
the matrix Λ̂ to have unit elements at the sites where M has ones.

One can show that with an exclusive step-like mask M, the constraint (3.66) is
uniquely reconstruction friendly. As the constraints enforce Λ̂ to be nonzero at the
sites where M has ones, it is easy to see that if Λ̂ satisfies (3.66), it satisfies (D1-D3) and
hence the constraint space is exclusive. Therefore, we just have to show that for each

58 A Generalized Theorem for 3D to 2D Projections


1 1

1 1 1
1 1

1 1




1 1 1
1
1
1 1 1 1




1
1
1
1 1 1 1 1 1


(a) (b) (c)

Figure 3.8: Examples of 4×6 step-like mask matrices. Blank parts of the matrices
indicate zero values. A step-like matrix contains a chain of ones, starting from its
upper left corner and ending at its lower right corner, made by making rightward
and downward moves only. An exclusive step-like mask is one which is not cross-
shaped. In the above, (a) and (b) are samples of an exclusive step-like mask while
(c) is a nonexclusive one. Associated with an m×n step-like mask M, one can put a
constraint on an m×n depth matrix Λ̂ in the form of fixing the elements of Λ̂ to 1
(or some nonzero values) at sites where M has ones. For an exclusive step-like mask,
this type of constraint rules out all the wrong solutions to the factorization-based

problems.

matrix Λ with all nonzero elements, there exists exactly one diagonally equivalent
matrix Λ̂ satisfying (3.66). The proof is quite simple, but instead of the formal proof,
we explain the idea by giving an example of a special case in Fig. 3.9.

ν1 ν2 ν3 ν4
τ1
τ2
τ3

 λ11 λ12 λ13 λ14
λ21 λ22 λ23 λ24
λ31 λ32 λ33 λ34

 M =

 1 1 0 0
0 1 0 0
0 1 1 1


Figure 3.9: An example of a 3×4 depth matrix Λ (left) and an exclusive step-like
mask M = [mij] (right). The elements λij of Λ are underlined at the sites where
mij = 1, which is where λ̂ij-s are constrained to be equal to 1. The aim is to show
that there exists a unique Λ̂ in the form of Λ̂ = diag(τ) Λdiag(ν) whose elements are
1 at the sites where M has ones. Equivalently M ◦ Λ̂ = M. This can be done as follows:
Start by taking Λ̂ = Λ, and keep updating Λ̂ by scaling its rows and columns, one
at a time, until it satisfies the constraint M ◦ Λ̂ = M. For the above matrix, we start
by assigning an arbitrary nonzero value to τ1 and multiplying τ1 by the first row of
Λ̂. Then we choose ν1 and ν2 and multiply them by the corresponding columns of
Λ̂ such that λ̂11 = 1 and λ̂12 = 1. Now, we choose τ2 and τ3 and multiply them
by the corresponding rows of Λ̂ such that we have λ̂22 = 1 and λ̂32 = 1. Finally,
we choose ν3 and ν4 and multiply them by the corresponding columns of Λ̂ to have
λ̂33 = 1 and λ̂34 = 1. Notice that in this process, except τ1 which is chosen arbitrarily,
there is only one choice for each of the entries τ2, τ3, ν1, ν2, ν3, ν4 for each choice of
τ1. Because, given any pair of vectors (τ, ν), all pairs of vectors (ατ, α−1ν) for all
α 6= 0 have the same effect, this means that given the matrices Λ and M, the choice of

Λ̂ = diag(τ) Λdiag(ν) is unique.

§3.4 Projective Reconstruction via Rank Minimization 59


1 0

1 1 0
1 0

1 1




1 1 0
1
1
0 1 1 1




1
1
1
0 1 1 1 1 1


(a) (b) (c)

Figure 3.10: Examples of 4×6 edgeless step-like mask matrices obtained by removing
(making zero) some of the stair edges of matrices in Fig. 3.8. The blank parts of the
matrices are zero. The elements explicitly shown by 0 are the removed edges (those
that are 1 on the original step-like matrix). (a) and (b) are examples of an exclusive

edgeless step-like matrix, resulting in a reconstruction friendly constraint.

One can think of many ways to extend the step-like constraints. For example,
one can fix the desired elements of Λ̂ to arbitrary nonzero values instead of ones.
The reader can also check that if M is obtained by applying any row and column
permutation to an exclusive step-like mask, then the constraint (3.66) will be still
reconstruction friendly. One important extension is to remove some of the constraints
by turning to 0 some of the elements of the mask matrix M. Potential elements of
a step-like matrix M for the removal (switching to zero) are the stair edges, which
are the elements whose left and lower elements (or right and upper elements) are
1 (see Fig. 3.10). We call the new matrices edgeless step-like masks. As switching
some elements of M to zero amounts to removing some linear equations from the set
of constraints, an edgeless step-like mask still gives an inclusive constraint. If the
edge elements for the removal are chosen carefully from an exclusive step-like mask,
the corresponding constraint M ◦ Λ̂ = M can still be exclusive, not allowing for the
violation of (D1-D3). Fig. 3.10(a,b) illustrates examples of exclusive edgeless step-
like masks. The corresponding constraint M ◦ Λ̂ = M for such a mask is reconstruction
friendly, however it is not uniquely reconstruction friendly. Our experiments show
that, using the same algorithm, an edgeless mask results in a faster convergence than
its corresponding edged mask. One explanation is that, in this case, the removal of
each constraint, in addition to increasing the dimension of the search space, increases
the dimension of the solution space4 by one. This can allow an iterative algorithm to
find a shorter path from the initial estimate of Λ̂ to a correct solution.

3.4 Projective Reconstruction via Rank Minimization

Recall from the last section that in the factorization-based projective reconstruction
the following problem is sought to be solved

findΛ̂, P̂3m×4, X̂4×n
s.t. Λ̂� [xij] = P̂ X̂, Λ̂ ∈ C (3.67)

4namely {Λ̂ | Λ̂ = diag(τ) Λdiag(ν), M ◦ Λ̂ = M}

60 A Generalized Theorem for 3D to 2D Projections

which is a restatement of (3.57). Rank minimization is one of the approaches to
factorization-based projective reconstruction, in which, in lieu of (3.67), the following
problem is solved:

min
Λ̂
Rank(Λ̂� [xij]) s.t. Λ̂ ∈ C. (3.68)

Two other closely related problems are

find Λ̂ s.t. Rank(Λ̂� [xij]) ≤ 4, Λ̂ ∈ C, (3.69)

find Λ̂ s.t. Rank(Λ̂� [xij]) = 4, Λ̂ ∈ C. (3.70)

If any solution Λ̂ is found for any of the above problems such thatRank(Λ̂� [xij]) ≤ 4,
the camera matrices and points can be estimated from the factorization of Λ̂� [xij]
as P̂X̂. We shall show that if C is reconstruction friendly, any solution to any of the
above problems leads to projective reconstruction. First, it is easy to see that (3.69) is
in fact equivalent to problem (3.67):

Lemma 3.19. Given any set of 3D points xij for i = 1, 2, . . . , m and j = 1, 2, . . . , n, the
problems (3.69) and (3.67) are equivalent in terms of finding Λ̂.

Here, by being equivalent we mean that any solution Λ̂ to one problem is a solu-
tion to the other. Obviously, this implies that if there exists no solution to one of the
problems, then there cannot exist any solution to the other. The proof is quite simple:

Proof. Consider a solution (Λ̂, P̂, X̂) to (3.67). Since Λ̂� [xij] = P̂X̂ for X̂ ∈ R4×n, it has
rank 4 or less. Therefore, Λ̂ ∈ C is also a solution to (3.69).

Now, consider a solution Λ̂ ∈ C to (3.69). As Λ̂� [xij] has rank r′ ≤ 4, it can be can
be factored as Λ̂� [xij] = UVT where U is 3m×r′ and V is n×r′. Let P̂ = [U, 03m×(4−r′)] ∈
R3m×4 and X̂ = [V, 0n×(4−r′)]

T ∈ R4×n. Then we have Λ̂� [xij] = UVT = P̂X̂. Thus,
(Λ̂, P̂, X̂) is a solution to (3.67).

Notice that to prove the above lemma we need not make any assumption about C
or how the points xij are created. The two other problems (3.68) and (3.70) are not in
general equivalent to (3.67). However, if C is reconstruction friendly, one can show
that all the four problems (3.68), (3.69), (3.70) and (3.67) are equivalent:

Proposition 3.20. Consider a setup of m ≥ 2 camera matrices and n ≥ 8 points
({Pi}, {Xj}) generically configured in the sense of (G1-G4), and projecting into the im-
age points {xij} according to λijxij = PiXj with nonzero scalars λij. If C ⊆ Rm×n is a
reconstruction friendly constraint space, then given the image points xij, the problems (3.68),
(3.69) and (3.70) are all equivalent to (3.67) in terms of finding Λ̂.

Proof. As (3.69) and (3.67) are equivalent, the proof will be complete by showing

• (3.70) ⊆ (3.69),

• (3.67) ⊆ (3.70),

§3.5 Iterative Projective Reconstruction Algorithms 61

• (3.68) ⊆ (3.69),

• (3.70) ⊆ (3.68),

where (P1) ⊆ (P2) means that any solution to (P1) is a solution to (P2). The first part,
that is (3.70) ⊆ (3.69), is obvious. To show (3.67) ⊆ (3.70), assume that (Λ̂, P̂, X̂) is a
solution to (3.67). By Proposition 3.18 and the definition of projective equivalence
we can conclude that P̂ = diag(τ ⊗ 13) PH and X̂ = H−1Xdiag(ν) for some invertible
matrix H and vectors τ and ν with all nonzero entries, where P = stack(P1, . . . , Pm),
X = [X1, . . . , Xn] and ⊗ denotes the Kronecker product. This gives

Λ̂� [xij] = P̂X̂ = diag(τ ⊗ 13) PXdiag(ν) (3.71)

From (G1,G2) it follows that P and X respectively have full column and full row rank,
and hence, PX is of rank 4. Given this, plus the fact that τ and ν have all nonzero
entries, (3.71) implies that Rank(Λ̂� [xij]) = 4, meaning Λ̂ is a solution to (3.70).

To see (3.68) ⊆ (3.69), notice that according to Proposition 3.18, (3.67) has at least
one solution. This means that the equivalent problem (3.69) has also one solution
and therefore, there exist a Λ̂′ ⊆ C for which Rank(Λ̂′ � [xij]) ≤ 4. Now, for any
solution Λ̂ ⊆ C to (3.68) we have Rank(Λ̂� [xij]) ≤ Rank(Λ̂′ � [xij]) ≤ 4. This means
that Λ̂ is also a solution to (3.69).

Finally, to show (3.70) ⊆ (3.68), notice that since (3.69) and (3.67) are equivalent,
from (3.68) ⊆ (3.69) and (3.67) ⊆ (3.70) we conclude that any solution Λ̂ to (3.68) is
also a solution to (3.70). This, plus the fact that (3.68) always attains its minimum5,
means that Rank(Λ̂� [xij]) ≥ 4 for all Λ̂ ∈ C. Thus, any solution to (3.70) minimizes
Rank(Λ̂� [xij]), and hence, is also a solution to (3.68).

Moreover, as Proposition 3.18 suggests that (3.67) has at least one solution, we
can say that with the conditions of Proposition 3.20, all the problems (3.68), (3.69)
and (3.70) have at least one solution.

3.5 Iterative Projective Reconstruction Algorithms

Nearly, all of the projective factorization-based problems are solved iteratively. The
output of such algorithms is not in the form of a deterministic final solution, but
rather is a sequence ({P̂(t)i }, {X̂

(t)
j }, {λ̂

(t)
ij }) which one hopes to converge to a sensible

solution. There are many questions such as whether this sequence converges, and
if it does, whether it converges to a correct solution. Answering such algorithm-
specific questions, however, is beyond the scope of this thesis. However, a more basic
question that needs answering is that, given a constraint space C, if the sequence
{Λ̂(t)} ⊆ C converges to some Λ̂ and moreover the sequence {Λ̂(t) � [xij] − P̂(t) X̂(t)}
converges to zero, then whether Λ̂ is a solution to the factorization problem (3.57),
that is Λ̂ ∈ C and Λ̂� [xij] = P̂ X̂ for some P̂ ∈ R3m×4 and X̂ ∈ R4×n. It is easy to check
that C being closed is sufficient for this to happen:

5The reason is that Rank(Λ̂� [xij]) is a member of a finite set.

62 A Generalized Theorem for 3D to 2D Projections

Proposition 3.21. Consider a set of image points {xij}, i = 1, . . . , m and j = 1, . . . , n, and
a closed constraint space C ⊆ Rm×n. If there exists a sequence of depth matrices {Λ̂(t)} ⊆ C
converging to a matrix Λ̂, and for each Λ̂(t) there exist P̂(t) ∈ R3m×4 and X̂(t) ∈ R4×n such
that Λ̂(t) � [xij]− P̂(t) X̂(t) → 0 as t → ∞, then there exist P̂ ∈ R3m×4 and X̂ ∈ R4×n such
that (Λ̂, P̂, X̂) is a solution to the factorization problem

findΛ̂, P̂3m×4, X̂4×n
s.t. Λ̂� [xij] = P̂ X̂, Λ̂ ∈ C (3.72)

Proof. Let A(t) = P̂(t) X̂(t). As the mapping Λ′ 7→ Λ′ � [xij] is continuous, Λ̂(t) � [xij]−
A(t) → 0 and Λ̂(t) → Λ̂ give A(t) → Λ̂ � [xij]

def
= A. Also, Rank(A) ≤ 4 because

Rank(A(t)) ≤ 4 and the space of 3m×n real matrices with rank 4 or less is closed.
Thus, A can be factored as A = P̂X̂ for some P̂ ∈ R3m×4 and X̂ ∈ R4×n, giving Λ̂� [xij] =

A = P̂X̂. Moreover, as C is closed and {Λ̂(t)} ⊆ C we have Λ̂ ∈ C. This completes the
proof.

According to the above, as long as the constraint space C is closed, all the results
obtained in the previous section about the solutions to the factorization problem
(3.57), can be safely used for iterative algorithms when the sequence of depths {Λ̂(t)}
is convergent and Λ̂(t) � [xij]− P̂(t) X̂(t) converges to zero.

3.6 Summary

We presented a generalized theorem of projective reconstruction in which it has not
been assumed, a priori, that the estimated projective depths are all nonzero. We also
presented examples of the wrong solutions to the projective factorization problem
when not all the estimated projective depths are constrained to be nonzero. We
used our theory to analyse some of the depth constraints used in the literature for
projective factorization problem, and also demonstrated how the theory can be used
for the design of new constraints with desirable properties.

Chapter 4

Arbitrary Dimensional Projections

In this chapter we consider the problem of projective reconstruction for arbitrary
dimensional projections, where we have multiple projections with the i-th projection
being from Pr−1 to Psi−1. We give theories for deducing projective reconstruction
from the set of projection equalities

λijxij = PiXj (4.1)

for i = 1, . . . , m and j = 1, . . . , n, where Xj ∈ Rr are high-dimensional (HD) points,
representing points in Pr−1 in homogeneous coordinates, Pi ∈ Rsi×r are projection
matrices, representing projections Pr−1 → Psi−1 and xij ∈ Rsi are image points. Each
image point xij ∈ Rsi represents a point in Psi−1 in homogeneous coordinates. The
nonzero scalars λij-s are known as projective depths (see Sect. 2.1 for more details).

After providing the required background in Sect. 4.1, we give a basic theorem in
Sect. 4.2 which proves the uniqueness of projective reconstruction given the image
points xij from the set of relation 4.1, under some conditions on the estimated pro-
jection matrices and HD points. The main step to prove the theorem is proving the
uniqueness of the multi-view (Grassmann) tensor given the image points xij which
is done in Sect. 4.2.1.

In Sect. 4.3 we prove that all configurations of projection matrices and HD points
projecting into the same image points xij (all satisfying (4.1) with nonzero depths λij)
are projectively equivalent. Notice that uniqueness of the Grassmann tensor is not
sufficient for obtaining this result, as it does not rule out the existence of degenerate
solutions {Pi} whose corresponding Grassmann tensor is zero.

Finally, in Sect. 4.4 we classify the degenerate wrong solutions to the projective
factorization equation Λ� [xij] = P X where not all the projective depths are restricted
to be nonzero.

4.1 Background

4.1.1 Triangulation

The problem of Triangulation is to find a point X given its images through a set of
known projections P1, . . . , Pm. The next lemma provides conditions for the unique-

63

64 Arbitrary Dimensional Projections

ness of triangulation.

Lemma 4.1 (Triangulation). Consider a set of projection matrices P1, P2, . . . , Pm with Pi ∈
Rsi×r, and a point X ∈ Rr, configured such that

(T1) there does not exist any linear subspace of dimension less than or equal
to 2, passing through X and nontrivially intersecting1 all the null spaces
N (P1),N (P2), . . . ,N (Pm).

Now, for any nonzero Y 6= 0 in Rr if the relations

PiY = βiPiX, i = 1, 2, . . . , m (4.2)

hold for scalars βi, then Y = βX for some scalar β 6=0.

Notice that we have not assumed βi 6= 0.

Proof. From PiY = βiPiX we deduce

Y = βiX + Ci (4.3)

for some Ci ∈ N (Pi), which means Ci ∈ span(X, Y). Now, if all Ci-s are nonzero, then
the subspace span(X, Y) nontrivially intersects all the subspaces N (Pi), i = 1, . . . , m,
violating (T1). Hence, for some index k we must have Ck = 0. By (4.3), therefore,
we have Y = βkX, that is Y is equal to X up to scale. As Y is nonzero, βk cannot be
zero.

Notice that for the classic case of projections P3 → P2, (T1) simply means that the
camera centresN (Pi) and the projective point span(X) ∈ P3 are collinear. For general
dimensional projections, however, it is not trivial to show that (T1) is generically true.
This is answered in the following proposition.

Proposition 4.2. Consider a set of projection matrices P1, P2, . . . , Pm with Pi ∈ Rsi×r such
that ∑m

i=1(si − 1) ≥ r, and a nonzero point X 6= 0 in Rr. Now, if the null spaces
N (P1),N (P2), . . . ,N (Pm) as well as span(X) are in general position (with dim(N (Pi)) =
r− si), then there is no linear subspace of dimension bigger than or equal to 2 passing through
X and nontrivially intersecting N (P1),N (P2), . . . ,N (Pm).

4.1.2 An exchange lemma

The next lemma is similar to (but not the same as) the Steinitz exchange lemma. It
plays a key role in our proofs.

Lemma 4.3 (Exchange Lemma). Consider a set of m linearly independent vectors A =
{a1, a2, . . . , am} ⊆ Rr and a single vector b ∈ Rr. Define Ai as the set made by replacing
ai in A by b, that is Ai = (A− {ai}) ∪ {b}. Now, given k ≤ m, if for all i = 1, 2, . . . , k,
the vectors in Ai are linearly dependent, then b is in the span of ak+1, . . . , am. If k = m then
b = 0.

1Two linear subspaces nontrivially intersect if their intersection has dimension one or more.

§4.1 Background 65

Proof. As the vectors in A are linearly independent so are the vectors in A − {ai}.
Therefore, if the vectors in Ai = (A − {ai}) ∪ {b} are not linearly independent it
means that b is in the span of A− {ai}, that is b = ∑m

j=1 cjiaj, where cii = 0. This can
be shown as b = A ci where A = [a1, a2, . . . , am] and ci = [c1i, c2i, . . . cmi]

T, where the
i-th element of each ci is zero. According to the assumptions of the lemma we have

b1T = A [c1 c2 · · · ck] (4.4)

where the i-th element of each ci is zero. As A has full column rank, we can write

[c1 c2 · · · ck] = h 1T (4.5)

where h = (ATA)−1b. It means that all ci-s are equal. As the i-th element of each ci is
zero, it follows that the first k elements of all ci-s are zero. From b = ∑m

j=1 cjiaj then it
follows that b = ∑m

j=k+1 cjiaj, or b ∈ span(ak+1, . . . , am), and if k = m, it follows that
b = 0.

Corollary 4.4. Consider a full-row-rank p×q matrix Q partitioned as Q =

(
A

B

)
, and a

horizontal vector qT whose size is q. Now, if replacing any row of A by qT turns Q into a
rank deficient matrix, then q is in the row space of B. If B has zero rows, that is Q = A, then
qT is zero.

4.1.3 Valid profiles and the Grassmann tensor

Consider a set of projection matrices P1, P2, . . . , Pm, with Pi ∈ Rsi×r, such that
∑m

i=1(si − 1) ≥ r. We define a valid profile [Hartley and Schaffalitzky, 2004] as an
m-tuple of nonnegative2 integers α = (α1, α2, . . . , αm) such that 0 ≤ αi ≤ si−1 and
∑ αi = r. Clearly, there might exist different valid profiles for a setup {Pi}. One
can choose r×r submatrices of P = stack(P1, P2, . . . , Pm) according to a profile α, by
choosing αi rows from each Pi. Notice that due to the property αi ≤ si−1, never the
whole rows of any Pi is chosen for building the submatrix.

The set of all r×r minors (determinant of r×r submatrices) of P =
stack(P1, P2, . . . , Pm) form the Grassmann coordinates of the column space of P. Here,
however, we are only interested in a subset of these coordinates, namely those cor-
responding to a valid profile. Consider m index sets I1, I2, . . . , Im, such that each Ii
contains the indices of αi rows of Pi. In other words, Ii is a subset of {1, 2, . . . , si}
with αi elements. Each way of choosing I1, I2, . . . , Im gives a square submatrix of
P = stack(P1, . . . , Pm) where the rows of each Pi are chosen in order according to Ii.
The determinant of this submatrix is multiplied by a corresponding sign3 to form

2Notice that, the definition of a valid profile here slightly differs from that of [Hartley and Schaffal-
itzky, 2004] which needs αi ≥ 1. We choose this new definition for convenience, as it does not impose
the restriction m ≤ r on the number of views.

3The sign is defined by ∏m
i=1 sign(Ii) where sign(Ii) is +1 or −1 depending on whether the sequence

(sort(Ii) sort(Īi)) is an even or odd permutation for Īi = {1, . . . , si} \ Ii (see [Hartley and Schaffalitzky,
2004]).

66 Arbitrary Dimensional Projections

an entry of the Grassmann coordinate of P = stack(P1, P2, . . . , Pm), shown here by
T I1,I2,...,Im

α . Such entries for different choices of the Ii-s can be arranged in a multidi-
mensional array Tα called the Grassmann tensor corresponding to α. The dimension
of Tα is equal to the number of nonzero entries of α = (α1, α2, . . . , αm), as Tα does
not depend on those matrices Pi with αi = 0. To show the dependence of the Grass-
mann tensor on projection matrices Pi, we sometimes use the mapping Gα which
takes a set of projection matrices to the corresponding Grassmann tensor, that is
Tα = Gα(P1, P2, . . . , Pm). Notice that Gα itself is not a tensor. Obviously, Gα(P1, . . . , Pm)
is nonzero if and only if P has a non-singular submatrix chosen according to α.

Hartley and Schaffalitzky [2004] show that the Grassmann tensor encodes a
relation between the corresponding image points in a subset of images. This is
a multilinear relation between the Grassmann coordinates of subspaces with cer-
tain dimensions passing from each image point. To see this, consider a profile
α = (α1, α2, . . . , αm) for a set of projection matrices P1, P2, . . . , Pm, with the extra con-
dition that αi ≥ 1 for all i. This can only be the case when the number of views is not
more than r, that is m ≤ r, as ∑m

i=1 αi = r (If m > r we consider a subset of views).
For each view i consider an si×(si−αi) matrix Ui with linearly independent columns.
Columns of Ui span a subspace of codimension αi. Now, assume that there exists
a nonzero point X ∈ Rr projected via each Pi into a point on each of the associated
subspaces Ui. In other words, for each Pi there exists a vector ai such that Uiai = PiX.
This can be written in the matrix form as


P1 U1

P2 U2
...

. . .
Pm Um




X
−a1

−a2
...
−am

 = 0 (4.6)

The matrix on the left is square (as its height is ∑m
i=1 si and its width is r + ∑m

i=1(si −
αi) = ∑m

i=1 si + r − ∑m
i=1 αi = ∑m

i=1 si) and has non-trivial null space (as X 6= 0) and
hence a zero determinant. Consider m index set I1, I2, . . . , Im, where each Ii is a set
with αi members chosen from {1, 2, . . . , si}. Also define Īi the complement of Ii with
respect to the set {1, . . . , si}, that is Īi = {1, . . . , si} \ Ii.

To compute the determinant of the matrix on the left hand side of (4.6), notice
that for an k×k square matrix in the form [A, B] with blocks A ∈ Rk×s and B ∈ Rk×k−s,
we have

det([A, B]) = ∑
|I|=s

sign(I)det(AI) det(B Ī), (4.7)

where I runs through all subsets of {1, . . . , r} of size s, Ī is {1, . . . , r} \ I, AI is the
matrix created by choosing rows of A in order according to I and B Ī is defined simi-
larly. The sign coefficient “sign(I)” is equal to +1 or −1 depending on whether the
sequence sort(I) sort(Ī) is an even or odd permutation.

§4.1 Background 67

The matrix on the left hand side of (4.6), that is
P1 U1

P2 U2
...

. . .
Pm Um

 (4.8)

can be written as [A, B] where A = P = stack(P1, P2, . . . , Pm) and B =
diag(U1, U2, . . . , Um), where diag(.) makes a block diagonal matrix. Using (4.7), and
the fact that (4.8) has a zero determinant, we obtain the following relation

∑
I1,...,Im

T I1,I2,...,Im
α det(U Ī1

1) det(U Ī2
2) · · · det(U Īm

m) = 0, (4.9)

where U
Īi
i is comprised of rows of Ui chosen according to Īi, and

T I1,I2,...,Im
α =

(
m

∏
i=1

sign(Ii)

)
det(PI1,I2,...,Im) (4.10)

where det(PI1,I2,...,Im) shows the minor of P made by choosing rows αi rows from each
Pi according to Ii. From 4.10, it is obvious that the coefficients T I1,I2,...,Im

α form the
elements of the Grassmann tensor Tα defined at the beginning of this subsection.

Notice that in (4.9), for each i, the quantities det(U Īi
i) for different choices of Īi form

the Grassmann coordinates of the subspace Ui = C(Ui), the column space of Ui. The
main theorem of [Hartley and Schaffalitzky, 2004] states that the projection matrices
Pi can be uniquely constructed from the Grassmann tensor, up to projectivity:

Theorem 4.1 ([Hartley and Schaffalitzky, 2004]). Consider a set of m generic projection
matrices P1, P2, . . . , Pm, with Pi ∈ Rsi×r, such that m ≤ r ≤ ∑i si − m, and an m-tuple
(α1, α2, . . . , αm) of integers αi such that 1 ≤ αi ≤ m− 1 for all i and ∑m

i=1 αi = r. Then if
at least for one i we have si ≥ 3, the matrices Pi are determined up to a projective ambiguity
from the set of minors of the matrix P = stack(P1, P2, . . . , Pm) chosen with αi rows from each
Pi (that is the elements of the Grassmann tensor). If si = 2 for all i, there are two equivalence
classes of solutions.

The constructive proof given by Hartley and Schaffalitzky [2004] provides a pro-
cedure to construct the projection matrices Pi from the Grassmann tensor. From
each set of image point correspondences x1j, x2j, . . . , xmj different sets of subspaces
U1, U2, . . . , Um can be passed such that xij ∈ Ui. Each choice of subspaces U1, . . . , Um

gives a linear equation (4.9) on the elements of the Grassmann tensor. The Grass-
mann tensor can be obtained as the null vector of the matrix of coefficients of the
resulting set of linear equations4.

4In Sect. 4.2.1 we prove that the Grassmann tensor is unique, meaning that the matrix of coefficients
of these linear equations has a 1D null space.

68 Arbitrary Dimensional Projections

The next lemma will be used in the proof of projective reconstruction for arbitrar-
ily large number of views. It implies that if a nonzero Grassmann tensor is found for
a subset of views, then we can find a nonzero Grassmann tensors for other subsets
of views, such that the whole set of views finally is spanned by these subsets.

Lemma 4.5. Consider a set of projection matrices P1, . . . , Pm with Pi ∈ Rsi×r and Pi 6= 0

for all i. Assume that there exists a valid profile α = (α1, α2, . . . , αm) with αk = 0 such
that Gα(P1, . . . , Pm) is nonzero. Then there exists a valid profile α′ = (α′1, α′2, . . . , α′m) with
α′k > 0 such that Gα′(P1, . . . , Pm) is nonzero.

We remind the reader that, for a set of projection matrices P1, . . . , Pm with Pi ∈
Rsi×r, a profile α = (α1, α2, . . . , αm) is valid if ∑m

i=1 αi = r, and further, for all i we
have αi ≤ si − 1.

Proof. Consider an invertible r×r submatrix Q of P = stack(P1, . . . , Pm) chosen ac-
cording to α, with αi rows chosen from each Pi. As αk = 0, no row of Q is chosen
among rows of Pk. Now, as Pk 6= 0 it has at least one nonzero row pT. Show by Qi the
matrix Q whose i-th row has been replaced by pT. Now, at least for one i the matrix
Qi must have full rank, because otherwise, according to Corollary 4.4, pT would be
zero. Assume that the i-th row of Q has been chosen from Pl . This implies αl > 0.
It is easy to check that Qi is an r×r submatrix of P chosen according to a profile
α′ = (α′1, α′2, . . . , α′m) for which α′k = 1, α′l = αl − 1 ≥ 0, and α′i = αi for all i other than
k and l. This shows that α′ is a valid profile. Moreover, the tensor Gα′(P1, . . . , Pm) is
nonzero as it has at least one nonzero element det(Qi).

4.2 Projective Reconstruction

Here, we state one version of the projective reconstruction theorem, proving the
projective equivalence of two configurations ({Pi}, {Xj}) and ({P̂i}, {X̂j}) projecting
into the same image points, given conditions on ({P̂i}, {X̂j}). In the next section,
based on this theorem, we present an alternative theorem with conditions on the
projective depths λ̂ij.

Theorem 4.2 (Projective Reconstruction). Consider a configuration of m projection matri-
ces and n points ({Pi}, {Xj}) where the matrices Pi ∈ Rsi×r are generic, ∑m

i=1(si − 1) ≥ r,
and si ≥ 3 for all views5, and the points Xj ∈ Rr are sufficiently many and in general
position. Given a second configuration ({P̂i}, {X̂j}) that satisfies

P̂iX̂j = λ̂ijPiXj (4.11)

for some scalars {λ̂ij}, if

(C1) X̂j 6= 0 for all j, and

5We could have assumed the milder condition of si≥3 for at least one i. Our assumption, however,
avoids unnecessary complications.

§4.2 Projective Reconstruction 69

(C2) P̂i 6= 0 for all i, and

(C3) there exists at least one non-singular r×r submatrix Q̂ of P̂ = stack(P̂1, P̂2, . . . , P̂m)
containing strictly fewer than si rows from each Pi. (equivalently Gα(P̂1, . . . , P̂m) 6= 0
for some valid profile α),

then the two configurations ({Pi}, {Xj}) and ({P̂i}, {X̂j}) are projectively equivalent.

It is important to observe the theorem does not assume a priori that the projective
depths λ̂ij are nonzero. At a first glance, this theorem might seem to be of no use,
especially because condition (C3) looks hard to verify for a given setup {P̂i}. But, this
theorem is important as it forms the basis of our theory, by giving the minimal re-
quired conditions on the setup ({P̂i}, {X̂j}), from which simpler necessary conditions
can be obtained.

Overview of the proof of Theorem 4.2 is as follows. Given the profile α =
(α1, . . . , αm) from condition (C3),

1. for the special case of αi ≥ 1 for all i, we prove that the Grassmann tensors
Gα(P1, . . . , Pm) and Gα(P̂1, . . . , P̂m) are equal up to a scaling factor, (Sect. 4.2.1).

2. Using the theory of Hartley and Schaffalitzky [2004], we show that ({Pi}, {Xj})
and ({P̂i}, {X̂j}) are projectively equivalent for the special case of αi ≥ 1 for all
i, (Sect. 4.2.2).

3. We prove the theorem for the general case where some of αi-s might be zero,
and hence the number of views can be arbitrarily large, (Sect. 4.2.3).

4.2.1 The uniqueness of the Grassmann tensor

The main purpose of this subsection is to show that if X̂j 6= 0 for all j, the re-
lations P̂iX̂j = λ̂ijPiXj imply that the Grassmann tensor Gα(P̂1, . . . , P̂m) is equal to
Gα(P1, . . . , Pm) up to a scaling factor. This implies that the Grassmann tensor is unique
up to scale given a set of image points xij obtained from xij = PiXj/λij with λij 6= 0.

Theorem 4.3. Consider a setup ({Pi}, {Xj}) of m generic projection matrices, and n points
in general position and sufficiently many, and a valid profile α = (α1, α2, . . . , αm), mean-
ing ∑m

i=1 αi = r and αi ≤ si − 1, such that αi ≥ 1 for all i. Now, for any other configuration
({P̂i}, {X̂j}) with X̂j 6= 0 for all j, the set of relations

P̂iX̂j = λ̂ijPiXj (4.12)

implies Gα(P̂1, . . . , P̂m) = β Gα(P1, . . . , Pm) for some scalar β.

Notice that it has not been assumed that the estimated depths λ̂ij are nonzero.
In this section we only give the idea of the proof. The formal proof is given in Sect.
4.5.2.

We consider two submatrices Q and Q′ of P = stack(P1, . . . , Pm) chosen according
to the valid profile α = (α1, . . . , αm), such that all rows of Q and Q′ are equal except

70 Arbitrary Dimensional Projections

for the l-th rows qT
l and q′Tl , which are chosen from different rows of Pk. We also

represent by Q̂ and Q̂′ the corresponding submatrices of P̂ = stack(P̂1, . . . , P̂m). Then
we show that if det(Q) 6= 0, the equations P̂iX̂j = λ̂ijPiXj imply

det(Q̂′) =
det(Q′)
det(Q)

det(Q̂). (4.13)

The rest of the proof is as follows: By starting with a submatrix Q of P according to
α, and iteratively updating Q by changing one row at a time in the way described
above, we can finally traverse all possible submatrices chosen according to α. Due
to genericity we assume that all submatrices of P chosen according to α are non-
singular6. Therefore, (4.89) implies that during the traversal procedure the ratio
β = det(Q̂)/ det(Q) stays the same. This means that each element of Gα(P̂1, . . . , P̂m)
is β times the corresponding element of Gα(P1, . . . , Pm), implying Gα(P̂1, . . . , P̂m) =
β Gα(P1, . . . , Pm).

The relation (4.13) is obtained in two steps. The first step is to write equations
(4.12), that is P̂iX̂j = λ̂ijPiXj, in matrix form as

M(Xj)

(
λ̂j
X̂j

)
= 0, j = 1, 2, . . . , n, (4.14)

where λ̂j = [λ̂1j, . . . , λ̂mj]
T, and

M(X) =


P1X P̂1

P2X P̂2
. . .

...
PmX P̂m

 . (4.15)

The matrix M(X) is (∑i si)×(m+r), and therefore a tall (or square) matrix. Due to
the assumption X̂j 6= 0 in Theorem 4.3, we conclude that M(Xj) is rank deficient
for all Xj. Then, considering the fact that M(X) is rank deficient for sufficiently
many points Xj in general position, we show that M(X) is rank deficient for all
X ∈ Rr. Therefore, for all (m + r)×(m + r) submatrices M′(X) of M(X) we have
det(M′(X)) = 0.

The second step is to choose a proper value for X and a proper submatrixM′(X)
of M(X), such that (4.13) follows from det(M′(X)) = 0. This proper value for X is
Q−1el , where el is the l-th standard basis and l is the row which is different in Q and
Q′, as defined above. The submatrixM′(X), is made by choosing the corresponding
rows of P = stack(P1, . . . , Pm) contributing to making Q, choosing the corresponding
row q′Tl of Pk contributing to making Q′, and choosing one extra row form each Pi for
i 6= k. See Sect. 4.5.2 for more details.

6Although the proof is possible under a slightly milder assumption.

§4.2 Projective Reconstruction 71

4.2.2 Proof of reconstruction for the special case of αi ≥ 1

Lemma 4.6. Theorem 4.2 is true for the special case of αi ≥ 1 for all i.

The steps of the proof are: Given the α introduced in condition (C3) of Theorem
4.2, Theorem 4.3 tells Gα(P̂1, . . . , P̂m) = β Gα(P1, . . . , Pm). From (C3) it follows that
β 6= 0. Thus, Theorem 4.1 (proved by Hartley and Schaffalitzky [2004]), suggests that
{Pi} and {P̂i} are projectively equivalent. Then, using the Triangulation Lemma 4.1,
we prove that ({Pi}, {Xj}) and ({P̂i}, {X̂j}) are projectively equivalent. Next comes
the formal proof.

Proof. From Theorem 4.3 we know that Gα(P̂1, . . . , P̂m) = β Gα(P1, . . . , Pm) for some
scalar β. From condition (C3) in Theorem 4.2 we conclude that β is nonzero. Thus,
using the main theorem of [Hartley and Schaffalitzky, 2004] (restated here as Theo-
rem 4.1 in Sect. 4.1.3), we can conclude that the two set of projection matrices {Pi}
and {P̂i} are projectively equivalent. Thus, there exists an invertible matrix H and
nonzero scalars τ1, τ2, . . . , τm such that

P̂i = τiPiH (4.16)

for i = 1, . . . , m. Now, from P̂iX̂j = λ̂ijPiXj and (4.16) for each j we have

Pi(HX̂j) =
λ̂ij

τi
PiXj (4.17)

As X̂j 6= 0, H is invertible, Pi-s are generic and Xj is in general position, using the
triangulation Lemma 4.1 we have (HX̂j) = νjXj for some nonzero scalar νj 6= 0, which
gives

X̂j = νjH
−1Xj. (4.18)

The above is true for j = 1, . . . , m. From (4.16) and (4.18) it follows that the two
configurations ({Pi}, {Xj}) and ({P̂i}, {X̂j}) are projectively equivalent.

4.2.3 Proof of reconstruction for general case

To prove Theorem 4.2 in the general case, where we might have αi = 0 for some
elements of the valid profile α = (α1, . . . , αm), given in condition (C3) of the theorem,
we proceed as follows: By (C3) we have Gα(P̂1, . . . , P̂m) 6= 0, by Lemma 4.5, for each
view k, there exists a valid profile α(k) for which α

(k)
k ≥ 1 and the Grassmann tensor

Gα(k)(P̂1, . . . , P̂m) is nonzero. Define Ik = {i | α(k)
i ≥ 1}. Lemma (4.6) proves for each

Ik that the configurations ({Pi}Ik , {Xj}) and ({P̂i}Ik , {X̂j}) are projectively equivalent.
As ∪k Ik = {1, . . . , m}, using Lemma 2.1 we show the projective equivalence holds for
the whole set of views, that is ({Pi}, {Xj}) and ({P̂i}, {X̂j}). The formal proof is as
follows.

72 Arbitrary Dimensional Projections

Proof. According to (C3), there exists a valid profile α = (α1, . . . , αm) such that
Gα(P̂1, . . . , P̂m) 6= 0. Hence, by Lemma 4.5 we can say that for each view k, there
exists a valid profile α(k) for which α

(k)
k ≥ 1 and the corresponding Grassmann tensor

Gα(k)(P̂1, . . . , P̂m) is nonzero. Define Ik = {i | α(k)
i ≥ 1}. Lemma 4.6 proves that for

each k the configurations ({Pi}Ik , {Xj}) and ({P̂i}Ik , {X̂j}) are projectively equivalent.
Therefore, for each k we have

P̂i = τk
i Pi H

−1
k , i ∈ Ik (4.19)

X̂j = νk
j Hk Xj, j = 1, . . . , n (4.20)

for nonzero scalars {τk
i }i∈Ik and {νk

j }, and the invertible matrix Hk. Now, from re-
lations (4.20) for different values of k, using Lemma 2.1 we can conclude that, by
possibly rescaling the matrix Hk and accordingly the scalars νk

j (and also τk
i) for each

k, we can have the matrix H and scalars ν1, ν2, . . . , νm, such that Hk = H and νk
j = νj for

all k. Therefore, (4.19) and (4.20) become

P̂i = τk
i Pi H

−1, i ∈ Ik (4.21)

X̂j = νj HXj, j = 1, . . . , n (4.22)

Now, as PiH
−1 6= 0 (since Pi 6= 0 and H−1 is invertible), (4.21) implies that for each i

all scalars τk
i have a common value τi. This gives

P̂i = τi Pi H
−1, i ∈ Ik, k = 1, . . . , m (4.23)

X̂j = νj HXj, j = 1, . . . , n (4.24)

As ∪k Ik = {1, 2, . . . , m}, the above suggests that ({Pi}, {Xj}) and ({P̂i}, {X̂j}) are
projectively equivalent.

4.3 Restricting projective depths

This section provides a second version of Theorem 4.2 in which it is assumed that
λ̂ij-s are all nonzero, instead of putting restrictions on ({P̂i}, {X̂j}).

Theorem 4.4 (Projective Reconstruction). Consider a configuration of m projection matri-
ces and n points ({Pi}, {Xj}) where the matrices Pi ∈ Rsi×r are generic and as many such
that ∑m

i=1(si − 1) ≥ r, and si ≥ 3 for all views, and the points Xj ∈ Rr are sufficiently
many and in general position. Now, for any second configuration ({P̂i}, {X̂j}) satisfying

P̂iX̂j = λ̂ijPiXj. (4.25)

for nonzero scalars λ̂ij 6= 0, the configuration ({P̂i}, {X̂j}) is projectively equivalent to
({Pi}, {Xj}).

The condition λ̂ij 6= 0 is not tight, and used here to avoid complexity. In Sect. 4.4
we will discuss that the theorem can be proved under milder restrictions. However,

§4.3 Restricting projective depths 73

by proving projective equivalence, it eventually follows that all λ̂ij-s are nonzero. We
prove the theorem after giving required lemmas.

Lemma 4.7. Consider m projection matrices P̂1, P̂2, . . . , P̂m with P̂i ∈ Rsi×r, such that
∑n

i=1(si−1) ≥ r, and P̂ = stack(P̂1, . . . , P̂m) has full column rank r. If P̂ has no full
rank r×r submatrix chosen by strictly fewer than si rows form each P̂i, then there ex-
ists a partition {I, J, K} of the set of views {1, 2, . . . , m}, with I 6= ∅ (nonempty) and
∑i∈I si + ∑i∈J(si−1) ≤ r, such that P̂K = stack({P̂i}i∈K) has rank r′ = r − ∑i∈I si −
∑i∈J(si−1). Further, the row space of P̂K is spanned by the rows of an r′×r submatrix
Q̂K = stack({Q̂i}i∈K) of P̂K, where each Q̂i is created by choosing strictly less than si rows
from P̂i.

The proof is based on taking a full-rank r×r submatrix Q̂ of P̂, and trying to
replace some of its rows with other rows of P̂, while keeping the resulting submatrix
full-rank, so as to reduce the number of matrices P̂i whose whole rows are included
in Q̂. By this process, we can never have a case where no P̂i contributes all of its
rows in the resulting full-rank submatrix, as otherwise, we would have a submatrix
chosen by less than si rows from each P̂i. Studying consequences of this fact leads to
the conclusion of the lemma. The proof is given in Sect. 4.5.3.

Lemma 4.8. Under the conditions of Theorem 4.4, if the matrix P̂ = stack(P̂1, P̂2, . . . , P̂m)
has full column rank, it has a non-singular r×r submatrix chosen with strictly fewer than si
rows from each P̂i ∈ Rsi×r.

Proof. To get a contradiction, assume that P̂ does not have any full-rank r×r sub-
matrix created with strictly fewer than si rows from each P̂i. Then by Lemma 4.7,
there exists a partition {I, J, K} of views {1, 2, . . . , m}, with I 6= ∅ and ∑i∈I si +

∑i∈J(si−1) ≤ r, such that P̂K = stack({P̂i}i∈K) has a row space of dimension

r′ = r−∑
i∈I

si −∑
i∈J

(si−1),

spanned by the rows of an r′×r matrix Q̂K = stack({Q̂i}i∈K), where each Q̂i consists
of strictly less than si rows from P̂i. By rearranging the rows of P̂i-s if necessary, we
can assume that

P̂i =

[
Q̂i
R̂i

]
(4.26)

for all i ∈ K, where R̂i consists of rows of P̂i not chosen for the creation of Q̂K. We
do not rule out the possibility that for some i ∈ K no row of P̂i is contained in Q̂K

(that is P̂i = R̂i). In this case one can think of Q̂i as a matrix with zero rows. Notice
that, as Q̂i consists of strictly fewer than si rows of P̂i, each R̂i must have at least one
row. By relabeling the views if necessary, we assume that K = {1, 2, . . . , l} (thus

74 Arbitrary Dimensional Projections

I ∪ J = {l+1, . . . , m}). Then, we have

P̂K = stack(P̂1, . . . , P̂l),

Q̂K = stack(Q̂1, . . . , Q̂l),

R̂K = stack(R̂1, . . . , R̂l).

As rows of Q̂K span the row space of P̂K, and thus, the row space of R̂K, we have
R̂K = A Q̂K for some matrix A with r′ columns. From (4.25), we have P̂iX̂j = λ̂ijPiXj
and, as a result

Q̂iX̂j = λ̂ij QiXj (4.27)

R̂iX̂j = λ̂ij RiXj (4.28)

where Qi (resp. Ri) is the submatrix of Pi corresponding to Q̂i (resp. R̂i), which means
stack(Qi, Ri) = Pi. This gives

Q̂K X̂j = diag(Q1Xj, Q2Xj, . . . , QlXj) λ̂
K
j (4.29)

R̂K X̂j = diag(R1Xj, R2Xj, . . . , RlXj) λ̂
K
j (4.30)

where diag(.) makes a block diagonal matrix out of its arguments, and λ̂
K
j =

[λ̂1j, . . . , λ̂l j]
T. From R̂K = AQ̂K, then we have

M(Xj) λ̂
K
j = 0, (4.31)

where

M(X) = diag(R1X, R2X, . . . , RlX)− Adiag(Q1X, Q2X, . . . , QlX). (4.32)

Clearly, M(X) has l columns, and since each Ri has at least one row, M(X) has at
least l rows. Hence, it is a tall (or square) matrix. As λ̂

K
j 6= 0 (since λ̂ij 6= 0 for all i, j),

M(Xj)λ̂
K
j = 0 implies thatM(Xj) is rank deficient. SinceM(X) is rank-deficient at

sufficiently many points Xj in general position, with the same argument as given in
the proof of Lemma 4.10, we conclude that for all X ∈ Rr the matrix M(X) is rank-
deficient7. As Q̂K is r′×r with r′ < r and the matrices Pi = stack(Qi, Ri) are generic,
we can take a nonzero vector Y in the null space of Q̂K = stack(Q̂1, . . . , Q̂l) such that
no matrix R̂i for i = 1, . . . , l has Y in its null space8. In this case, we have QiY = 0 for
all i, implying M(Y) = diag(R1Y, . . . , RlY). Now, from Y /∈ N (R̂i), we have RiY 6= 0
for i = 1, . . . , l. This implies that M(Y) = diag(R1Y, . . . , RlY) has full column rank,

7In short, the argument goes as follows: The determinant of every l×l submatrix of M(Xj) is zero
for all j. Since the determinant of each submatrix is a polynomial expression on Xj, each polynomial
being zero for sufficiently many Xj-s in general position imply that it is identically zero. This means
that for every X all submatrices ofM(X) have a zero determinant, and hence,M(X) is rank deficient.

8Y must be chosen from N (QK) \ ∪l
i=1N (RK) which is nonempty (in fact open and dense in N (QK))

for generic Pi-s.

§4.4 Wrong solutions to projective factorization 75

contradicting the fact thatM(X) is rank deficient for all X.

Proof of Theorem 4.4. Using Theorem 4.2 we just need to prove that the condition λ̂ij 6=
0 imply conditions (C1-C3) of Theorem 4.2. Assume that λ̂ij 6= 0 for some i and j,
then from the genericity of Pi and Xj we have PiXj 6= 0, and thus P̂iX̂j = λ̂ijPiXj 6= 0,
implying P̂i 6= 0 and X̂j 6= 0. This means that λ̂ij 6= 0 for all i and j imply (C1) and
(C2). Now, it is left to show that λ̂ij 6= 0 imply (C3), that is P̂ has a full-rank r×r
submatrix chosen with strictly fewer than si rows from each P̂i. This is proved in
Lemma 4.8 for when P̂ = stack(P̂1, P̂2, . . . , P̂m) has full column rank r. We complete
the proof by showing that P̂ always has full column rank.

Assume, P̂ is rank deficient. Consider the matrix X̂ = [X̂1, , . . . , X̂m]. The matrix
P̂X̂ can always be re-factorized as P̂X̂ = P̂′X̂′, with P̂′ and X̂′ respectively of the same
dimensions as P̂ and X̂, such that P̂′ has full column rank. By defining the same block
structure as P̂ and X̂ for P̂′ and X̂′, that is P̂ = stack(P̂′1, . . . , P̂′m) and X̂′ = [X̂′1, . . . , X̂′m],
we observe that P̂′iX̂

′
j = P̂iX̂j = λ̂ijPiXj. As P̂′ has full column rank, from the discussion

of the first half of the proof, we can say that ({P̂′i}, {X̂′j}) is projectively equivalent to
({Pi}, {Xj}). This implies that X̂′ = [X̂′1, . . . , X̂′m] has full row rank. As P̂′ and X̂′ both
have maximum rank r, their product P̂′X̂′ = P̂X̂ has rank r, requiring P̂ to have full
column rank, a contradiction.

4.4 Wrong solutions to projective factorization

Let us write equations λ̂ijxij = P̂iX̂j in matrix form

Λ̂� [xij] = P̂ X̂, (4.33)

where Λ̂ � [xij] = [λ̂ijxij], P̂ = stack(P̂1, . . . , P̂m) and X̂ = [X̂1, . . . , X̂n]. The
factorization-based algorithms seek to find Λ̂ such that Λ̂ � [xij] can be factorized
as the product of a (∑i si)×r matrix P̂ by an r×n matrix X̂. If xij-s are obtained from
a set of projection matrices Pi and points Xj, according to xij = PiXj/λij, our theory
says that any solution (Λ̂, P̂, X̂) to (4.33), is equivalent to the true solution (Λ, P, X), if
(Λ̂, P̂, X̂) satisfies some special restrictions, such as conditions (C1-C3) on P̂ and X̂ in
Theorem 4.2, or Λ̂ having no zero element in Theorem 4.4. It is worth to see what
degenerate (projectively nonequivalent) forms a solution (Λ̂, P̂, X̂) to (4.33) can take
when such restrictions are not completely imposed.

In Chapter 3 we observed that for the special case of 3D to 2D projections, in
any wrong solution to (4.33), the depth matrix Λ̂ has some (entirely) zero rows, some
zero columns, or it has a cross-like shape where the matrix is zero everywhere except
at a certain row and a certain column. It is nice to see how the form of these zero
patterns generalizes for arbitrary dimensional projections. This is important in the
factorization-based methods, in which sometimes such restrictions as all nonzero
depths cannot be efficiently implemented. Knowing the form of the wrong solutions,
any reconstruction algorithm needs only to prevent certain zero patterns in the depth
matrix, rather than constraining all elements of a depth matrix away from zero.

76 Arbitrary Dimensional Projections

The reader can check that Theorem 4.4 can be proved under weaker assumptions
than λ̂ij 6= 0 for all i and j, as follows

(D1) The matrix Λ̂ = [λ̂ij] has no zero rows,

(D2) The matrix Λ̂ = [λ̂ij] has no zero columns,

(D3) For every partition {I, J, K} of views {1, 2, . . . , m} with I 6= ∅ and ∑i∈I si +

∑j∈J(sj−1) < r, the matrix Λ̂K has sufficiently many nonzero columns, where Λ̂K

is the submatrix of Λ̂ created by selecting rows according to K.

Notice that (D1) and (D2), respectively guarantee (C1) and (C2) in Theorem 4.2. This
is due to the relation P̂iX̂j = λ̂ijPiXj 6= 0 for a nonzero λ̂ij and by assuming PiXj 6= 0

due to genericity. Condition (D3) implies (C3) in Theorem 4.2, as we will shortly
discuss.

By looking at the partition {I, J, K} in Lemmas 4.7 and 4.8, we can say that the
condition (D3) guarantees that the vector λ̂

K
j used in (4.31) in the proof of Lemma

4.8 is nonzero for sufficiently many j-s. This is sufficient for the proof of Lemma 4.8
(compared to requiring Λ̂ to have all-nonzero elements). Observing that λ̂

K
j is the

same thing as the j-th column of Λ̂K defined in (D3), it is clear that (D3) is used to
guarantee (C3) in Theorem 4.2, that is P̂ has a nonzero minor chosen according to
some valid profile9. We suggest reading the proof of Lemma 4.8 for further under-
standing the discussion.

It is trivial to see how violating (D1) and (D2) can lead to a false solution to
(4.33). For example set X̂ = X, P̂k and the k-th row of Λ̂ equal to zero, and the
rest of P̂ and Λ̂ equal to P and Λ. In what comes next, we assume that (D1) and
(D2) hold, that is Λ̂ has no zero rows or zero columns, and look for less trivial false
solutions to (4.33). According to our discussion above, for this class of wrong solu-
tions conditions (C3) about P̂ and (D3) about Λ̂ must be violated. This means that
the set of views {1, 2, . . . , m} can be partitioned into I, J, K with I nonempty and
∑i∈I si + ∑i∈J(si−1) < r, such that the submatrix Λ̂K of Λ̂ has few10 nonzero columns.
Moreover, by Lemma 4.7, the submatrix P̂K of P̂ has rank r′ = r−∑i∈I si−∑i∈J(si−1).
Here, we show how this can happen by first providing a simple example in which
J = ∅ in Sect. 4.4.1. Next, in Sect. 4.4.2, we will demonstrate the wrong solutions
in their general form, and show that degenerate solutions exist for every possible
partition {I, J, K}.

9The reader might have noticed by comparing (D3) to Lemma 4.7 that here we have not considered
the case of ∑i∈I si + ∑j∈J(sj−1) = r. If this case happens, we have r′ = r − ∑i∈I si + ∑j∈J(sj−1) = 0.
Therefore, P̂K has rank r′ = 0, meaning that the rest of the projection matrices (whose indices are
contained in K) have to be zero. However, as we discussed, zero projection matrices are precluded
by (D1). Notice that, in this case, K cannot be empty. This is because we assumed ∑n

i=1(si − 1) ≥ r
about the size and the number of the projection matrices. But, if K is empty we have ∑n

i=1(si − 1) =
∑i∈I(si − 1) + ∑j∈J(sj−1) < ∑i∈I si + ∑j∈J(sj−1) = r, where the inequality is due to the fact that I is
nonempty.

10We will shortly discuss about the formal meaning of the term few here, and the term sufficiently
many in (D3).

§4.4 Wrong solutions to projective factorization 77

4.4.1 A simple example of wrong solutions

For a setup ({Pi}, {Xj}), partition the views into two subsets I and K, such that
∑i∈I si < r. Split P into two submatrices PI = stack({Pi}i∈I) and PK = stack({Pi}i∈K),
and by possibly relabeling the views, assume that

P = stack(PI , PK).

Notice that PI has ∑i∈I si rows and r columns, and therefore, at least an r′ = r−∑i∈I si
dimensional null space. Consider an r×r′ matrix N with orthonormal columns all in
the null space of PI . Also, let R be the orthogonal projection matrix into the row
space of PI . Divide the matrix X = [X1, . . . , Xm] into two parts as X = [X1, X2] where
X1 = [X1, . . . , Xr′] and X2 = [Xr′+1, . . . , Xm]. Notice that X1 has r′ columns. Define the
corresponding submatrices P̂I and P̂K of P̂, and also, the corresponding submatrices
X̂1 and X̂2 of X̂ as

P̂I = PI , P̂K = PK X1 N
T, (4.34)

X̂1 = R X1 + N, X̂2 = R X2. (4.35)

One can easily check that

P̂X̂=

[
P̂I

P̂K

]
[X̂1, X̂2] =

[
PIX1 PIX2

PKX1 0

]
= Λ̂� (PX), (4.36)

where Λ̂ has a block structure of the form

Λ̂ =

[
Λ̂I

Λ̂K

]
=

[
1 1

1 0

]
. (4.37)

As P̂I ∈ R(r−r′)×r has at most rank r−r′ and P̂K = PKX1 N
T (with N ∈ Rr×r′) has at

most rank r′, if P̂ = stack(P̂I , P̂K) has maximal rank r then P̂K has to have rank r′, as
also confirmed by Lemma 4.7. Since P̂K has at most rank r′ and P̂I has r − r′ rows,
any non-singular r×r submatrix of P̂ = stack(P̂I , P̂K) must contain all rows of P̂I .
Therefore, P̂ = stack(P̂I , P̂K) has no full rank r×r submatrix chosen by less than si
rows from each P̂i. Thus, (C3) is violated and the Grassmann tensor of {P̂i} with
any valid profile is zero. Also, observe that in (4.37) the submatrix Λ̂K of Λ̂ ∈ Rm×n

has only r′ nonzero columns, no matter how large n is. This is how (D3) is violated.
Notice that Λ̂ need not have the exact block structure as above. By permuting the
views and HD points, a wrong solution can be obtained in which rows and columns
of Λ̂ in (4.37) are permuted.

Using the above style for finding wrong solutions the matrix Λ̂K can have at most
r′ nonzero columns. This happens to cover all sorts of wrong solutions in some
special cases including the common case of projections P3 → P2. But, unfortunately,
this is not always the case. In other words, sufficiently many in the condition (D3) to
rule out false solutions does not always mean more than r′ = r−∑i∈I si + ∑i∈J(si −
1). In some cases, there might exist more general types of degenerate solutions with

78 Arbitrary Dimensional Projections

more than r′ nonzero columns in Λ̂K, even when J is empty. We consider this issue in
more detail in the next subsection, where the wrong solutions are demonstrated in
their general form.

4.4.2 Wrong solutions: The general case

In this subsection, we show that a degenerate solution can be constructed for every
valid partition {I, J, K}. Consider any partition {I, J, K} of views {1, 2, . . . , m} with
I 6= ∅ and ∑i∈I si + ∑j∈J(sj−1) < r. Define

P̂I J = P̂I∪J = stack({P̂i}i∈I∪J), (4.38)

and as before, let P̂K = stack({P̂i}i∈K). With possibly rearranging the views, we can
assume that

P̂ =

[
P̂I J

P̂K

]
. (4.39)

Similarly, for the true projections P = stack(P1, . . . , Pm) we can define PI J and PK in
the same way, and assume that P = stack(PI J , PK). We construct an example in which
P̂K has at most rank r′ = r−∑i∈I si −∑j∈J(sj−1), and P̂I J has at most rank

r′′ = r− r′ = ∑
i∈I

si + ∑
j∈J

(sj−1).

Notice that r′ + r′′ = r.

4.4.2.1 Dealing with the views in I and J

Now, one challenge is how to construct P̂I J with rank r′′ or less, such that P̂I J X̂ projects
into the same image points as PI J X, that is P̂I J X̂ = Λ̂I J � (PI J X) = [λ̂ij Pi Xj]i∈I∪J for
some depth matrix Λ̂I J = [λ̂ij]i∈I∪J . When J was empty, this was easy as then P̂I J

would have exactly r′′ rows, and could not have a rank of more than r′′. But, in
general P̂I J has

∑
i∈I∪J

si = ∑
i∈I

si −∑
j∈J

(sj−1) + |J| = r′′ + |J|

rows, which is more than r′′ when J is nonempty. But if we consider the matrix

Q̂I J = stack({Q̂i}i∈I∪J), (4.40)

§4.4 Wrong solutions to projective factorization 79

where Q̂i = P̂i for all i ∈ I and Q̂i consists of the first si−1 rows11 of P̂i for all i ∈ J,
then Q̂I J has r′′ rows. Note that we have

P̂i =

{
Q̂i i ∈ I
stack(Q̂i, r̂T

i) i ∈ J
(4.41)

where for every i ∈ J the row vector r̂T
i is the final row of P̂i. As Q̂I J has r′′ rows, it

has rank r′′ or less. To get a clue on how to construct P̂I J , first observe that for P̂I J to
have rank r′′ or less, it is sufficient that for all i ∈ J the rows r̂T

i are in the row space
of Q̂I J . In other words,

r̂T
i = bT

i Q̂
I J (4.42)

for some bi ∈ Rr′′ . Now, with a possible permutation of the views, we can assume
that

J = 1, 2, . . . , p,

I = p + 1, p + 2, . . . , q,

where |J| = p < q = |I|+ |J|. Now, we can write (4.42) for all i-s as r̂T
1
...

r̂T
p

 = B Q̂I J = B

 Q̂T
1
...
Q̂T

q

 ,

where B = [b1, . . . , bp]T ∈ Rp×r′′ . Multiplying both sides by X̂j we get r̂T
1 X̂j
...

r̂T
p X̂j

 = B

 Q̂T
1 X̂j
...

Q̂T
q X̂j

 . (4.43)

Using the projection equations P̂iX̂j = λ̂ijPiXj, the above gives λ̂1j rT
1 Xj

...
λ̂pj rT

p Xj

 = B

 λ̂1j Q
T
1 Xj

...
λ̂1j Q

T
q Xj

 . (4.44)

11Actually, Q̂i here can consist of any si−1 rows of P̂i. The first si−1 rows are considered for simplicity.

80 Arbitrary Dimensional Projections

where rT
i is the last row of Pi and Qi is the submatrix of Pi corresponding to Q̂i. The

above can be reformulated as rT
1 Xj

. . .
rT

p Xj


λ̂1j

...
λ̂pj

 = B

 QT
1 Xj

. . .
QT

q Xj


λ̂1j

...
λ̂qj

 . (4.45)

In other words,([
diag(rT

1 Xj, . . . , rT
p Xj) 0p×(q−p)

]
− Bdiag(QT

1 Xj, . . . , QT
q Xj)

)
λ̂

I J
j = 0. (4.46)

where diag(·) makes block-diagonal matrices, and

λ̂
I J
j =

λ̂1j
...

λ̂qj

 (4.47)

Notice that the matrix on the left hand side of (4.46) has p rows and q columns. As p
is strictly larger than q (since I is nonempty), the equation (4.46) is satisfied by setting
λ̂

I J
j to a nonzero vector in the null space of this p×q matrix. Therefore, we have now

found a λ̂
I J
j such that[

diag(rT
1 Xj, . . . , rT

p Xj) 0p×(q−p)

]
λ̂

I J
j = B diag(QT

1 Xj, . . . , QT
q Xj) λ̂

I J
j , (4.48)

or

stack(λ̂1j rT
1 Xj, . . . , λ̂pj rT

p Xj) = B stack(λ̂1j Q
T
1 Xj, . . . , λ̂qj Q

T
q Xj). (4.49)

It follows that[
stack(λ̂1j Q

T
1 Xj, . . . , λ̂qj Q

T
q Xj)

stack(λ̂1j rT
1 Xj, . . . , λ̂pj rT

p Xj)

]
=

[
I

B

]
stack(λ̂1j Q

T
1 Xj, . . . , λ̂1j Q

T
q Xj). (4.50)

Notice that the matrix on the left hand side is equal to stack(λ̂1jP
T
1 Xj, . . . , λ̂qjP

T
q Xj) up

to permutation of rows. Thus, we have λ̂1j P
T
1 Xj

...
λ̂qj P

T
q Xj

 = S

 λ̂1j Q
T
1 Xj

...
λ̂qj Q

T
q Xj

 = S tj. (4.51)

§4.4 Wrong solutions to projective factorization 81

where S is obtained by properly permuting the rows of stack(I, B), and tj =

stack(λ̂1j Q
T
1 Xj, . . . , λ̂qj Q

T
q Xj) ∈ Rr′′ . Thus, we have

Λ̂I J � (PI JX) =

 λ̂11 PT
1 X1 · · · λ̂1n PT

1 Xn
...

. . .
...

λ̂qj P
T
q Xj · · · λ̂qj P

T
q Xj

 = S
[

t1, t2, . . . , tn
]

. (4.52)

This means that we have found Λ̂I J = [λ̂
I J
1 , λ̂

I J
2 , . . . , λ̂

I J
n] such that Λ̂I J � (PI JX) has rank

r′′ or less, and can be factorized as

Λ̂I J � (PI JX) = S TT, (4.53)

where S and T = [t1, . . . , tn]T both have r′′ columns12. We leave the above here and
turn our attention to the subset of views K.

4.4.2.2 Dealing with the views in K

In the previous subsection we presented a simple example of a degenerate solution
in which Λ̂K had r′ nonzero columns. Here, we show that the limit on the number of
nonzero columns of Λ̂K for having a degenerate solution can be generally more than
r′. Recall from Lemma 4.7 that for every degenerate solution13, if P̂ is chosen to have
full column rank14, there exists a corresponding partition {I, J, K} for which P̂K has
rank r′ = r−∑i∈I si −∑i∈J(si−1), and further, its row space is spanned by the rows
of an r′×r submatrix Q̂K = stack({Q̂i}i∈K) of P̂K, where each Q̂i consists of strictly less
than si rows from P̂i. In Lemma 4.8 we used this to show that if Λ̂K has sufficiently
many nonzero columns λ̂

K
j then a wrong solution according to {I, J, K} cannot occur.

In other words, for having a wrong solution according to a certain partition {I, J, K},
there is a limit on the number of nonzero columns of Λ̂K. If this limit is violated,
either P̂K has to have rank more than r′, or it has no full-row-rank r′×r submatrix
chosen by strictly fewer than si rows from each P̂i with i ∈ K. In such cases, either the
current solution is not degenerate, or it is degenerate, but associated with a partition
different from {I, J, K}. But what is the limit on the number of nonzero columns of
Λ̂K allowing for a wrong solution? To answer this, we need to look back at the proof
of Lemma 4.8.

In the proof of Lemma 4.8 for each i ∈ K the matrix P̂i was divided, row-wise,

12We do not elaborate on such technicalities as how to make sure that Λ̂I J do not have an entirely

zero row. Just notice that in the above approach, in (4.46), some control over each column λ̂
I J
j of Λ̂I J can

be obtained by playing with the matrix B.
13As mentioned at the beginning of this section, we only deal with nontrivial degenerate solutions in

which Λ̂ has no zero rows and no zero columns. In other words, we are talking about the degenerate
solutions arising from the violation of (D3), or equivalently (C3), while assuming that (D1) and (D2)
are satisfied.

14Notice that by possibly re-factorizing P̂X̂ we can always choose P̂ to have full column rank. More
precisely, if Λ̂� (PX) has rank r or less, then there exist matrices P̂ ∈ R(∑i si)×r and X̂ ∈ Rr×n such that
P̂X̂ = Λ̂� (PX) and P̂ has maximal rank r (see also the proof of Theorem 4.4).

82 Arbitrary Dimensional Projections

into two submatrices Q̂i and R̂i. Then, it was required that the row space of R̂K =
stack({R̂i}i∈K) is spanned by the rows of the r′×r matrix Q̂K = stack({Q̂i}i∈K), that is
R̂K = A Q̂K. From there, we obtained

M(Xj) λ̂
K
j = 0, (4.54)

where λ̂
K
j is the j-th column of Λ̂K and

M(X) = diag({RiX}i∈K)− Adiag({QiX}i∈K) (4.55)

is a tall or square matrix. If λ̂
K
j is nonzero, from (4.54) it follows thatM(Xj) is rank

deficient, and thus, all its |K|×|K| submatrices have a zero determinant. Let Mk(X)
be the k-th |K|×|K| submatrix of M(X). Notice that det(Mk(X)) is a polynomial in
X. Define the polynomial surface Sk as the kernel of det(Mk(X)), that is

Sk = {X |Mk(X) = 0}. (4.56)

For every nonzero λ̂
K
j equation (4.54) implies that det(Mk(Xj)) = 0 for all k, or

equivalently

Xj ∈ S = ∪k Sk. (4.57)

Notice that, for generic projection matrices Pi, no matter how the submatrices Qi and
the matrix A are chosen, at least for some choices of k, the polynomial det(Mk(·)) is
not identically zero. Therefore, S is a non-generic (nowhere dense) set. To see this,
assume that the l-th submatrix det(Ml(Xj)) is created by choosing one row rT

i from
each Ri, that is

Ml(X) = diag({rT
i X}i∈K)− Al diag({QiX}i∈K), (4.58)

where rT
i is an arbitrary row of Ri and Al is the corresponding |K|×r′ submatrix of A.

Notice that this can be done since each Ri have at least one row. Now, because Pi-s
are generic, we can assume that a nonzero Y in the null space of Q̂K = stack({Q̂i}i∈K)
can be chosen such that rT

i Y 6= 0 for all i ∈ K (see also the proof of Lemma 4.8). In
this case we have det(Ml(Y)) 6= 0, and thus det(Ml(·)) cannot be identically zero.
Therefore, S is a non-generic (nowhere dense) set as the intersection of polynomial
surfaces Sk. As a result, we cannot have arbitrarily many points Xj in general position

all lying on S. This restricts the number of nonzero λ̂
K
j -s allowed in a degenerate

solution.

Notice that for a given configuration {Pi}, the set S is fully determined by the
choice of the submatrices Qi and the matrix A. Therefore, the term sufficiently many
in condition (D3) can be translated as strictly more than the maximum number of
points in general position which can lie on S for any choice of Qi-s and A (this means
that the maximum is also taken over all possible choices of Qi-s and A).

§4.4 Wrong solutions to projective factorization 83

Now, lets see what happens if this new interpretation of (D3) is violated. In this
case the number of nonzero λ̂

K
j -s is sufficiently small such that for at least one choice

of Qi-s and A all the points Xj with a nonzero corresponding λ̂
K
j lie on S. In this case,

for every j with nonzero λ̂
K
j , det(Mk(Xj)) is zero for all k, and thus all submatrices

ofM(Xj) are singular. Hence,M(Xj) is rank-deficient and we can choose a nonzero

λ̂
K
j such thatM(Xj)λ̂

K
j = 0. This gives

diag({RiXj}i∈K)λ̂
K
j = Adiag({QiXj}i∈K)λ̂

K
j (4.59)

or

stack({λ̂ijRiXj}i∈K) = A stack({λ̂ijQiXj}i∈K), (4.60)

which gives [
stack({λ̂ijQiXj}i∈K)
stack({λ̂ijRiXj}i∈K)

]
=

[
I

A

]
stack({λ̂ijQiXj}i∈K). (4.61)

By permuting the rows in the above we get

stack({λ̂ijPiXj}i∈K) = U stack({λ̂ijQiXj}i∈K) = U vj, (4.62)

where U is obtained by an appropriate permutation of the rows of stack(I, A), and
vj = stack({λ̂ijQiXj}i∈K). Notice that U has r′ columns.

By rearranging the columns of Λ̂K (and accordingly Xj-s) if necessary, we assume
that the nonzero columns of Λ̂K are the leftmost columns, that is Λ̂K =

[
Λ̂K

1 0
]

where
Λ̂K

1 contains the nonzero columns. Accordingly, we divide X = [X1, . . . , Xn] into two
parts as X = [X1, X2] such that X1 has the same number of columns as Λ̂K

1 . Therefore,
by horizontally concatenating both sides of (4.62) for all j we get

Λ̂K
1 � (PKX1) = U VT (4.63)

where V = [v1, v2, . . . , vn′]
T with n′ being the number of columns of Λ̂K

1 . We shall
shortly show that a degenerate solution can be constructed using (4.63) and (4.53).
But before that, lets discuss a few points.

Another indication of a wrong solution is obtained by looking at the rank of
Λ̂K � (PKX). Notice that (4.63) implies that for having a degenerate solution the rank
of Λ̂K

1 � (PKX1) can be at most r′. Since Λ̂K =
[
Λ̂K

1 0
]
, it means that also the rank

of Λ̂K � (PKX) can be at most r′. This is confirmed by the relation P̂KX̂ = Λ̂K � (PKX)
and the fact that for a degenerate solution P̂K has rank r′ (if P̂ is chosen to have full
column rank) according to Lemma 4.7. Therefore, Λ̂K � (PKX) having a rank of at
most r′ is necessary for having a degenerate solution corresponding to {I, J, K}. One
can show that, under generic conditions, this is also sufficient for having a wrong
solution. Notice that given a generic configuration (P, X) of projection matrices and

84 Arbitrary Dimensional Projections

HD points, for any projectively equivalent solution (P̂, X̂) the matrix Λ̂K� (PKX) = P̂KX̂

has rank ∑i∈K si which is strictly bigger than r′ = r−∑i∈I si −∑i∈J(si−1) due to the
condition ∑m

i=1(si−1) ≥ r. Therefore, if Λ̂K � (PKX) has rank r′ or less, one can make
sure that a degenerate solution has occurred. However, one should bear in mind
that Λ̂K � (PKX) having rank r′ or less for a partition {I, J, K} is only sufficient for
the existence a wrong solution. The wrong solution, however, may correspond to a
partition different from {I, J, K}.

A relevant question is whether Λ̂K� (PKX) having rank r′ or less for some partition
{I, J, K} always puts an upper bound on the number of nonzero columns of Λ̂K. The
answer is it does put an upper bound if {I, J, K} is the true partition corresponding
to the wrong solution. In other words, in addition to P̂K having rank r′, there should
be a full-row-rank r′×r submatrix Q̂K = stack({Q̂i}i∈K) of P̂K, where each Q̂i is created
by choosing strictly less than si rows from P̂i (and thus, the rows of Q̂K naturally span
the row space of P̂K). If this does not happen, Λ̂K can have sufficiently many nonzero
columns without the rank of Λ̂K � (PKX) exceeding r′. In this case, Λ̂ can still be a
degenerate solution corresponding to a partition different than {I, J, K}.

The maximum number of nonzero λ̂
K
j -s allowed for a degenerate solution cannot

be smaller than r′ = r − ∑i∈I si − ∑i∈J(si−1). If Λ̂K has r′ nonzero columns, then
Λ̂K

1 � (PKX1) has r′ columns (Λ̂K
1 and X1 were defined above). Thus, it can naturally

be factorized as U VT as required by (4.62) using which a degenerate solution is con-
structed in the next subsection. With a little effort one can show for any r′ points Xj
in general position, one could choose Qi-s and A such that all Xj lie on the correspond-
ing set S. While in some special cases, including the case of 3D to 2D projections,
the maximum number of nonzero columns in Λ̂K for a degenerate solution is exactly
equal to r′, this number can be bigger than r′ in the general case.

4.4.2.3 Constructing the degenerate solution

Now, all the required means are available to construct a degenerate solution. Looking
at (4.53) and (4.63) it is clear that we have found a Λ̂ with the block structure

Λ̂ =

[
Λ̂I J

Λ̂K

]
=

[
Λ̂

I J
1 Λ̂

I J
2

Λ̂K
1 0,

]
(4.64)

for which Λ̂� (PX) has the following form

Λ̂� (PX) =

[
Λ̂I J � (PI JX)
Λ̂K � (PKX)

]
=

[
S TT

U VT 0

]
=

[
STT

1 STT
2

UVT 0

]
, (4.65)

where S and T both have r′′ columns, U and V both have r′ columns, and T1 and T2

are submatrices of T such that stack(T1, T2) = T and T1 has the same number of rows

§4.4 Wrong solutions to projective factorization 85

as V. Now, it remains to find P̂ ∈ R(∑i si)×r and X̂ ∈ Rr×n such that P̂X̂ = Λ̂� (PX). Let

P̂ =

[
P̂I J

P̂K

]
, X̂ =

[
X̂1 X̂2

]
(4.66)

where

P̂I J =
[
S 0(·)×r′

]
, X̂1 =

[
TT

1
VT

]
, (4.67)

P̂K =
[
0(·)×r′′ U

]
X̂2 =

[
TT

2
0r′×(·)

]
. (4.68)

Here, (·) means “of compatible size”. Notice that P̂I J and P̂K both have r columns, and
X̂1 and X̂2 both have r rows, as r′ + r′′ = r. One can easily check that

P̂X̂=

[
P̂I J

P̂K

] [
X̂1 X̂2

]
=

[
STT

1 STT
2

UVT 0

]
= Λ̂� (PX), (4.69)

which is clearly a degenerate solution.

4.4.3 The special case of P3 → P2

For the classic case of P3 → P2 projections, the only possible partition {I, J, K} is
when I is a singleton and J is empty. This is due to the condition

r′ = 3 |I|+ 2 |J| = ∑
i∈I

si + ∑
j∈J

(sj−1) < r = 4 (4.70)

and the restriction that I is nonempty. In this case Λ̂I J = Λ̂I consists of only one row.
Further, we have

r′ = r−∑
i∈I

si −∑
j∈J

(sj−1) = 4− 3− 0 = 1. (4.71)

The reader can check that the condition Rank(Λ̂K � (PKX)) ≤ r′ = 1 requires that, for
generic projection matrices and HD points, only one column of Λ̂K can be nonzero15,
causing Λ̂ to have a cross-shaped structure. Therefore, the theory given in Chapter 3
follows as a special case.

15To obtain this result, one should notice that Λ̂K cannot have any zero rows, as we have restricted Λ̂

to have no zero rows and no zero columns.

86 Arbitrary Dimensional Projections

4.5 Proofs

4.5.1 Proof of Proposition 4.2

Proposition 4.2 (restatement). Consider a set of projection matrices P1, P2, . . . , Pm with
Pi ∈ Rsi×r such that ∑m

i=1(si − 1) ≥ r, and a nonzero point X 6= 0 in Rr. Now, if
the null spaces N (P1),N (P2), . . . ,N (Pm) as well as span(X) are in general position (with
dim(N (Pi)) = r− si), then there is no linear subspace of dimension bigger than or equal to
2 passing through X and nontrivially intersecting N (P1),N (P2), . . . ,N (Pm).

Proof. For brevity of notation let Ni = N (Pi). Define the linear subspaces
T1, T2, . . . , Tm as follows

T1 = N1, (4.72)

Ti = (span(X) + Ti−1) ∩ Ni, (4.73)

where the summation of two linear subspaces U and V is defined as U + V = {u +
v | u ∈ U, v ∈ V}. As (span(X) + Ti−1) does not depend on Ni, and Ni is in general
position, we can assume

dim(Ti) = dim((span(X) + Ti−1) ∩ Ni) = max(dim(span(X) + Ti−1) + dim(Ni)− r, 0)
(4.74)

Since dim(span(X) + Ti−1) ≤ dim(Ti−1) + 1, the above gives

dim(Ti) ≤ max(dim(Ti−1) + dim(Ni) + 1− r, 0) (4.75)

Now, to get a contradiction we assume that there exist a subspace S, with
dim(S) ≤ 2 and X ∈ S, which nontrivially intersects Ni for all i. For each i, let
Yi 6= 0 be a nonzero point in S ∩ Ni. As span(X) and Ni are in general location and
dim(Ni) = r− si < r we have

span(X) ∩ Ni = {0}. (4.76)

As Yi ∈ Ni, the above gives dim(span(X, Yi)) = 2. This, plus the facts X, Yi ∈ S and
dim(S) ≤ 2 gives

S = span(X, Yi) (4.77)

We show that

Yi ∈ Ti, (4.78)

This is done by induction. For i = 1 this is trivial as Y1 ∈ N1 = T1. Now, suppose that
Yi−1 ∈ Ti−1. Thus, from S = span(X, Yi−1) we can conclude that S ⊆ span(X) + Ti−1.

§4.5 Proofs 87

Now, by definition of Yi we have Yi ∈ Ni and Yi ∈ S ⊆ span(X) + Ti−1. Thus

Yi ∈ Ni ∩ (span(X) + Ti−1) = Ti.

As Yi is nonzero, (4.78) implies that dim(Ti) ≥ 1. Therefore, (4.75) gives

dim(Ti) ≤ dim(Ti−1) + dim(Ni) + 1− r. (4.79)

By induction, the above gives

dim(Tm) ≤
m

∑
i=1

dim(Ni)− (m− 1)(r− 1). (4.80)

By replacing dim(Ni) = r− si, we get

dim(Tm) ≤ m + r− 1−
m

∑
i=1

si. (4.81)

Due to our assumption ∑m
i=1(si − 1) ≥ r, we have ∑n

i=1 si ≥ r + m. This together with
(4.81) gives dim(Ti) ≤ −1, a contradiction.

4.5.2 Proof of Theorem 4.3 (Uniqueness of the Grassmann Tensor)

Theorem 4.3 (restatement). Consider a setup ({Pi}, {Xj}) of m generic projection ma-
trices, and n points in general position and sufficiently many, and a valid profile
α = (α1, α2, . . . , αm), meaning ∑m

i=1 αi = r and αi ≤ si − 1, such that αi ≥ 1 for all i.
Now, for any other configuration ({P̂i}, {X̂j}) with X̂j 6= 0 for all j, the set of relations

P̂iX̂j = λ̂ijPiXj (4.82)

implies Gα(P̂1, . . . , P̂m) = β Gα(P1, . . . , Pm) for some scalar β.

In Sect. 4.2.1 we described the idea of the proof. Here, we state each of the
building blocks of the proof as a lemma, and finally prove the theorem.

Lemma 4.9. Consider an r×r matrix Q = [q1 q2 · · · qr]T, with qT
i denoting its i-th row.

For a vector p ∈ Rr define the matrix Qi,p = [q1, . . . , qi−1, p, qi+1, . . . , qr]T, that is the
matrix Q whose i-th row is replaced by pT. Then

det(Qi,p) = (pTQ−1ei) det(Q) (4.83)

where ei is the i-th standard basis vector.

88 Arbitrary Dimensional Projections

Proof.

det(Qi,p) = det([q1, . . . , qi−1, p, qi+1, . . . , qr]
T)

= det([e1, . . . , ei−1, Q−Tp, ei+1, . . . , er]
T Q)

= det([e1, . . . , ei−1, Q−Tp, ei+1, . . . , er]) det(Q)

= (eT
i Q
−Tp) det(Q) = (pTQ−1ei) det(Q).

Lemma 4.10. Given the assumptions of Theorem 4.3, the matrix

M(X) =


P1X P̂1

P2X P̂2
. . .

...
PmX P̂m

 (4.84)

is rank deficient for all X ∈ Rr.

Notice that the blank sites of the matrix (4.84) represent zero elements.

Proof. By combining the relations (4.82), that is P̂iX̂j = λ̂ijPiXj, for all i we get


P1Xj P̂1

P2Xj P̂2
. . .

...
PmXj P̂m




λ̂1j
λ̂2j

...
λ̂mj
X̂j

 = 0, j = 1, 2, . . . , n, (4.85)

that is

M(Xj)

(
λ̂j
X̂j

)
= 0, j = 1, 2, . . . , n, (4.86)

where the mapping M was defined in (4.84) and λ̂j = [λ̂1j, . . . , λ̂mj]
T. The matrix

M(Xj) is (∑m
i=1 si)×(m + r), it is a tall matrix16 from ∑m

i=1 si ≥ ∑m
i=1(αi + 1) = r + m.

Since X̂j 6= 0, (4.86) implies thatM(Xj) is rank-deficient for j = 1, . . . , n. LetM′(X)
be an arbitrary (m+r)×(m+r) submatrix of M(X), made by selecting certain rows
ofM(X) (for all X the same rows are chosen). As,M(Xj) is rank deficient, we have
det(M′(Xj)) = 0. Notice that det(M′(X)) is a projective polynomial expression in
X (of degree m and with r variables). If the polynomial defined by X 7→ det(M′(X))
is not identically zero, the relation det(M′(X)) = 0 defines a polynomial surface,
on which all the points Xj lie. However, since there are sufficiently many points
Xj in general position, they cannot all lie on a polynomial surface. Therefore, the

16Here, a matrix M ∈ Rm×n is called tall if m ≥ n. Thus, square matrices are also tall.

§4.5 Proofs 89

polynomial X 7→ det(M′(X)) is identically zero, that is

det(M′(X)) = 0 (4.87)

for all X ∈ Rr. This is true for any (m+r)×(m+r) submatrixM′(X) ofM(X). Thus,
for any X, all (m+r)×(m+r) submatrices ofM(X) are singular. Therefore,M(X) is
rank-deficient for all X.

In the proof of the next Lemma we calculate the determinant of M(X) for a
special choice of X. It has been discussed in [Hartley and Schaffalitzky, 2004] that for
a square matrix of the form [A, B], the determinant is given by

det([A, B]) = ∑
I

sign(I)det(AI) det(B Ī), (4.88)

where the summation is over all index sets I of size equal to the number of columns
of A, the set Ī is the complement of I, AI is the submatrix of A created by choosing
rows in order according to I and similarly is defined B Ī . Depending on whether the
sequence (sort(I), sort(Ī)) represents an even or odd permutation, sign(I) is equal
to +1 or −1.

Lemma 4.11. Assume the assumptions of Theorem 4.3, and consider two submatrices Q and
Q′ of P = stack(P1, . . . , Pm) chosen according to α = (α1, . . . , αm), such that all rows of Q
and Q′ are equal except for the l-th rows ql and q′l , which are chosen from different rows of Pk
for some k. Similarly, consider submatrices Q̂ and Q̂′ of P̂ made by choosing the corresponding
rows from P̂ = stack(P̂1, . . . , P̂m). If det(Q) 6= 0 we have

det(Q̂′) =
det(Q′)
det(Q)

det(Q̂) (4.89)

Proof. For convenience, we assume that Q (similarly Q̂) is made by choosing first αi
rows from each Pi (P̂i), and Q′ (similarly Q̂′) are made by choosing the same rows as
for Q (Q̂), except instead of choosing the α1-th row of P1 (P̂1) we choose the (α1+1)-th
row. The proof for other cases are similar. Therefore, if we denote the i-th row of Q
by qT

i and the (α1+1)-th row of P1 by pT
1 , then we have

Q′ = [q1, . . . , qαi−1, p1, qαi+1, . . . , qr]
T (4.90)

For ease of notation, let βi = αi + 1, and let P
1..βi
i represent the matrix made by

choosing first βi rows from Pi. Consider the matrix M(X) defined in (4.84) and
define the (m + r)×(m + r) submatrixM′(X) ofM(X) as

M′(X) =


P

1..β1
1 X P̂

1..β1
1

P
1..β2
2 X P̂

1..β2
2

. . .
...

P
1..βm
m X P̂

1..βm
m

 (4.91)

90 Arbitrary Dimensional Projections

From Lemma 4.10, we have det(M′(X)) = 0 for all X. Set X = Q−1eαi , where eαi ∈
Rr is the αi-th standard basis vector. Remember that Q is the submatrix of P =
stack(P1, . . . , Pn) created by choosing first αi rows from each Pi. Choosing the same
rows (as the ones created Q) from the vector PQ−1eαi results in the vector QQ−1eαi = eαi .
Thus, for X = Q−1eαi we have17

P
1..β1
1 X =

0α1−1

1
γ1

 = eα1 + γieβ1 (4.92)

P
1..βi
i X =

(
0αi

γi

)
= γieβi i = 2, . . . , m (4.93)

where the scalars γi are defined as

γi = pT
i Q
−1eαi (4.94)

with pT
i representing the βi-th (that is (αi+1)-th) row of Pi. Note that

1. By genericity of Pi-s we can assume that γi-s are all nonzero (as pi-s and Q come
from rows of Pi-s.).

2. From (4.90), Lemma 4.9 gives

det(Q′) = (pT
1 Q
−1eαi) det(Q) = γ1 det(Q) (4.95)

By replacing P
1..βi
i X given by (4.92) and (4.93) in (4.91) we have

M′(X) =



 0
1

γ1

 P̂
1..β1
1(

0
γ2

)
P̂

1..β2
2

. . .
...(

0
γm

)
P̂

1..βm
m


(4.96)

By using the formula (4.88), one can obtain that for X = Q−1eαi we have

det(M′(X)) = ±(
m

∏
i=2

γi)(γ1 · det(Q̂)− 1 · det(Q̂′)). (4.97)

Where Q̂ and Q̂′ were defined in the lemma. From Lemma 4.10, we have
det(M′(X)) = 0. As, we assumed γi 6= 0 for all i, setting (4.97) equal to zero

17Notice that the standard basis vector ei in each equation is of compatible size. For example, eα1 is
of size β1 in (4.92), while it is of size r in the expression Q−1eαi or in (4.94).

§4.5 Proofs 91

gives

det(Q̂′) = γ1 det(Q̂) (4.98)

Since we have assumed that det(Q) 6= 0, (4.95) and (4.98) together give det(Q̂′) =
det(Q′)
det(Q) det(Q̂).

Proof of Theorem 4.3. As Pi-s are generic we assume that all minors of P =
stack(P1, . . . , Pm), chosen according to the profile α are nonzero18. By starting with a
submatrix Q of P according to α, and updating Q by changing one of its rows at a time
in the way described in Lemma 4.11, we can finally traverse all possible submatrices
chosen according to α. As we assume that det(Q) 6= 0 for all those submatrices, ac-
cording to Lemma 4.11 during this procedure the ratio β = det(Q̂)/ det(Q) stays the
same. This means that each element of Gα(P̂1, . . . , P̂m) is β times the corresponding
element of Gα(P1, . . . , Pm), implying Gα(P̂1, . . . , P̂m) = β Gα(P1, . . . , Pm).

4.5.3 Proof of Lemma 4.7

Lemma 4.7 (restatement). Consider m projection matrices P1, P2, . . . , Pm with Pi ∈ Rsi×r,
such that ∑n

i=1(si−1) ≥ r, and P = stack(P1, . . . , Pm) has full column rank r. If P has
no full rank r×r submatrix chosen by strictly fewer than si rows form each Pi, then there
exists a partition {I, J, K} of the set of views {1, 2, . . . , m}, with I 6= ∅ (nonempty) and
∑i∈I si + ∑i∈J(si−1) ≤ r, such that PK = stack({Pi}i∈K) has rank r′ = r − ∑i∈I si −
∑i∈J(si−1). Further, the row space of PK is spanned by the rows of an r′×r submatrix
QK = stack({Qi}i∈K) of PK, where each Qi is created by choosing strictly less than si rows
from Pi.

The above is a restatement of Lemma 4.7. However, for simplicity, instead of the
hatted quantities like P̂i we have used the unhatted ones like Pi.

The proof of this lemma can be somehow confusing. Thus, before giving the
full proof, we give the reader some ideas about our approach. Notice that, as P =
stack(P1, . . . , Pm) has full column rank, it has an r×r non-singular submatrix Q. This
submatrix has chosen according to a (not necessarily valid) profile α = (α1, . . . , αm)
by choosing αi rows from each Pi. In fact, α cannot be valid due to the assumption
of the lemma that P has no full-rank r×r submatrix chosen by strictly fewer than si
rows form each Pi. Therefore, every non-singular submatrix Q has si rows from Pi for
at least one view i. In other words αi = si for one or more indices i. Partition the set
of views {1, 2, . . . , m} into three subsets I, J and L such that

I = {i | αi = si} (4.99)

J = {i | αi = si − 1} (4.100)

L = {i | αi ≤ si − 2}. (4.101)

In other words, I contains the indices of the projection matrices Pi whose all rows

18Though the proof is possible under a milder assumption.

92 Arbitrary Dimensional Projections

contribute into making Q, J contains the indices those Pi-s whose all but one rows
contribute into making Q, and L contains the rest of views. The matrix P might have
more than one non-singular submatrix. From all those possible cases, we choose a
submatrix with the least number of indices i for which αi = si. In this case, cor-
responding subset I has minimal size among the possible choices of non-singular
submatrices of P. We say that Q is a submatrix with minimal I. Notice that I cannot
be empty, otherwise α would be a valid profile, that is P = stack(P1, . . . , Pm) has a
non-singular r×r submatrix, namely Q, chosen by strictly fewer than si rows form
each Pi.

For any index set K ⊆ {1, 2, . . . , m} we denote by PK the stack of projection ma-
trices whose indices are contained in K, that is

PK = stack({Pi}i∈K).

This way we can divide the matrix P into PI , PJ and PL. We split each projection
matrix Pi into two submatrices Qi and Ri, correspondingly consisting of rows of Pi
which are or are not included in the submatrix Q. Therefore, Qi and Ri respectively
have αi and si − αi rows, where α = (α1, . . . , αm) is the (invalid) profile according to
which Q is chosen. Notice that

Q = stack(Q1, Q2, . . . , Qm). (4.102)

Notice that for i ∈ I we have Pi = Qi. Therefore, Ri cannot be defined for i ∈ I as it
would have zero rows. Any Rj with j ∈ J has exactly one row. If for some view i no
row of Pi is chosen to form Q, that is αi = 0, then we have Pi = Ri. In this case Qi does
not exist, however, one could think of Qi as a matrix with zero rows so that (4.102) can
be used consistently. Similarly to PK, we for any subset K of views we define

QK = stack({Qi}i∈K),

RK = stack({Ri}i∈K).

Notice that RI does not exist. The general strategy of the proof is to take a row rT

from some Ri and make it replace a row in Q to have a new r×r submatrix Q′, such that
Q′ is also non-singular. This action can be done repeatedly. For each new submatrix
Q′ we can define a corresponding partition {I′, J′, L′} in the same way {I, J, L} was
defined for Q. The key fact used in the proof is that we can never have a situation
in which size of I′ is smaller than the size of I. This is because I is assumed to be
minimal.

To be succinct, given a row vector rT and the r×r submatrix Q =
stack(Q1, Q2, . . . , Qm), we use the term

“rT can replace a row of Q” or “rT can replace a row of Qi in Q”,

and by that we mean that the replacement can be done such that the resulting sub-
matrix Q′ is still non-singular.

To better understand the idea behind the proof, we first consider a special case

§4.5 Proofs 93

in which the subset J is empty (for a submatrix Q with minimal I). In this case the
proof of Lemma 4.7 is simple. By possibly relabeling the views, we can assume that
P = stack(PI , PL), Q = stack(QI , QL) and R = stack(RI , RL). Consider an arbitrary row
rT of Rl for some l ∈ L. Assume rT can replace19 a matrix Qi in Q for some i ∈ I,
resulting in a new submatrix Q′. This submatrix is chosen according to a profile
α′ = (α′1, . . . , α′m) defined by

α′i = αi − 1, (4.103)

α′l = αl + 1, (4.104)

α′t = αt for all l /∈ {i, l} (4.105)

The above is due to the fact that one row of Rl has replaced a row of Qi in Q. As i ∈ I
and l ∈ L, we have αi = si and αl ≤ sl−2, and thus, α′i = si−1 and α′l ≤ sl−1. Now,
if we define the partition {I′, J′, L′} for the new submatrix Q′ (in the same way I, J, L
was defined for Q) we know that the index i ∈ I is no longer in I′ (as α′i = si−1). The
index l ∈ L either remains in L′ or moves to J′ depending on whether α′i < si−1 or
α′l = sl−1. It can never move to I′ as α′l < sl . Therefore, we have I′ = I \ {i}, which
gives

|I′| = |I| − 1, (4.106)

where | · | denotes the size of a set. This, however, is a contradiction since we have
assumed that I has minimal size. Therefore, now row of Qi in Q can be replaced by
rT. As i was chosen arbitrarily from I, we conclude that rT cannot replace any row of
QI . Therefore, as Q = stack(QI , QL), according to Corollary 4.4, rT must belong to the
row space of QL. Since rT can be chosen to be any arbitrary row of Rl for any l ∈ L, it
means that all rows of RL = stack({Rl}l∈L) are in the row space of QL. Notice that PL

is equal to stack(QL, RL) up to permutation of rows. Therefore, all rows of PL are in
the row space of QL. Since Q = stack(QI , QL) is non-singular, the row space of QL has
dimension r′ = r−∑i∈I si. Further, QL is equal to stack({Ql}l∈L), and for all l ∈ L the
matrix Ql is made by choosing strictly less than si rows (in fact less than si−1 rows)
from each Pl . This completes the proof of Lemma 4.7 for the special case of J = ∅.

The proof, however, is more difficult when J is nonempty. In this case, by choos-
ing rT from the rows of RL and using the same argument as above, we can prove
that all rows of PL is in the row space of stack(QJ , QL), rather than the row space of
stack(QL). If we choose rT from the rows of RJ , the above argument does not apply,
because if a row rT of RJ replaces a row of QI in Q, for the corresponding partition
{I′, J′, L′} of the new submatrix Q′ we have |I′| = |I|. The reason is as follows: Con-
sider two indices j ∈ J and i ∈ I and assume that a row rT of Rj has replaced a row
of Qi in Q resulting in a new non-singular r×r submatrix Q′. Notice that in this case
Rj has only one row as j ∈ J. Let α′ = (α′1, . . . , α′m) be the profile according to which

19Remember that by replacing we mean replacing such that the resulting r×r submatrix remains
non-singular.

94 Arbitrary Dimensional Projections

Q′ is chosen. Then, as a row of Rj has replaced a row of Qi in Q, we have

α′i = αi − 1, (4.107)

α′j = αj + 1, (4.108)

α′t = αt for all l /∈ {i, j} (4.109)

Notice that αi = si and αj = sj − 1 (as i ∈ I, j ∈ J). Thus, α′i = si − 1 and α′j = sj.
Therefore, the number of indices l for which we have α′t = st remains the same as the
number of cases for which αt = st. In other words, by defining I′, J′, L′ for Q′ as I, J, L
where defined for Q, we have I′ = (I \ {i})∪ {j}, and hence, |I′| = |I|. Therefore, the
same argument as in the case of J = ∅ cannot be applied.

To prove Lemma 4.7 for the general case, we will show that there exists an index
set K with L ⊆ K ⊆ (L ∪ J) such that the rows of PK are all in the row space of QK.
The rest of the proof is straightforward. The views can be partitions into subsets I,
J \ K and K. We argued before that I cannot be empty. Since Q ∈ Rr×r has full rank,
the rank of QK is equal to its number of rows, that is r′ = r−∑i∈I si −∑i∈J\K(si−1),
which is also equal to the rank of QK. Therefore, PK has also rank r′ since its row
space is spanned by the rows of QK. Further, QK is in the form of stack({Qk}k∈K), and
since K ⊆ L∪ J, for every k ∈ K the matrix Qk is created by choosing strictly less than
sk rows from Pk.

Now, it is left to prove the following:

Lemma 4.12. There exists a subset K, with L ⊆ K ⊆ (L ∪ J), such that the row space of PK

is spanned by the rows of QK.

Before starting the proof, we introduce the following notation. For two matrices
A and B of the same size the relation

A ≡ B (4.110)

means that A equals B up to permutation of rows. For example, we can say Q ≡
stack(QI , QJ , QL) and QL∪J ≡ stack(QJ , QL).

Proof. For an index set Γ ⊆ {1, 2, . . . , m} define

S(Γ) = {l | some row rT of RΓ can replace a row of Ql in Q}. (4.111)

We remind the reader that PΓ = stack({Pi}i∈Γ), and by a row rT being able to replace
some Ql in Q we mean replacing such that the resulting r×r submatrix Q′ is non-
singular. Notice that S(Γ) ⊆ {1, 2, . . . , m}. Now, define the sequence of sets Lt as
follows

L0 = L (4.112)

Lt = Lt−1 ∪ S(Lt−1) (4.113)

§4.5 Proofs 95

Let L̄t = {1, 2, . . . , m} \ Lt be the complement of Lt. From (4.113) it follows that
S(Lt−1) ∩ L̄t = ∅. Therefore, given any row rT of RLt−1

, using the definition of
S(Lt−1), we can say that rT cannot replace any row of QL̄t

in Q. As Q ≡ stack(QL̄t
, QLt

)
(that is Q is equal to stack(QL̄t

, QLt
) up to permutation of rows), by Corollary 4.4 we

conclude that rT is in the row space of QLt
. Since this is true for any row rT of RLt−1

,
it follows that

R(RLt−1
) ⊆ R(QLt

), (4.114)

where R gives the row space of a matrix. From (4.113) we have Lt−1 ⊆ Lt, and thus

R(QLt−1
) ⊆ R(QLt

). (4.115)

As PLt−1 ≡ stack(QLt−1
, RLt−1

), the relations (4.114) and (4.115) imply that

R(PLt−1
) ⊆ R(QLt

) (4.116)

From (4.113) it follows that L0 ⊆ L1 ⊆ L2 ⊆ · · · , and also that Lt is always a
subset of the finite set of views {1, 2, . . . , m}. Therefore, we must have Lt∗ = Lt∗+1

for some t∗. Since (4.113) is in the form of Lt = F (Lt−1) for some mapping F , the
equality Lt∗ = Lt∗+1 implies

Lt = Lt∗ for all t ≥ t∗. (4.117)

We choose the set K as

K = Lt∗ (4.118)

and will show that K has the properties mentioned in the lemma. First, notice that,
by induction, from Lt−1 ⊆ Lt, we get L = L0 ⊆ Lt∗, therefore

L ⊆ K. (4.119)

Also, from Lt∗−1 = Lt∗ , the relation (4.116) gives R(PLt∗
) ⊆ R(QLt∗

), that is

R(PK) ⊆ R(QK). (4.120)

As QK is a submatrix of PK, it follows that

R(PK) = R(QK). (4.121)

This means that rows of QK span the row space of PK.

Now, it is only left to prove that K ⊆ (L∪ J). This is indeed the hardest part of the
proof. Notice that as {I, J, K} is a partition of views {1, 2, . . . , m}, this is equivalent
to proving K ∩ I = ∅.

96 Arbitrary Dimensional Projections

Define the sequence Ct as

C0 = L0 = L, (4.122)

Ct = Lt \ Lt−1. (4.123)

Notice that the sets C0, C1, . . . , Ct∗ partition Lt∗ = K. Obviously, Ct = ∅ for t > t∗.
Therefore, every pair of sets Ct and Ct′ with t 6= t′ are non-intersecting.

To get a contradiction, assume that K ∩ I 6= ∅. Then there is an index k ∈ K ∩ I.
As I ∩ L = ∅, we have k ∈ K \ L. We will show in Lemma 4.13 that in this case there
exists a chain of distinct indices

j0, j1, . . . , jp

with jt ∈ Ct and jp = k, such that for every t < p, there exists a row of Rjt which can
replace some row of Qjt+1 in Q (giving a non-singular matrix). For each t we represent
such a row of Rjt by rT

jt and such row of Qjt+1 by qT
jt+1

:

rT
jt and qT

jt+1
are respectively rows of Rjt and Qjt+1 , chosen such that by

removing qT
jt+1

from Q and putting rT
jt in its place, the resulting submatrix

is non-singular.

Remember that, as jt ∈ Ct ⊆ Lt, from (4.114) we have

rT
jt ∈ R(Q

Lt+1
), (4.124)

where R(·) represents the row space of a matrix.
Now, we define the sequence

Q(0), Q(1), . . . , Q(p) (4.125)

of r×r submatrices of P as follows20. Let Q(0) = Q. Now, according to our discussion
above, we know that there exists a row of Rj0 , namely rT

j0 , which can replace a row
of Qj0 in Q ∈ Rr×r such that the resuting matrix Q′ ∈ Rr×r is non-singular. We define
Q(1) = Q′. Similarly, we can define R(1) as the submatrix of P created by the rows of
P which are not chosen for Q(1). Now we can observe that the rows of the matrix
Rj1 in R = R(0) are still contained in R(1), and also the rows of Qj2 in Q = Q(0) are
still contained in Q(1). We make the row rT

j1 of Rj1 replace the row qT
j2 of Qj2 in Q(1) to

get a new r×r matrix Q(2). Notice that we have not yet made any claim about the
non-singularity of Q(2). In general, starting by Q(0) = Q and R(0) = R, the sequences
Q(t) and R(t) are defined recursively as follows:

The matrices Q(t+1) ∈ Rr×r and R(t+1) are created by picking rT
jt from R(t)

and qT
jt+1

from Q(t) and swapping their places. In other words, rT
jt replaces

qT
jt+1

in Q(t) to create Q(t+1), and qT
jt+1

replaces rT
jt in R(t) to create R(t+1).

Clearly, we first need to show that the above definition is well-defined by showing
that rT

jt and qT
jt+1

are respectively among the rows of R(t) and Q(t). In Lemma 4.14 we

20One should distinguish between Q(t) ∈ Rr×r and Qi ∈ Rαi×r.

§4.5 Proofs 97

will prove this by showing that Rjt and Qjt+1 are respectively contained in R(t) and Q(t).
Notice that we have not yet stated any claim as to whether or not Q(t) is non-singular.

For each submatrix Q(t) ∈ Rr×r of P one can associate a corresponding profile

α(t) = (α
(t)
1 , . . . , α

(t)
m). This means that Q(t) is created by choosing α

(t)
i rows from each

Pi. Using the recursive definition of Q(t) we have

α
(t+1)
jt = α

(t)
jt + 1 (4.126)

α
(t+1)
jt+1

= α
(t)
jt+1
− 1 (4.127)

α
(t+1)
l = α

(t)
l l /∈ {jt, jt+1} (4.128)

for t = 0, 1, . . . , p−1. Using the above, for each i, we can start from α
(0)
i = αi and

calculate α
(1)
i , α

(2)
i , . . . , α

(p)
i . As the indices j0, j1, . . . , jp are distinct, the above gives

α
(p)
i = αi i /∈ {j0, j1, . . . , jp} (4.129)

α
(p)
j0

= αj0 + 1 (4.130)

α
(p)
jl

= αjl l = 1, 2, . . . , p−1 (4.131)

α
(p)
p = αp − 1 (4.132)

Thus, the only cases where α
(p)
i is different from αi are i = j0 and i = jp. As j0 ∈ L

and jp = k ∈ I, we have αj0 ≤ si − 2 and αjp = sjp , and therefore, α
(p)
j0
≤ si − 1 and

α
(p)
jp

= si − 1. This means that the number of indices i for which α
(p)
i = si is one less

than the number of indices i for which αi = si. Notice that α(p) = (α
(p)
1 , . . . , α

(p)
m) is

the profile according to which Q(p) is chosen. As we assumed that I has minimal size,
that is among all the profiles whose corresponding submatrix of P is non-singular,
α = (α1, . . . , αm) is the one with minimum number of indices i for which αi = si, the
matrix Q(p) must be singular. We demonstrate a contradiction by proving in Lemma
4.15 that all matrices Q(0), Q(1), . . . , Q(p) are non-singular.

Lemma 4.13. For every k ∈ K \ L, there exists a sequence of distinct indices

j0, j1, . . . , jp

with jp = k, such that jt ∈ Ct, and for every t < p, there exists a row rT of Rjt which
can replace a row of Qjt+1 in Q ∈ Rr×r, such that the resulting submatrix Q′ ∈ Rr×r is
non-singular.

Proof. As k ∈ K = Lt∗ and k /∈ L = L0, there must exist a p ≥ 1 such that k ∈ Lp and
k /∈ Lp−1. Therefore,

k ∈ Lp \ Lp−1 = Cp. (4.133)

98 Arbitrary Dimensional Projections

From (4.113) we have Lp = Lp−1 ∪ S(Lp−1), and as k /∈ Lp−1, we conclude that
k ∈ S(Lp−1). Considering the definition of S(Lp−1), it follows that there exists an
index k′ ∈ Lp−1 such that a row rT of Rk′ can replace some row of Qk in Q ∈ Rr×r (such
that the resulting submatrix Q′ ∈ Rr×r is non-singular).

Now, two situations might happen. The first case is when we have k′ ∈ L = L0.
In this case, from k′ ∈ L0 and the fact that some row of Rk′ can replace some row of
Qk in Q (resulting in a non-singular matrix) we get k ∈ S(L0) ⊆ L1. Thus, k ∈ L1.
Adding the fact that, by the Lemma’s assumption, we have k /∈ L = L0, it follows
that p = 1. The required sequence would be j0, j1 = k′, k. This sequence has all the
properties required in the lemma. Notice that j0 = k′ ∈ L0 = C0.

If k′ /∈ L, then notice that k′ ∈ Lp−1 ⊆ K, and therefore, k′ ∈ K \ L. Thus, the same
argument as for k can be applied to k′. By recursively applying this argument (by
induction) we can prove the existence of the sequence j0, j1, . . . , jp with jp = k and
jp−1 = k′, which possesses the properties required in the lemma. Notice that jt-s are
distinct as jt ∈ Ct.

Lemma 4.14. The matrices R(t) and Q(t) are well-defined, and Rjt and Qjt+1 are respectively
contained in R(t) and Q(t) for t = 0, 1, . . . , p−1.

By Qjt+1 being contained in Q(t) we mean that all rows of Qjt+1 are among the rows
of Q(t).

Proof. We prove a more general statement from which the claim of the lemma follows
as a consequence:

(S1) The two matrices R(t) and Q(t) are well-defined, and further, Rjt , Rjt+1 , . . . , Rjp−1

are all contained in R(t) and Qjt+1 , Qjt+2 , . . . , Qjp are all contained in Q(t).

The proof is done by induction. For t = 0 we know that Rj0 , Rj1 , . . . , Rjp−1 are all
contained in R(0) = R, and Qj1 , Qj2 , . . . , Qjp are all contained in Q(0) = Q. This is due to
the fact that for all i the matrices Ri and Qi are respectively contained in R and Q.

Now, assume that (S1) is true for t < p−1. We show that it is true for t + 1.
Remember that R(t+1) and Q(t+1) were made by taking the row rT

jt from Rjt in R(t) and
the row qT

jt+1
from Qjt+1 in Q(t), and swapping their places. According to (S1), Rjt is

contained in R(t) and Qjt+1 is contained in Q(t), and therefore, this swapping is possible.
Hence, R(t+1) and Q(t+1) are both well-defined.

As, by (S1), the matrices Rjt , Rjt+1 , . . . , Rjp−1 are all contained in R(t), and the only
change in the transition between R(t) and R(t+1) is that a row of Rjt in R(t) has been
replaced, all the matrices Rjt+1 , . . . , Rjp−1 are still contained in R(t+1). Similarly, as
Qjt+1 , Qjt+2 , . . . , Qjp are contained in Q(t) and the matrix Q(t+1) is obtained by only re-
placing a certain row of Qjt+1 in Q(t), the matrices Qjt+2 , . . . , Qjp are still contained in
Q(t+1).

Lemma 4.15. Q(t) is non-singular for all t = 0, 1, . . . , p.

§4.5 Proofs 99

Proof. First we prove the following

R(QLt

(t)) = R(Q
Lt
). (4.134)

where R gives the row space of a matrix, and for any subset Γ of views we have
QΓ
(t) = stack({Q(t),i}i∈Γ) with Q(t),i is the submatrix of Pi created by the rows of Pi

chosen for making Q(t). We prove the above by induction.

First notice that as Q(0) = Q, we have R(QL0

(0)) = R(Q
L0
). Now, assume that (4.134)

holds for some t, we will show that it is true for t+1. We prove this by looking at
the intermediate matrix QLt+1

(t) , first showing R(QLt+1

(t)) = R(QLt+1
), and then showing

R(QLt+1

(t+1)) = R(QLt+1

(t)). Observe that, as {Lt, Ct+1} is a partition of Lt+1, we have

QLt+1

(t) ≡ stack(QLt

(t), Q
Ct+1

(t)). Therefore,

R(QLt+1

(t)) = R(QLt

(t)) +R(Q
Ct+1

(t)). (4.135)

As we have assumed (4.134) is true for t, we get

R(QLt+1

(t)) = R(QLt
) +R(QCt+1

(t)). (4.136)

Now, from Lemma 4.16 we have QCt+1

(t) = QCt+1

R(QLt+1

(t)) = R(QLt
) +R(QCt+1

)

= R(stack(QLt
, QCt+1

))

= R(QLt+1
). (4.137)

Now, we are done if prove R(QLt+1

(t+1)) = R(Q
Lt+1

(t)). First, notice that Q(t+1) is made
by taking Q(t) and replacing the row qT

jt+1
of Qjt+1 in Q(t) with rT

jt . From (4.124) we have

rT
jt ∈ R(Q

Lt+1
), which using (4.137) gives

rT
jt ∈ R(Q

Lt+1

(t)). (4.138)

Notice that, as jt+1 ∈ Ct+1 ⊆ Lt+1, the matrix Qjt+1 in contained in QLt+1

(t) . Therefore,

QLt+1

(t+1) is made by replacing some row of QLt+1

(t) with rT
jt . This together with (4.138) gives

R(QLt+1

(t+1)) ⊆ R(Q
Lt+1

(t)). (4.139)

Now, observe that, as jt+1 ∈ Ct+1, the matrix Qjt+1 (and therefore its row qT
jt+1

) in

contained is QCt+1

(t) . From Lemma 4.16 we have QCt+1

(t) = QCt+1
. Therefore, QLt+1

(t+1) is

made by taking QLt+1

(t) ≡ stack(QLt

(t), Q
Ct+1

(t)) = stack(QLt

(t), Q
Ct+1

) and replacing the row

qT
jt+1

in QCt+1
with rT

jt . Let M be the matrix obtained by replacing rT
jt with qT

jt+1
in QCt+1

.

100 Arbitrary Dimensional Projections

Therefore, we have

QLt+1

(t) ≡ stack(QLt

(t), Q
Ct+1

) (4.140)

QLt+1

(t+1) ≡ stack(QLt

(t), M) (4.141)

Thus, we can say

R(QLt+1

(t+1)) = R(Q
Lt

(t)) +R(M) (4.142)

Using the induction hypothesis (4.134), the above gives

R(QLt+1

(t+1)) = R(Q
Lt
) +R(M)

= R(stack(QLt
, M)) (4.143)

The matrix stack(QLt
, M) is created by taking stack(QLt

, QCt+1
) ≡ QLt+1

, and replacing
the row qT

jt+1
in QCt+1

by rT
jt . By, the definition of qT

jt+1
and rT

jt , replacing qT
jt+1

with rT
jt in

Q ≡ stack(QLt
, QCt+1

, QL̄t
) results in a non-singular matrix Q′ ≡ stack(QLt

, M, QL̄t
). This

suggests that stack(QLt
, M) has full row rank. Using (4.143), it follows that QLt+1

(t+1) has
also full row rank. This together with (4.139) imply

R(QLt+1

(t+1)) = R(Q
Lt+1

(t)). (4.144)

Using (4.137) we conclude

R(QLt+1

(t+1)) = R(Q
Lt+1

). (4.145)

This completes our inductive proof of (4.134), that is R(QLt

(t)) = R(Q
Lt
) for all t. The

rest of the proof is simple. Notice that Q(t) ≡ stack(QLt

(t), Q
L̄t

(t)), and also, by Lemma

4.16, QL̄t

(t) = QL̄t
. Therefore, we have

R(Q(t)) = R(stack(QLt

(t), Q
L̄t

(t)))

= R(stack(QLt

(t), Q
L̄t
))

= R(QLt

(t)) +R(Q
L̄t
)

= R(QLt
) +R(QL̄t

)

= R(stack(QLt
, QL̄t

))

= R(Q). (4.146)

As Q is non-singular, it follows that Q(t) has full rank for all t = 0, 1, . . . , p.

§4.6 Summary 101

Lemma 4.16. The following hold

QL̄t

(t) = QL̄t
, for t = 0, 1, . . . , p, (4.147)

QCt+1

(t) = QCt+1
, for t = 0, 1, . . . , p−1, (4.148)

where L̄t = {1, 2, . . . , m} \ Lt is the complement of Lt.

Proof. During the transition Q = Q(0) → Q(1) → . . . → Q(t), only the matrices
Rj0 , Rj1 , . . . , Rjt−1 and Qj1 , Qj2 , . . . , Qjt are involved in terms of exchanging rows. There-
fore, for an index i /∈ {j0, j1, . . . , jt}, if Qi is contained in Q(0) = Q, then Qi will be
still present in Q(t) and also Ri is contained in R(t), which means that no row of Ri is
contained in Q(t). In other words, Q(t),i = Qi where Q(t),i is the submatrix of Pi whose
rows are present in Q(t). As for all t′ ≤ t we have jt′ ∈ Ct′ ⊆ Lt′ ⊆ Lt, it follows that
jt′ /∈ L̄t for all t′ = 0, 1, . . . , t. This means that

QL̄t

(t) = stack({Q(t),i}i∈L̄t) = stack({Qi}i∈L̄t) = QL̄t
(4.149)

Finally, (4.148) immediately follows as Ct+1 = Lt+1 \ Lt ⊆ L̄t.

4.6 Summary

We developed the theory of projective reconstruction for projections from an arbi-
trary dimensional space. Theorems were presented which derived projective recon-
struction from the projection equations. We also classified the wrong solutions to
the projective factorization problem where not all the estimated projective depths are
constrained to be nonzero.

102 Arbitrary Dimensional Projections

Chapter 5

Applications

In this chapter we present examples showing how the reconstruction of certain types
of dynamic scenes can be modeled as projections from higher dimensional spaces.

5.1 Motion Segmentation

Assume that we have a number of rigid objects in the scene that move with respect to
each other. In a very simple scenario one could consider a rigid object moving with
respect to a static background. We take 2D images of the scene at different times.
The problem of motion segmentation is to find the rigid bodies and classify them
according to their motion.

The input to the motion segmentation problem is complete or partial tracks of 2D
image points for different views. The task of motion segmentation is to segment the
point tracks according to their associated rigid body and find the camera matrix (or
matrices), the motions, and the location of the 3D points. We start our analysis with
the simpler case of affine cameras and show how the motion segmentation in this
case is related to the problem of subspace segmentation. We then turn to the more
complex case of projective cameras.

5.1.1 Affine Cameras

In affine camera model the projected 2D points are related to the 3D points through
an affine transformation. This can be shown by

x = PX, (5.1)

where X = [X1, X2, X3, 1]T ∈ R4 represent a 3D scene point in homogeneous coor-
dinates, x = [x1, x2]T ∈ R2 represent the 2D image point and P ∈ R2×4 is the affine
camera matrix. Affine cameras are usually used as an approximation of perspective
camera when the scene objects are relatively far away from the camera.

Now, assume that there are n points X1, X2, . . . , Xn in the scene, all moving ac-
cording to a global rigid motion. We have 2D images of the points in n different
frames. Let Qi be the rigid motion matrix representing the motion of the points in the

103

104 Applications

i-th frame. This matrix has the form

Qi =

[
Ri ti
0T 1

]
, (5.2)

where Ri and ti respectively represent the rotation and translation of the points in the
i-th frame. The location of the j-th 3D point in the i-th frame can be represented as

Xij = QiXj, (5.3)

that is the motion matrix Qi applied to the scene point Xj. Now, assume that the scene
points at every frame i is seen by an affine camera with the camera matrix Pi. Then
we have

xij = PiXij = PiQiXj. (5.4)

Notice that if all the images are captured with the same camera whose parameters
are fixed among different frames, then we can drop the index i from Pi. But, for now,
we consider the general case. If the 2D image points xij are arranged in a 2m×n
matrix [xij], then from (5.4) we have

[xij] =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 =


P1Q1

P2Q2
...

PmQm

 [X1 X2 · · · Xn
]
= M X (5.5)

where M = stack(P1Q1, P2Q2, . . . , PmQm) ∈ R2m×4 and X = [X1, X2, . . . , Xn] ∈ R4×n.
The above says that [xij] can be factorized as the multiplication of a 2m×4 by a 4×n
matrix. This means that the columns of [xij] (the point tracks) lie on a linear subspace
of dimension 4 or less. As (5.5) suggests, this subspace is generally equal to the
column space of M. For general motions, the column space of M is four-dimensional.
However, the dimension can be lower for special cases (see [Vidal et al., 2008] for a
brief discussion).

Now, consider the case where the points {Xj} belong to p different rigid bodies,
each undergoing a potentially different rigid motion. The motions are represented
by

Qk
i =

[
Rk

i tk
i

0T 1

]
, (5.6)

where Qk
i represents the motion of the k-th body in the i-th frame. Let cj ∈

{1, 2, . . . , p} be the class of the j-th scene point, that is the rigid body to which Xj
belongs. Thus, the location of the j-th scene point at frame i can be represented by
Xij = Q

cj
i Xj. Let, Xk = [· · · Xj · · ·]cj=k ∈ R4×nk be the horizontal concatenation of the

scene points belonging to the k-th rigid body, and [xij]cj=k ∈ R2m×nk be the arrange-

§5.1 Motion Segmentation 105

ment of the image points belonging to the k-th rigid body in a 2m×nk matrix, where
nk is the number of the points of the k-th body. As each body moves rigidly, from
(5.5) for the k-th rigid body one can write

[xij]cj=k =


P1Q

k
1

P2Q
k
2

...
PmQ

k
m

[· · · Xj · · ·
]

cj=k = MkXk, (5.7)

where Mk = stack(P1Q
k
1, P2Q

k
2, · · · , PmQ

k
m). Therefore, the image point tracks of the

k-th rigid body (the columns of [xij]cj=k) belong to a four (or less) dimensional linear
subspace, which is generally spanned by the columns of Mk. Now, consider the whole
set of image points [xij]. From the above discussion we can say that the j-th column
of [xij] lies on the column space of Mcj . Therefore, the columns of [xij] lie on a union
of p subspaces. Each subspace is of dimension four or less, and corresponds to
one of the rigid bodies. By clustering the points according to their corresponding
subspaces we can find out which point belongs to which rigid body. Hence, we
require methods that, given a bunch of points lying on a mixture of subspaces, can
segment them according to their associated subspaces. These methods are knows
as subspaces clustering or subspaces segmentation techniques. In the next section, we
describe this problem, and review some of the subspace clustering techniques.

After segmenting the point tracks, the points belonging to each rigid body can be
dealt with separately as a rigid scene reconstruction problem with affine cameras. We
then use the fact that the camera matrix is the same in each frame for all rigid bodies
to obtain consistency between the reconstruction of the scene points (and motions)
belonging to different rigid bodies. One can further reduce the ambiguities, for
example when the camera matrix is known to be fixed among all frames.

5.1.2 Subspace Clustering

Subspace clustering is an important problem in data analysis with applications in
many different areas in computer vision including motion segmentation [Vidal et al.,
2008; Kanatani, 2001; Costeira and Kanade, 1998; Zelnik-Manor and Irani, 2003],
video shot segmentation [Lu and Vidal, 2006], illumination invariant clustering [Ho
et al., 2003], image segmentation [Yang et al., 2008] and image representation and
compression [Hong et al., 2005].

Subspace clustering deals with the case where the set of data points
a1, a2, . . . , an ∈ Rd lie on a union of different subspaces. The task is to label the
points according to their corresponding subspace and give a basis for each subspace.
In some cases the number or dimensions of subspaces is unknown and the algo-
rithm is supposed to find them as well. For most applications the dimension of each
subspace is much smaller than the dimension of the ambient space Rd.

Many different methods have been proposed to cluster the data into multiple sub-
spaces. Here, we briefly describe some of the major subspace clustering algorithms.

106 Applications

For a thorough survey on this topic we refer the reader to [Vidal, 2011]. The reader
may safely skip the rest of this subsection and move forward to Sect. 5.1.3.

Matrix Factorization Consider a set of points a1, a2, . . . , an belonging to a mixture
of subspaces. Matrix factorization approaches try to find the subspaces from some
factorization of the data matrix A = [a1, a2, . . . , an]. A well-known example is the
work of Costeira and Kanade [1998] where the segmentation is obtained from the
SVD of the data matrix. Particularly, if the subspaces are independent, for A = UΣVT

being the skinny SVD of the matrix A, the matrix Q = VVT is such that Qij = 0 if ai
and aj belong to different subspaces [Vidal et al., 2008; Kanatani, 2001].

Generalized PCA (GPCA) In GPCA [Vidal et al., 2005] each linear (resp. affine)
subspace is modeled as the null space of a linear (resp. affine) transformation. Here,
for simplicity we consider the case where all subspaces are hyperplanes, that is to
say, heir dimension is the dimension of the ambient space less 1. The i-th subspace
can be represented as the set of points satisfying vT

i a − ti = 0. Therefore, a point
lying on the mixture of these subspaces will satisfy the polynomial equation:

P(a) =
l

∏
i=1

(vT
i a− ti) = 0 (5.8)

where l is the number of subspaces. If l is known, we can find the polynomial
parameters by fitting a degree l polynomial to the data. Now, if a point a belongs to
the k-th subspace, then it is easy to check that the gradient of P at a is equal to vi
up to scale, that is the normal vector to the k-th subspace. This gives a way to cluster
the data points ai to different subspaces.

In practical applications where data is noisy, for two points on one subspaces the
derivatives of p are not exactly equal. Thus, a follow-up clustering should be per-
formed after calculating the derivatives. A common approach is to form a similarity
matrix for each pair of derivatives and segment the data using spectral clustering.
GPCA can be extended to deal with subspaces of arbitrary dimension. For more
details see Vidal et al. [2005].

K-subspaces The basic idea behind such methods is to iterate between point seg-
mentation and subspace estimation [Bradley and Mangasarian, 2000; Tseng, 2000;
Agarwal and Mustafa, 2004]. Assuming the labels of the points are known each sub-
space can be easily estimated using simple methods like PCA. On the other hand, if
the subspaces are known labels can be estimated according to their distance to the
subspaces. The algorithms simply iterate between these two stages. This is similar
to the k-means algorithm adapted for clustering subspaces. These approaches are
usually used as a post processing stage, as they require a good initial solution.

Mixture of Probabilistic PCA (MPPCA) The MPPCA method [Tipping and Bishop,
1999] can be thought of as a probabilistic version of K-subspaces. Data is assumed to

§5.1 Motion Segmentation 107

be normally distributed in each subspace and is also contaminated with a Gaussian
noise. These leads to a mixture of Gaussians model which is usually solved using
the Expectation Maximization (EM) approach or its variants.

Agglomerative Lossy Compression (ALC) The ALC Ma et al. [2007] takes an infor-
mation theoretic approach. It defines a measure of the information (number of bits)
required to optimally code the data belonging to a mixture of subspaces allowing a
distortion of ε (to account for noise). This measure is actually a trade-off between the
number of bits required to encode the data in each subspace and the number of bits
needed to represent the membership of each point in its corresponding subspace. An
approximate incremental method is applied to minimize the target function.

Random Sample Consensus (RANSAC) The RANSAC [Fischler and Bolles, 1981]
is originally designed for fitting a model to a collection of data where a rather small
proportion of the data are outliers. At each iteration it selects k points at random
where k is usually the minimum number of data for fitting the model. Using these k
points it estimates a model. Then it classifies all the other points as inliers/outliers
based on their proximity to the model. The algorithm stops when a good number
of inliers are obtained. For subspace clustering RANSAC can be used to extract one
subspace at a time. In this case, one hopes that RANSAC chooses k points from a
common subspace at some stage and obtains the points belonging to that subspace as
inliers. However, using the basic RANSAC for subspace clustering can be impractical
in many cases.

Sparse Subspace Clustering Sparse Subspace Clustering (SSC) proposed by El-
hamifar and Vidal [2009] is one of the state-of-the-art methods of subspace segmenta-
tion with major advantages over the previous methods (see Vidal [2011]). In SSC the
subspace clustering is done based on the neighbourhood graph obtained by the l1-
norm sparse representation of each point by the other points. The basic SSC method
works as follows:

Consider a set of points a1, a2, . . . , an in RD, sampled from a mixture of different
subspaces such that no point lies on the origin. Each ai can be obtained as a linear
combination of the others:

ai = ∑
j

cjaj = Ac, where ci = 0, (5.9)

where A is the matrix [a1a2 · · · an] and c = [c1c2 · · · cn]T.
Of course, this combination (if it exists) is not unique in general. In SSC we are

interested in a combination with smallest l1-norm of the corresponding combination
coefficient c. This means that for each ai the following is solved:

min
c
‖c‖1 s.t. ai = A c, ci = 0. (5.10)

108 Applications

Usually, the optimal c has many zero entries. The corresponding points of the
nonzero elements of the optimal c are set to be the neighbours of ai. Doing the same
thing for every point forms a directed neighbourhood graph on the set of points.

In Elhamifar and Vidal [2009] it has been proved that if the subspaces are inde-
pendent, then the neighbours of each point would be in the same subspace. This
means that there is no link between the graphs of two different subspaces. Based
on this fact, a subspace segmentation method is proposed by finding the connected
components of the neighbourhood graph. However, in practice, where the noise is
present, this is done by spectral clustering.

Errors and outliers To deal with errors the above optimization problem is slightly
changed:

min
c,e
‖c‖1 +

α

2
‖e‖2 s.t. ai = A c + e, ci = 0. (5.11)

As you can see, each ai is represented as a combination of the other points plus some
error. This model is not optimal as all elements of e are equally weighted. This is
while the error vector e here is dependent on the combination vector c.

To deal with outliers as well, the following optimization problem has been pro-
posed:

min
c,e
‖c‖1 + λ ‖g‖1 +

α

2
‖e‖2 s.t. ai = A c + g + e, ci = 0. (5.12)

The above assumes that the vector of outliers g is sparse for each ai.

Low-Rank Subspace Clustering Before describing this method, let us rewrite (5.10)
in matrix form:

min
C
‖C‖1 s.t. A = A C, diag(C) = 0. (5.13)

In the above C ∈ Rn×n is the matrix of combination coefficients, ‖.‖1 is the (entrywise)
l1 matrix norm and diag(C) gives the vector of diagonals of a matrix.

In low-rank subspace clustering [Liu et al., 2010b], instead of seeking sparsity,
one tries to minimize the rank of the combination matrix C. To make the problem
tractable the trace norm is minimized instead of rank:

min
C
‖C‖∗ s.t. A = A C, (5.14)

where ‖.‖∗ represents the trace norm, that is the sum of the singular values of the
matrix. Liu et al. [2010b] prove that if subspaces are independent, then for the opti-
mal coefficient matrix C all the elements cij would be zero where ai and aj belong to
different subspaces. Therefore, similar to SCC, the clustering can be done by finding
the connected components of the corresponding graph of C (by spectral clustering in
practice).

In a later paper Liu et al. [2010a], the authors proved that the above problem has
the unique optimal solution of:

C∗ = VrV
T
r (5.15)

§5.1 Motion Segmentation 109

where the n by r matrix Vr is the matrix of right singular vectors of A, that is X =
UrΣrV

T
r is the skinny rank r singular value decomposition of A.

Actually solving the noiseless problem (5.14) is of little practical value. Similar to
the SSC method, here the following model has been proposed to deal with noise:

argminC,E ‖C‖∗ + α ‖E‖2,1 s.t. A = A C+ E, (5.16)

where ‖E‖2,1 = ∑n
i=1 ‖ei‖2, is the l2,1 norm of the matrix E, with ei being the i-th

column of E. This is actually the l1 norm of the vector of the l2 norms of columns of
E. It is used to deal with outliers, that is where a small portion of data is contaminated
by noise, however, the perturbation is not sparse for each ei.

A closed form solution Favaro et al. [2011] proposed a method for subspace clus-
tering with noise which has a closed form solution. Here, the data D is written as
A+ E, where E is the noise and A is the clean data. In other words, columns of A are
exactly on the union of subspaces. The following optimization problem is solved:

minC,A,E ‖C‖∗ + α ‖E‖F s.t. A = A C, D = A+ E (5.17)

or equivalently:
minC,A ‖C‖∗ + α ‖D− A‖F s.t. A = A C, (5.18)

It turns out that the closed-form solution can be obtained in a much simpler way
than what is given in [Favaro et al., 2011]. As mentioned in section 5.1.2, given A, the
optimal C can be achieved as C∗ = VrV

T
r where Vr is obtained from A = UrΣrV

T
r , the

skinny SVD of A. Let r be the rank of A. For the optimal C we have ‖C∗‖∗ =
∥∥V VT

∥∥
∗ =

r. The problem, thus, turns to:

min
r

min
A

r + α ‖D− A‖F s.t. rank(A) = r (5.19)

It is well known that with a fixed r, the optimal solution for A is a matrix with the
same singular vectors and the same first (biggest) r singular values as D and the rest
of the singular values zero. This means that the matrices Σr, Ur and Vr introduce
above are respectively the matrix of first r singular values, first r left singular vectors
and first r right singular vectors of D. Therefore, for each choice of r, the optimal A
can be obtained as UrΣrV

T
r , which is the rank-r SVD thresholding of D. For this choice

of A, we have ‖D− A‖F = ∑n
k=r+1 σ2

k , where σk is the k-th singular value of D. We can
do this for all possible values of r and choose the one with the smallest target value.
Hence, the optimization problem is

min
r

r + α
n

∑
k=r+1

σ2
k = min

r

r

∑
k=1

(1− ασ2
k), (5.20)

where, by convention, ∑0
k=1(.) is assumed to be zero. This shows that the optimal r

is achieved by thresholding the singular values of D at 1/
√

α.

110 Applications

5.1.3 Projective Cameras

Now, we turn to the more complex case motion segmentation with projective cameras
and show that how different cases of the problem can be modeled as projections from
higher dimensions.

Again, we consider p rigidly moving bodies. Recall from Sect. 5.1.1 that the rigid
motion was represented with the matrix

Qk
i =

[
Rk

i tk
i

0T 1

]
, (5.21)

where Qk
i is the rigid motion matrix corresponding to the k-th body in the i-th frame.

We also defined cj ∈ {1, 2, . . . , p} to be the class of the j-th scene point, meaning that
Xj belongs to the cj-th rigid body. The location of the j-th scene point at frame i is

Xij = Q
cj
i Xj (5.22)

Therefore, having projective cameras, the image points are created as follows:

λijxij = PiXij = PiQ
cj
i Xj, (5.23)

where xij ∈ R3 represents an image point in homogeneous coordinates, Pi ∈ R3×4 is
the camera matrix of the i-th frame and λij is the projective depth. In a similar way to
the case of affine cameras, for the points Xj belonging to the k-th rigid body (cj = k)
we can write

[λijxij]cj=k =


P1Q

k
1

P2Q
k
2

...
PmQ

k
m

[· · · Xj · · ·
]

cj=k = MkXk, (5.24)

Therefore, the columns of the matrix [λijxij]cj=k, created by arranging into a matrix
the weighted image points λijxij of a single rigid body, lie on a 4 (or less) dimensional
subspace. Thus, the columns of the complete matrix of weighted image points [λijxij]
lie on a mixture of subspaces. This means that, if we somehow manage to find the
projective depths λij, motion segmentation can be performed by applying a subspace
clustering algorithm on the weighted data matrix [λijxij].

In the next three subsections, we will show that how different forms of relative
motions can be modeled as projections from higher dimensional projective spaces.
Using such models, the projective depths λij can be obtained using projective recon-
struction in higher dimensions.

5.1.3.1 The pure relative translations case

This case was studied in [Wolf and Shashua, 2002]. We have a setup of p rigid
bodies that all share the same rotation, and move with repsect to each other only by

§5.1 Motion Segmentation 111

(relative) translations. In this case the rigid motion matrix of the k-th rigid body in
the i-th frame can be written as

Qk
i =

[
Ri tk

i
0T 1

]
. (5.25)

Comparing to (5.21), we can see that in the above the rotation matrix at every frame
Ri does not depend on the rigid body k. Recall from (5.23) that

λijxij = PiQ
cj
i Xj (5.26)

By representing Qk
i as in (5.25) and Xj as [Xj, Yj, Zj, 1]T the above gives

λijxij = Pi

[
Ri t

cj
i

0T 1

]
Xj
Yj
Zj
1



= Pi

[
Ri t1

i t2
i · · · tp

i
0T 1 1 · · · 1

]
Xj
Yj
Zj
ecj

 . (5.27)

where ecj ∈ Rp is the cj-th standard basis of Rp. By taking

Mi = Pi

[
Ri t1

i t2
i · · · tp

i
0T 1 1 · · · 1

]
and Yj =


Xj
Yj
Zj
ecj

 (5.28)

we can write

λijxij = MiYj, (5.29)

where Mi ∈ R3×(p+3) and Yj ∈ R3×(p+3). It shows that with p rigid bodies, the prob-
lem of motion segmentation with pure translation can be modeled as projections
from Pp+2 to P2. Since xij-s are given, by performing a high-dimensional projective
reconstruction, one can obtain the projective depths λij up to a diagonal ambiguity.
Then, as mentioned before, motions can be segmented by applying subspace clus-
tering to the columns of the weighted data matrix [λijxij]. Notice that the fact the
matrix of depths Λ = [λij] is obtained up to a diagonal ambiguity does not alter this
property that columns of [λijxij] lie on a mixture of linear subspaces.

5.1.3.2 The coplanar motions case

Assume that all the rigid objects have a coplanar rotation, that is, all rotate around
a common axis u, which is the unit normal vector to the plane of rotation. Each

112 Applications

object has an arbitrary translation which is not necessarily in the plane of rotation.
Consider the unit vectors v and w foring the orthogonal complement of u such that
the matrix

U = [w, v, u] (5.30)

is a rotation matrix. Therefore, v and w form a basis for the plane of rotation. In this
case, the rotation matrix of rigid body k at frame i has the form of

Rk
i = U

[
Ck

i 0
0T 1

]
UT. (5.31)

where Ck
i is a 2D rotation matrix, that is

Ck
i =

[
cos(θk

i) − sin(θk
i)

sin(θk
i) cos(θk

i)

]
. (5.32)

with θk
i being the angle of rotation. From (5.31) and (5.30), we can write Rk

i as

Rk
i =

[
[w, v] Ck

i u
]
UT =

[
Bk

i u
]
UT. (5.33)

where Bk
i = [w, v] Ck

i . Now, the projection equation can be written as

λijxij = Pi Q
cj
i Xj

= Pi

[
R

cj
i t

cj
i

0T 1

]
Xj
Yj
Zj
1



= Pi

[
[B

cj
i , u]UT t

cj
i

0T 1

]
Xj
Yj
Zj
1

 . (5.34)

define X′j, Y′j and Z′j as X′j
Y′j
Z′j

 = UT

Xj
Yj
Zj

 , (5.35)

§5.1 Motion Segmentation 113

Now, the derivation (5.34) can be continued as

λijxij = Pi

[
[B

cj
i , u] t

cj
i

0T 1

]
X′j
Y′j
Z′j
1



= Pi

[
B

cj
i u t

cj
i

0T 0 1

]
X′j
Y′j
Z′j
1



= Pi

[
B1

i B2
i · · · B

p
i u t1

i t2
i · · · tp

i
0T 0T · · · 0T 0 1 1 · · · 1

]
ecj ⊗

(
X′j
Y′j

)
Z′j
ecj

 . (5.36)

where ⊗ is the Kronecker product and ecj ∈ Rp is the cj-th standard basis. Notice
that Yjecj ⊗ [X′j, Y′j]

T ∈ R2p. Now, if we take

Mi = Pi

[
B1

i B2
i · · · B

p
i u t1

i t2
i · · · tp

i
0T 0T · · · 0T 0 1 1 · · · 1

]
and Yj =


ecj ⊗

(
X′j
Y′j

)
Z′j
ecj

 , (5.37)

we can write

λijxij = MiYj, (5.38)

The matrix Mi is 3 by (3p+1), and Yj ∈ R3p+1. It shows that the problem of motion
segmentation with p rigid bodies undergoing a coplanar rotation can be modeled as
projections P3p → P2. The projective depths λij can be obtained up to a diagonal
equivalence through high-dimensional projective reconstruction, and the motions can
be segmented via subspace clustering, as discussed before.

5.1.3.3 General rigid motions

We consider the case of general rigid motions. Remember the projection relation for
the multi-body case

λijxij = PiQ
cj
i Xj, (5.39)

114 Applications

where Qk
i ∈ R4×4 shows the rigid motion matrix of the k-th rigid body at frame i, and

cj ∈ {1, 2, . . . , p} is the rigid body to which the Xj belong. We can write the above as

λijxij = Pi[Q
1
i , Q2

i , . . . , Qp
i] (ecj ⊗ Xj),

= MiYj, (5.40)

where, Mi = Pi[Q
1
i , Q2

i , . . . , Qp
i] ∈ R3×4p and Yj = (ecj ⊗ Xj) ∈ R4p. Notice that the

Kronecker product ek ⊗ Xj is in the form of

Yj = (ecj ⊗ Xj) =

 04k−4
Xj
04p−4k

 .

This means that if Xj belongs to the k-th rigid body (cj = k), the high-dimensional
point YjR

4p is the stack of p blocks of vectors of size 4, such that the k-th block is
equal to Xj and the rest of them are zero.

Actully, the application of projective reconstruction in this case needs further in-
vestigation as the reconstruction is not unique up to projectivity. This means that the
points Yj have some special nongeneric structure such that they cannot be uniquely
reconstructed given the image points xij. Notice that, by dividing each Mi ∈ R3×4p

into 3×4 blocks as

Mi = [M1
i , M2

i , · · · , Mp
i] (5.41)

Then, considering the form of Yj = (ecj ⊗ Xj), for the points Xj belonging to the k-th
rigid body we have

λ̂ijxij = Mk
i Xj for all j such that cj = k (5.42)

Therefore, each set of points belonging to a certain rigid body corresponds to a pro-
jective reconstruction problem which is independent of the reconstruction problem
associated with other rigid bodies. Each projection matrix Mk

i , thus, can be recovered
up to a projective ambiguity, that is a valid reconstruction M̂k

i is in the form of

M̂k
i = τk

i M
k
i H

k (5.43)

Therefore, the ambiguity of the higher-dimensional projective matrix Mi =
[M1

i , M2
i , · · · , Mp

i] is in the form of

M̂i =
[

τ1
i M

1
i τ2

i M
2
i · · · τ

p
i M

p
i

]

H1

H2

. . .
Hp

 (5.44)

Any solution of the above is a valid reconstruction projecting into the same image

§5.2 Nonrigid Shape Recovery 115

points xij (given appropriate HD points Ŷj). This is while a projective ambiguity for
the projection matrix Mi is in the form of

M̂i = τ′i M H
′ = τ′i [M

1
i , M2

i , · · · , Mp
i] H
′ (5.45)

Therefore, in this case, by solving the projection equations we might obtain solutions
which are not projective equivalent to the true solution. An open question is whether
our knowledge the special form of the projection matrices Mk

i , namely Mk
i = PiQ

k
i , can

help to deal with this further ambiguity. Another question is whether handling this
ambiguity is necessary at all.

5.2 Nonrigid Shape Recovery

One way to model nonrigid deformations in a scene is assuming that the shape at
each time is a linear combination of a set of shape bases. This has been frist proposed
by Bregler et al. [2000] under the assuption of orthographic projections. The idea can
be adapted for perspective cameras [Xiao and Kanade, 2005; Vidal and Abretske,
2006; Hartley and Vidal, 2008] as follows.

Consider n scene points indexed by j and m frames (time steps) indexed by i. We
represent the 3D location of the j-th point at time i by X′ij ∈ R3, and the collection of
points at time i by the shape matrix X′i = [X′i1X′i2 · · ·X′in] ∈ R3×n. Here, we use the
“prime” symbol to distinguish X′ij ∈ R3 from the homogeneous coordinate represen-
tation Xij ∈ R4 of the 3D points. Now, we assume that the collection of point X′i at
each view can be written as a linear combination of a set of p rigid bases B1, B2, . . . , Bp.
In other words, the location of points at the i-th frame is given by

X′i =
p

∑
k=1

cikBk (5.46)

If bkj represents the j-th column of Bk, the above gives

X′ij =
p

∑
k=1

cikbkj. (5.47)

Now, assume that we have 2D images xij ∈ R3 (in homogeneous coordinates) of the
3D points at each frame taken by a projective camera, where the camera matrix for
the i-th frame is Pi (Pi-s can be potentially the same). If we divide the camera matrices
as Pi = [Qiti] with Qi ∈ R3×3 and ti ∈ R3, then the projection equation can be written

116 Applications

as

λijxij = QiX′ij + ti

= Qi(
p

∑
k=1

cikbkj) + ti

= [ci1Qi, ci2Qi, . . . , cip Qi, ti]


b1j
b2j

...
bpj
1


= MiYj, (5.48)

where Mi ∈ R3×(3p+1) and Yj ∈ R3p+1. This is obviously a projection from P3p to P2.
We refer the reader to [Hartley and Vidal, 2008] for more details.

The problem of nonrigid motion recovery is to recover the basis matrices Bk,
the camera matrices Pi = [Qiti] and the coefficients cik, given the image points xij.
The first step in solving this problem is to recover the high-dimensional projection
matrices Mi and the points Yj, up to projectivity, via some high-dimensional projective
reconstruction algorithm. After this step, the camera matrices Pi, the shape matrices
Bk and the coefficients cik can be recovered (up to an ambiguity) by imposing the
special block-wise structure of the matrices Mi given in (5.48) using the degrees of
freedom from the projective ambiguity in recovering Mi-s and Yj-s.

This problem has been looked into in [Hartley and Vidal, 2008], where the pro-
jective reconstruction is conducted using the tensor-based technique proposed by
Hartley and Schaffalitzky [2004]. After the projective reconstruction an algebraic
approach is proposed for the recovery of Pi-s, Bk-s and cik-s.

5.3 Correspondence Free Structure from Motion

Angst and Pollefeys [2013] consider the case of a rigid rig of multiple affine cameras
observing a scene with a global rigid motion. The input to the problem is tracks
of points captured by each camera. However, point correspondences between the
cameras are not required. The cameras may observe non-overlapping parts of the
scenes. The central idea come from the fact that “all cameras are observing a common
motion”. They show that, if the scene has a general motion, the problem involves a
rank 13 factorization. In the case of planar motions it involves a rank 5 factorization.

Here, we describe the idea in the context of projective cameras. Consider a set
of m projective cameras with camera matrices P1, P2, . . . , Pm ∈ R3×4. Each camera
observes a subset of the scene points during p frames (time steps). We represent the
points observed by the i-th camera by Xi1, Xi2, . . . , Xini . Each point Xij is visible in all
frames, which means that incomplete tracks are disregarded. Notice that, as a scene
point can be observed by several cameras, we might have the case where for the two

§5.3 Correspondence Free Structure from Motion 117

cameras i and i′, the two vectors Xij and Xi′,j′ are identical. In this method, however,
Xij and Xi′,j′ are treated as different points. Therefore, the method does not need
information about point correspondences between different cameras.

Considering a projective camera model, the image of the j-th point observed by
the i-th camera at the k-th frame is created by

λ
f
ijx

f
ij = PiQ

f Xij (5.49)

where Q f ∈ R4×4 represents the rigid motion matrix of the f -th frame, x f
ij ∈ R3 is the

image point and λ
f
ij is the projective depth. Remember from Sect. 5.1 that the rigid

motion matrix has the form of

Q f =

[
R f t f

0T 1

]
, (5.50)

where R f and t f are respectively the rotation matrix and the translation vector of the
f -th frame. Notice that, as all the scene points undergo a common rigid motion,
the motion matrix only depends on the frame f . By considering R f = [r f

1 , r f
2 , r f

3],
Xij = [Xij, Yij, Zij, 1]T and Pi = [Ai, bi] with Ai ∈ R3×3 and bi ∈ R3, we have

λ
f
ijx

f
ij =

[
Ai bi

] [R f t f

0T 1

]
Xij

=
[
AiR

f Ait f+bi
]

Xij

=
[
Air

f
1 Air

f
2 Air

f
3 Ait f+bi

]
Xij
Yij
Zij
1


= Xij Ai r f

1 + Yij Ai r f
2 + Zij Ai r f

3 + Ait f+bi

=
[

XijAi YijAi ZijAi Ai bi
]


r f
1

r f
2

r f
3

t f

1

 .

= MijY f (5.51)

where

Mij =
[

XijAi YijAi ZijAi Ai bi
]
∈ R3×13 (5.52)

Y f = stack(r f
1 , r f

2 , r f
3 , t f , 1) ∈ R13 (5.53)

This can be seen as a projection from P12 to P2. Notice that projection matrices Mij are
indexed by a pair (i, j). This means that corresponding to every point Xij observed

118 Applications

in camera i there exists a distinct high-dimensional projection matrix Mij.
By solving a projective reconstruction problem one can obtain Mij-s and Y f -s up

to a projective ambiguity. One should set the free parameters of this ambiguity such
that the projection matrices Mij and points Y f conform with the required structures
shown in (5.52) and (5.53). This has been done by Angst and Pollefeys [2013] for an
affine ambiguity. However, solving the problem for the projective camera model is
still an open question.

5.4 Summary

We considered different scene analysis problems and demonstrated how they can be
modeled as projections from higher-dimensional projective spaces to P2.

Chapter 6

Experimental Results

The results provided in this thesis are not bound to any particular algorithm and
our research was not concerned with convergence properties or how to find global
minima. The aim of this chapter is, therefore, the verification of our theory by im-
plementing a basic iterative factorization procedure and showing the algorithm’s
behaviour for different choices of the depth constraints, in terms of finding the cor-
rect solutions. Especially, we present cases in which the degenerate false solutions
discussed in the previous chapters happen in the factorization-based algorithms, and
demonstrate how the use of proper constraints can help to avoid them.

6.1 Constraints and Algorithms

Given the image data matrix [xij] and a constraint space C, we estimate the depths
by solving the following optimization problem:

min
Λ̂,P̂,X̂

∥∥Λ̂� [xij]− P̂X̂
∥∥

F subject to Λ̂ ∈ C, (6.1)

where Λ̂ ∈ Rm×n, X̂ ∈ Rm×r and P̂ ∈ Rr×n for a configuration of m views and n points.
Thus, for 3D to 2D projections we have X̂ ∈ Rm×4 and P̂ ∈ R4×n. Clearly, when the
data is noise-free (that is xij exactly equals PiXj/λij for all i, j), and the constraint
space C is inclusive (allows at least one correct solution), the above problem has
global minima with zero target value, including the correct solutions. For 3D to 2D
projections, we can say that if the constraint space is also exclusive (excludes all the
false solutions), and therefore is reconstruction friendly, the global minima contain
only the correct solutions for which ({P̂i}, {X̂j}) are projectively equivalent to the
true configuration ({Pi}, {Xj}).

Here, we try to solve (6.1) by alternatingly minimizing over different sets of vari-
ables.

To make a clear comparison, among many different possible choices for depth
constraints, we choose only four, each representing one class of constraints discussed
before. A schema of these four constraints is depicted in Fig. 6.1. The first two con-
straints are linear equality ones and the next two are examples of compact constraint
spaces. The first constraint, abbreviated as ES-MASK is a masked constraint which

119

120 Experimental Results

1
1

1
1 1 1

n
n
n
n

m m m m m m
(ES-MASK) (RC-SUM)

(R-NORM) (T-NORM)

Figure 6.1: Four constraints implemented for the experiments. ES-MASK is a masked
constraint with an edgeless step-like mask M. The constraint fixes some elements
of Λ̂ according to M ◦ Λ̂ = M. RC-SUM fixes row and column sums according to
Λ̂1n = n1m, Λ̂T1m = m1n. R-NORM fixes a weighted l2-norm of each rows of Λ̂, and

T-NORM fixes a weighted l2-norm of tiles of Λ̂.

fixes some elements of Λ̂ according to M ◦ Λ̂ = M for a mask M. ES-MASK uses a specific
exclusive edgeless step-like mask. In the case of a fat depth matrix (n ≥ m), this mask
is the horizontal concatenation of an m×m identity matrix and an m×(n−m) matrix
whose last row consists of ones and its rest of elements are zero (see Fig. 6.1). A simi-
lar choice can be made for tall matrices. We choose the edgeless step-like mask as our
experiments show that it converges more quickly than the edged version (see Sect.
3.3.2.3 for a discussion). We showed in Sect. 3.3.2.3 that this constraint rules out all
false solutions for 3D to 2D projections. The second-constraint, RC-SUM, makes the
rows of Λ̂ sum up to n and its columns sum up to m, that is Λ̂1n = n1m, Λ̂T1m = m1n

(Sect. 3.3.2.1). The third constraint, R-NORM, requires rows of the depth matrix to
have a unit norm (Sect. 3.3.1.3). The final constraint, T-norm, is requiring tiles of
the depth matrix to have a unit norm (Sect. 3.3.1.4), where the tiling is done accord-
ing to Fig. 6.1. The last two constraints constraints can be considered as examples
of tiled constraints (see Sect. 3.3.1.4). The norm use in these two constraints are
weighted l2-norms with special weights, as follows. For an m′×n′ tile (m′ = 1 or
n′ = 1) in the depth matrix, the constraint is that the corresponding 3m′×n′ block in
Λ̂� [xij] has a unit Frobenius norm, which amounts to a unit weighted l2-norm for
the corresponding m′×n′ block of Λ̂. For example, consider a horizontal tile in the
form of [λi1, λi2, . . . , λin′]. The corresponding constraint used here is that the 3×n′

matrix [λi1xi1, λi2xi2, . . . , λin′xin′] has a unit Frobenius norm. This is equivalent to a
weighted l2-norm of the vector [λi1, λi2, . . . , λin′] where the weight corresponding to
the j-th entry is equal to

∥∥xij
∥∥

2.
With linear equality constraints, we consider two algorithms for the minimization

§6.2 3D to 2D projections 121

of (6.1). The first algorithm is to iterate between minimizing with respect to Λ̂ (subject
to the depth constraint Λ̂ ∈ C) and minimizing with respect to (X̂, P̂). The former step
is minimizing a positive definite quadratic form with respect to a linear constraint,
which has a closed-form solution, and the latter can be done by a rank-4 SVD thresh-
olding of Λ̂� [xij] and factorizing the rank-4 matrix as P̂X̂. The second approach is
to alternate between minimizing with respect to (Λ̂, P̂) and (Λ̂, X̂). Similar to the first
step of the first algorithm, each step of this algorithm has a closed-form solution.
While the second method is generally harder to implement, our experiments show
that it results in faster convergence. Here, we use the second method for optimizing
with respect to ES-MASK. For optimizing with respect to RC-SUM we use the first
method to get a less complex optimization formula at each step.

The last two constraints are both examples of tiling constraints. Our method
for optimizing (6.1) is to alternatingly minimize with respect to Λ̂ and then with
respect to (X̂, P̂). The latter is done by a rank-4 SVD thresholding of Λ̂� [xij] and
factorization. For the former step, we fix P̂X̂ and minimize

∥∥Λ̂� [xij]− P̂X̂
∥∥

F subject
to the constraint that for each m′×n′ tile of Λ̂, the corresponding 3m′×n′ block of
Λ̂� [xij] has unit Frobenius norm. This means that, each tile of Λ̂ can be optimized
separately. Showing by λ̂, the vector of elements of Λ̂ belonging to a special tile, the
corresponding optimization problem for this tile is in the form of minλ̂‖Aλ̂ − b‖2

with respect to ‖Wλ̂‖2 = 1 for some matrix W and some vector b. This problem has a
closed-form solution. For 1×1 tiles we fix the value of the corresponding λ̂ij to 1.

6.2 3D to 2D projections

6.2.1 Synthetic Data

We take a configuration of 8 views and 20 points. The elements of the matrices Pi
and points Xj are sampled according to a standard normal distribution. The depths
are taken to be λij = 3 + ηij, where the ηij-s are sampled from a standard normal
distribution. This way we can get a fairly wide range of depths. Negative depths are
not allowed, and if they happen, we repeat the sampling. This is mainly because of
the fact that for the RC-SUM constraint, the inclusiveness is only proved for positive
depths. The image data is calculated according to xij = PiXj/λij, with no added
error. Notice that here, unlike in the case of real data in the next subsection, we
do not require the last element of the Xj-s and the xij-s to be 1, and consider the
projective factorization problem in its general algebraic form.

In each case, we plot the convergence graph, which is the value of the target
function

∥∥Λ̂� [xij]− P̂X̂
∥∥

F throughout iterations, followed by a graph of depth error.
To deal with diagonal ambiguity of the depth matrix, the depth error is calculated
as ‖Λ− diag(τ) Λ̂diag(ν)‖, where τ and ν are set such that diag(τ) Λ̂diag(ν) has
the same row norms and column norms as the true depth matrix Λ = [λij]. This
can be done using Sinkhorn’s algorithm as described in Sect. 3.3.1.2. Finally, for
each constraint we depict the estimated depth matrix Λ̂ as a grayscale image whose
intensity values show the absolute values of the elements of Λ̂.

122 Experimental Results

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

ES−MASK
RC−SUM
R−NORM
T−NORM

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ES−MASK
RC−SUM
R−NORM
T−NORM

ES-MASK RC-SUM

R-NORM T-NORM
(a) Convergence (b) Depth Error (c) Estimated depth matrix Λ̂

Figure 6.2: An example where all algorithms converge to a correct solution. (a) shows
all the four cases have converged to a global minimum, (b) shows that all the four
cases have obtained the true depths up to diagonal equivalence, and (c) confirms
this by showing that the depth matrix Λ̂ satisfies (D1-D3). In (c) the gray-level of
the image at different locations represents the absolute value of the corresponding

element in Λ̂.

In the first test, we set the initial value of Λ̂ to 1m×n which is a matrix of all ones.
The results for one run of the algorithm are shown in Fig. 6.2. It is clear from Fig.
6.2(a) that the algorithm has converged to a global minimum for all four constraints.
Fig. 6.2(b) shows that in all four cases the algorithm has converged to a correct
solution. Fig. 6.2(c) confirms this by showing that in no case the algorithm has
converged to a cross-shaped solution or a solution with zero rows or zero columns.

In the second test, we set the initial value of Λ̂ to be 1 at the first row and 10th
column, and 0.02 elsewhere. This makes the initial Λ̂ close to a cross-shaped ma-
trix. The result is shown in Fig. 6.3. According to Fig. 6.3(a), in all cases the target
error has converged to zero, meaning that a solution is found for the factorization
problem Λ̂� [xij] = P̂X̂. Fig. 6.3(b), shows that for the constraint ES-MASK and RC-
SUM, the algorithm gives a correct solution, however, for R-NORM and T-NORM,
it has converged to a wrong solution. Fig. 6.3(c) supports this by showing that the
algorithm has converged to a cross-shaped solution for R-NORM and T-NORM. Al-
though, the constraint RC-SUM allows for cross-shaped configurations, according to
our discussion in Sect. 3.3.2.1, it is unlikely for the algorithm to converge to a cross
if the initial solution has all positive numbers (see Fig. 3.7). However, according to
our experiments, if we start from a configuration close to the cross-shaped solution
of the constraint RC-SUM (with a negative element at the centre of the cross), the
algorithm will converge to a cross-shaped configuration.

6.2.2 Real Data

We use the Model House data set provided by the Visual Geometry Group at Oxford
University1. As our theory does not deal with the case of missing data, from the data
matrix we choose a block of 8 views and 19 points for which there is no missing data.
Here, the true depths are not available. Thus, to see if the algorithm has converged

1http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

http://www.robots.ox.ac.uk/~vgg/data/ data-mview.html

§6.2 3D to 2D projections 123

0 20 40 60 80 100
0

1

2

3

4

5

ES−MASK
RC−SUM
R−NORM
T−NORM

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ES−MASK
RC−SUM
R−NORM
T−NORM

ES-MASK RC-SUM

R-NORM T-NORM
(a) (b) (c)

Figure 6.3: (a) the target error in all cases has converged to zero, (b) the depth error
has converged to zero only for ES-MASK and RC-SUM, meaning that only ES-MASK
and RC-SUM have converged to a correct solution, (c) confirms this by showing that

R-NORM and T-NORM have converged to cross-shaped solutions.

to a correct solution, we use a variant of the reprojection error. The basic reprojection
error is ∑ij‖xij − αijP̂iX̂j‖ where for each i and j, αij is chosen such that the third entry
of the vector αijP̂iX̂j is equal to the third entry of xij, which is 1 in this case. However,
as this can cause fluctuations in the convergence graph at iterations where the last
element of P̂iX̂j gets close to zero, we instead choose each αij such that it minimizes
‖xij − αijP̂iX̂j‖.

Fig. 6.4 shows one run of the algorithm for each of the four constraints starting
from Λ̂ = 1m×n. It can be seen that for all the constraints the algorithm has converged
to a solution with a very small error. Fig. 6.4(b) shows that all of them have converged
to something close to a correct solution. This is affirmed by Fig. 6.4(c), showing that
no solution is close to a configuration with zero rows, zero columns or cross-shaped
structure in the depth matrix. Comparing Fig. 6.4(c) with Fig. 6.2(c) one can see that
the matrices in 6.4(c) are more uniform. One reason is that the true depths in the
case of real data are relatively close together compared to the case of synthetic data.
Except, T-NORM, all the other constraints tend to somewhat preserve this uniformity,
especially when the initial solution is a uniform choice like 1m×n. T-NORM does to
preserve the uniformity as it requires that each of the 1×1 tiles in the first row of the
depth matrix to have a unit weighted l2-norm, while for the rest parts of the matrix,
each row is required to have a unit weighted l2-norm. This is why other parts of the
depth matrix in T-NORM look considerably darker than the first row.

In the second test we start from an initial Λ̂ which is close to a cross-shaped
matrix, as chosen in the second test for the synthetic data. The result is shown in Fig.
6.5. Fig. 6.5(a) shows that the RC-SUM has not converged to a solution with a small
target error, but the other 3 constraints have2. Therefore, we cannot say anything
about RC-SUM. Fig. 6.5(b) shows that R-NORM and T-NORM did not converge to
a correct solution. Fig. 6.5(c) confirms this by showing that R-NORM and T-NORM
have converged to something close to a cross-shaped solution.

2Notice that the scale of the vertical axis in Fig. 6.5(a) is different from that of Fig. 6.4(a)

124 Experimental Results

0 100 200 300 400 500
0

5

10

15

20

ES−MASK
RC−SUM
R−NORM
T−NORM

0 100 200 300 400 500
0

10

20

30

40

50

60

ES−MASK
RC−SUM
R−NORM
T−NORM

ES-MASK RC-SUM

R-NORM T-NORM
(a) (b) (c)

Figure 6.4: An example where all algorithms converge to a solution with a very small
target value which is also close to a correct solution. In (c), one can observe a bright
strip on the top of the corresponding image of T-NORM. The reason is that T-NORM
forces each elements of the top row of Λ̂ to have a unit (weighted l2) norm, while for
the other rows, the whole row is required to have a unit norm. See Fig. 6.1(T-NORM).

0 100 200 300 400 500
0

20

40

60

80

100

120

ES−MASK
RC−SUM
R−NORM
T−NORM

0 100 200 300 400 500
0

20

40

60

80

ES−MASK
RC−SUM
R−NORM
T−NORM

ES-MASK RC-SUM

R-NORM T-NORM
(a) (b) (c)

Figure 6.5: An example where the algorithms are started from an initial solution
which is close to a cross-shaped matrix. (a) shows that RC-SUM has not converged
to a solution with a small target error. R-NORM and T-NORM have converged to
something with a small target value, but did not get close to a correct solution, as it is
obvious from (b). This is confirmed by (c), which shows that R-NORM and T-NORM

have converged to a something close to a cross-shaped solution.

§6.3 Higher-dimensional projections 125

6.3 Higher-dimensional projections

In this section we run numerical experiments to study projections from Pr−1 → P2

for r−1 > 3. Like our experiments in Sect. 6.2.1 for synthetic data, here we consider
the projective factorization problem in the general algebraic sense. We choose the
elements of the projection matrices Pi ∈ R3×r and HD points Xj ∈ Rr as samples of a
standard normal distribution. The depths are taken to be λij = 3+ ηij, where the ηij-s
are samples of a standard normal distribution, and negative depths are avoided in the
similar way as in Sect. 6.2.1. The image points are created according to xij = PiXj/λij.
Notice that we do not restrict Xj-s and the xij-s to have a unit final element.

The experiments are conducted similarly to the previous section, with the same
four constraints introduced in Fig. 6.1. The reader must keep in mind that we only
have analysed the constraint for the special case of 3D to 2D projections. Therefore, it
is possible that some of the so-called reconstruction friendly constraints defined in the
context of 3D to 2D projections are unable to prevent all wrong solutions for some
cases of higher dimensional projections. The effectiveness of each constraint must be
studied for each class of higher dimensional projections separately.

From our results in Sect. 4.4 we can conclude that, under generic conditions, for
the special case of projections Pr−1 → P2 a solution (Λ̂, P̂, X̂) to the projective fac-
torization equation Λ̂� [xij] = P̂X̂ is projectively equivalent to the true configuration
(Λ, P, X), if the following holds

(D1) The matrix Λ̂ = [λ̂ij] has no zero rows,

(D2) The matrix Λ̂ = [λ̂ij] has no zero columns,

(D3) For every partition {I, J, K} of views {1, 2, . . . , m} with I 6= ∅ and 3 |I|+ 2 |J| <
r, the matrix Λ̂K has sufficiently many nonzero columns, where Λ̂K is the subma-
trix of Λ̂ created by selecting rows in K.

Notice that in Sect. 4.4, the inequality condition in (D3) was stated in its general
form as ∑j∈I si + ∑j∈J(sj−1) < r, instead of 3|I|+ 2|J|. Since here we only consider
projections Pr−1 → P2, and thus si = 3 for all i, the value of ∑j∈I si + ∑j∈J(sj−1)
is equal to 3|I| + 2|J|, where | · | gives the size of a set. We study the application
of the factorization-based algorithms and the wrong solution for higher-dimensional
projections by running simulations for the two cases of projections P4 → P2 and
P9 → P2.

6.3.1 Projections P4 → P2

We start with the simple case of projections P4 → P2. In this case we have r = 5. To
find possible wrong solutions created by violating (D3), we need to look for partitions
{I, J, K} where I is nonempty and 3 |I|+ 2 |J| < r = 5. This can only happen when
|I| = 1 and |J| = 0, that is I is a singleton and J is empty. It follows that |K| = m− 1.
Therefore, in this case, wrong solutions violating (D3) happen when a submatrix Λ̂K

of Λ̂, created by choosing all but one row of Λ̂, has a limited number of nonzero columns

126 Experimental Results

0 50 100 150 200
0

1

2

3

4

5

ES−MASK
RC−SUM
R−NORM
T−NORM

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

ES−MASK
RC−SUM
R−NORM
T−NORM

ES-MASK RC-SUM

R-NORM T-NORM
(a) Convergence (b) Depth Error (c) Estimated depth matrix Λ̂

Figure 6.6: Applying the projective factorization algorithm for 4D to 2D projections.
For all four cases, the cost function has converged to zero as it is obvious from
(a). All cases have converged to a correct solution except for T-NORM which has
converged to a wrong solution, as shown in (b). The estimated depth matrix Λ̂ given
by each algorithm confirms the results, as only T-NORM has given a degenerate Λ̂

corresponding to a wrong solution.

(a lot of zero columns). For projections P4 → P2, one can prove that, generically, this
limited number means at most two. Therefore, for wrong solutions the submatrix Λ̂K

has either 1 or 2 nonzero columns.
We conduct the experiments in the same way as in Sect. 6.2. We take a config-

uration of 10 projection matrices and 20 points and run the iterative factorization
algorithm with the four different constraints introduced in Fig. 6.1. We initiate the
algorithm by a depth matrix Λ̂ of all ones. The results are depicted in Fig. 6.6.
Looking at the convergence graph in Fig. 6.6(a), we can expect3 that for all four
constraints the algorithm has found a solution to Λ̂� [xij] = P̂X̂. From the depth es-
timation error graph in Fig. 6.6(b), we realize that the algorithm has found a correct
solution for all constraints except for T-NORM. Therefore, we can expect that the
depth matrix obtained by T-NORM is degenerate, with zero patterns as described in
the previous paragraph. This can be seen in Fig. 6.6(c). As expected, for the depth
matrix of T-NORM, the submatrix created by choosing rows 2, 3, . . . , m, has only 2
nonzero columns, which is the maximum possible nonzero columns for a wrong
solution violating (D3). For this case of wrong solution we have I = {1}, J = ∅
and K = {2, 3, . . . , m}. According to Lemma 4.7 we must expect that the submatrix
P̂K = stack(P̂2, P̂3, . . . , P̂m) has rank r′ = r − (3 |I| + 2 |J|) = 5− (3 + 0) = 2. This
can be confirmed by looking at the singular values of the matrix P̂K obtained from
our experiments which are 1.6, 1.3, 0.005, 0.0023 and 0.0009. Note that in this exam-
ple, even without starting from a close-to-degenerate initial solution, the algorithm
converged to a degenerate solution for one of the constraints.

The second experiment is run exactly in the same way, with different projection
matrices, HD points and projective depths, which are sampled according to the same

3Actually, for non-compact constraints ES-MASK and RC-SUM, there is a possibility that the cost
function (and therefore Λ̂� [xij]− P̂X̂) converges to zero, but the algorithm does not converge in terms
of Λ̂.

§6.3 Higher-dimensional projections 127

0 100 200 300 400
0

1

2

3

4

5

ES−MASK
RC−SUM
R−NORM
T−NORM

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ES−MASK
RC−SUM
R−NORM
T−NORM

ES-MASK RC-SUM

R-NORM T-NORM
(a) Convergence (b) Depth Error (c) Estimated depth matrix Λ̂

Figure 6.7: Another run of the experiment with a different configuration of points,
projection matrices and projective depths. The algorithm has not converged in 400
iterations for RC-SUM. For the rest of the cases, a correct solution has been found.

0 0.5 1 1.5 2

x 105

0

1

2

3

4

5

ES−MASK
RC−SUM
R−NORM
T−NORM

0 0.5 1 1.5 2

x 105

0

0.2

0.4

0.6

0.8

ES−MASK
RC−SUM
R−NORM
T−NORM

ES-MASK RC-SUM

R-NORM T-NORM
(a) Convergence (b) Depth Error (c) Estimated depth matrix Λ̂

Figure 6.8: The result of continuing the experiment of Fig. 6.7 for 200,000 iterations.
One can say that with the constraint RC-SUM, either the algorithm do not converge,
or it is converging very slowly to a wrong solution. Either ways, RC-SUM has not

found a correct solution.

distribution. The results are shown in Fig. 6.7. From Fig. 6.7(a) it is clear that
with all constraint the cost function has converged to zero except for RC-SUM, for
which the algorithm has not converged in 400 iterations. For all other three cases the
algorithm has converged to a correct solution, as shown in Fig. 6.7(b) and confirmed
by Fig. 6.7(c). Since the algorithm has not converged for RC-SUM, we continue the
same experiment for 200,000 iterations. The result is shown in Fig. 6.8. Looking at
Fig. 6.8(b), it is obvious that the algorithm for RC-SUM has not (yet) converged to
a correct solution. Two scenarios are possible. The first is that the algorithm has
not converged at all, in term of Λ̂. This can be plausible as the constraint space of
RC-SUM is compact. The second scenario is that it is converging, though extremely
slowly, to a wrong solution. Fig. 6.8(c) somehow supports this hypothesis as the
estimated Λ̂ for RC-SUM is close to a degenerate solution4.

4There is a third possibility that for RC-SUM the algorithm is converging to a local minimum.
However, it is less likely as the cost seems to be (slowly) converging to zero.

128 Experimental Results

6.3.2 Projections P9 → P2

For projections P9 → P2 we have r = 10. To find all possible wrong solutions
violating (D3) one needs to find partitions {I, J, K} such that 3|I|+ 2|J| < r = 10 and
I is nonempty. There are 7 possibilities which can be categorized as follows:

• |I| = 1, |J| = 0, 1, 2, 3,

• |I| = 2, |J| = 0, 1,

• |I| = 3, |J| = 0.

Here, we conduct the experiments similarly to the previous subsection, but this
time with 20 views and 40 points. In the first experiment we start with a depth
matrix of all ones as the initial solution. The results are illustrated in Fig. 6.9. In this
experiments the cost has converged to zero for all constraints except RC-SUM, as
shown in Fig. 6.9(a). Therefore, RC-SUM has not solved the projective factorization
equation Λ̂� [xij]− P̂X̂, and we cannot say anything more about it. By looking at Fig.
6.9(b), we can see that ES-MASK and R-NORM has converged to a correct solution,
while T-NORM has led to a wrong solution. Thus, we must expect that T-NORM has
converged to a degenerate Λ̂. This is confirmed by 6.9(c), showing that in estimated
depth matrix Λ̂ for T-NORM only the first row has all-nonzero elements, and the
matrix comprised of the rest of the rows of Λ̂ have few (namely 7) nonzero columns.
For this case, the corresponding partition {I, J, K} is as follows:

I = {1}, J = ∅, K = {2, 3, . . . , 20}

By Lemma 4.7 one must expect that the matrix P̂K = stack(P̂2, P̂3, . . . , P̂m) ∈ R57×10

has rank r′ = r− (3 |I|+ 2 |J|) = 10− (3 + 0) = 7. This can be verified by looking at
the singular values of the estimated P̂K:

1.6, 1.5, 1.3, 1.2, 1.1, 0.5, 0.4, 0.000008, 0.000004, 0.000002.

In the next experiment, we try to produce other types of degenerate solutions.
Therefore, for the initial Λ̂ we set all elements of the first 3 rows and also the 10th
column equal to 1. The rest of the elements are set to 0.05. The results are shown
in 6.10. From Fig. 6.10(a) we can see that for the three cases RC-SUM, R-NORM
and P-NORM the cost has converged to zero. For ES-MASK it seems like the cost
is converging, though slowly, to zero and running the algorithm for more iterations
supports this. Fig. 6.10(b) say that only ES-SUM has converged to a correct solution.
From Fig. 6.10(c) we can see that T-NORM and R-NORM have converged to the
degenerate solutions of the expected type (both violating depth condition (D3)).

The case of ES-MASK seems unusual. From 6.10(a) it seems that the cost is
converging to zero, and from 6.10(b) it is obvious that it has not converged to a
correct solution. However, the estimated depth matrix Λ̂ shown in Fig. 6.10(c) for
ES-MASK does not violate any of the conditions (D1-D3), even though it is somehow
degenerate as the estimated Λ̂ seems to have a lot of zero elements. Looking at Fig.

§6.3 Higher-dimensional projections 129

0 100 200 300 400
0

2

4

6

8

10

12

ES−MASK
RC−SUM
R−NORM
T−NORM

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

ES−MASK
RC−SUM
R−NORM
T−NORM

ES-MASK RC-SUM

R-NORM T-NORM
(a) Convergence (b) Depth Error (c) Estimated depth matrix Λ̂

Figure 6.9: The results of one run of our experiments for projections P9 → P2. (a)
shows that the cost has converged to zero for all constraints except RC-SUM. (b)
shows that only ES-MASK and RC-NORM has given a correct solution. (c) show that

T-NORM has converged to a degenerate wrong solution violating (D3).

6.10(c) for ES-MASK, it is clear that the first three row, plus the last row of are in I ∪ J,
that is I ∪ J = {1, 2, 3, 20}. Thus K = {4, 5, . . . , 19}. From 3|I|+ 2|J| < r = 10 the only
possible case is |I| = 1, |J| = 3. This we have r′ = r− (3|I|+ 2|J|) = 10− (3+ 6) = 1.
It can be proved that for r′ = 1, the matrix Λ̂K (that is the submatrix of Λ̂ created by
choosing rows in K) can have at most one nonzero column. However, by looking at
Fig. 6.10(c), it is clear that with the chosen K, the matrix Λ̂K has 16 nonzero columns
(columns 4 to 19). The reason why this has happened is that the algorithm actually
has not converged for the constraint ES-MASK, even though the cost is converging.
In fact, our tests show that the norm of Λ̂ is getting unboundedly large. This is
possible because the constraint space of ES-MASK is non-compact.

For both T-NORM and R-NORM the Λ̂ estimated by the algorithm is among the
expected wrong solutions, both violating (D3). Looking at Fig. 6.10(c), it is obvious
that for R-NORM we have

I ∪ J = {1, 2, 3, 14},

and thus, K = {4, . . . , 13} ∪ {15, . . . , 20}. From the condition 3|I|+ 2|J| < r = 10 it is
only possible to have |I| = 1, |J| = 3. Thus, By Lemma 4.7 we must have the situation
where P̂K = stack({P̂i}i∈K) ∈ R48×10 has rank r′ = r− (3 |I|+ 2 |J|) = 10− (3 + 6) =
1. The singular values of Λ̂ obtained after 2000 iterations confirms this:

2.0, 0.0002, 0.00013, 0.00013, 0.00009, 0.00008, 0.00007, 0.00006, 0.00005, 0.00004

By looking at the rows of Λ̂ shown in Fig. 6.10(c) for T-NORM we can conclude
that for this case I ∪ J = {1, 2, 3}. From the condition 3|I|+ 2|J| < r = 10, three cases
are possible, which are listed below along with the corresponding r′ = r − (3 |I|+
2 |J|):

1. |I| = 3, |J| = 0, r′ = 1,

130 Experimental Results

0 50 100 150 200 250 300
0

5

10

15

20

ES−MASK
RC−SUM
R−NORM
T−NORM

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ES−MASK
RC−SUM
R−NORM
T−NORM

ES-MASK RC-SUM

R-NORM T-NORM
(a) Convergence (b) Depth Error (c) Estimated depth matrix Λ̂

Figure 6.10: One run of our experiments for projections P9 → P2. (a) shows that for
all cases the costs are converging to zero. (b) shows that only RC-SUM has converged
to a correct solution. (c) shows that R-NORM and T-NORM have converged to two
different types of the wrong solutions violating (D3). Our tests show that for the
constraint ES-MASK the algorithm does not converge (in terms of finding Λ̂), even

though the cost is converging to zero.

2. |I| = 2, |J| = 1, r′ = 2,

3. |I| = 1, |J| = 2, r′ = 3.

To see which case have happened, we can use Lemma 4.7, suggesting P̂K =
stack(P̂4, . . . , P̂20) has rank r′ = r− (3 |I|+ 2 |J|) when P̂ has full column rank (which
is the case here according to our test). Now, the singular values of P̂K after 2000
iterations are

2.0, 1×10−8
, 1×10−8

, 1×10−8
, 4×10−9

, 4×10−10
, 3×10−10

, 1×10−10
, 5×10−11

, 5×10−11
.

This clearly suggests that r′ = Rank(P̂K) = 1. Therefore, from the three cases listed
above, the first one holds here, that is |I| = 3, |J| = 0.

6.4 Summary

We ran experiments separately for 3D to 2D projections and higher-dimensional pro-
jections. For 3D to 2D, by conducting a projective factorization algorithm for both
synthetic and real data, we demonstrated how the degenerate cross-shaped solu-
tions can happen, and how the use of proper constraints can prevent them from
happening. For higher-dimensional projections we ran numerical simulations testing
the algorithm for two cases of projections P4 → P2 and P9 → P2. In each case,
we showed how different types of degenerate solutions classified by our theory can
happen.

Chapter 7

Conclusion

7.1 Summary and Major Results

We extended the theory of projective reconstruction for the case of 3D to 2D projec-
tions as well as arbitrary dimensional projections. The purpose was to provide tools
for the analysis of projective reconstruction algorithms, such as projective factoriza-
tion and bundle adjustment, which seek to directly solve the projection equations for
projection matrices and high-dimensional points.

In the case of 3D to 2D projections, we proved a more general version of the
projective reconstruction theorem, which is well suited to the choice and analysis of
depth constraints for factorization-based projective reconstruction algorithms. The
main result was that the false solutions to the factorization problem Λ̂� [xij] = P̂ X̂,
are restricted to the cases where Λ̂ has zero rows or zero columns, and also, when it
has a cross-shaped structure. Any solution which does not fall in any of these classes
is a correct solution, equal to the true setup of camera matrices and scene points up
to projectivity.

We demonstrated how our theoretical results can be used for the analysis of ex-
isting depth constraints used for the factorization-based algorithms and also for the
design of new types of depth constraints. Amongst other results, we presented a
new class of linear equality constraints which are able to rule out all the degenerate
false solutions. Our experiments also showed that choosing a good initial solution
can result in finding the correct depths, even with some of the constraints that do not
completely rule out all the false solutions.

Next, we investigated the more general problem of projective reconstruction for
multiple projections from an arbitrary dimensional space Pr−1 to lower dimensional
spaces Psi−1. We obtained the following results for a generic setup with sufficient
number of projection matrices and high-dimensional points:

• The multi-view (Grassmann) tensor obtained from the image points xij is
unique up to a scaling factor.

• Any solution to the set of equations λ̂ijxij = P̂iX̂j is projectively equivalent to
the true setup, if the P̂i-s and X̂j-s are nonzero and P̂ = stack(P̂1, . . . , P̂m) has
a non-singular r×r submatrix created by choosing strictly fewer than si rows
from each P̂i ∈ Rsi×r.

131

132 Conclusion

• Any solution to the set of equations λ̂ijxij = P̂iX̂j is projectively equivalent to
the true setup if λ̂ij 6= 0 for all i, j.

• False solutions to the projective factorization problem Λ̂ � [xij] = P̂ X̂, where
elements of Λ̂ = [λ̂ij] are allowed to be zero, can be much more complex than
in the case of projections P3 → P2, as demonstrated theoretically in Sect. 4.4
and experimentally in Sect. 6.3.

7.2 Future Work

The current work can be extended in many ways. For example, here it has been as-
sumed that all points are visible in all views. A very important extension is therefore
considering the case of incomplete image data. Notice that dealing with this prob-
lem is harder than the case of zero estimated projective depths λ̂ij, because knowing
λ̂ij = 0 implies that the estimated scene point X̂j is in the null space of the estimated
camera matrix P̂i. This is while a missing image point xij provides no information
at all. Another assumption here was that the image data is not contaminated with
noise. Giving theoretically guaranteed results for the case of noisy data is another
major issue which needs to be addressed in future work.

Another follow-up of this work is the study of the convergence of specific
factorization-based algorithms for each of the constraints, and the design of con-
straints with desirable convergence properties. For example, we know that certain
convergence properties can be proved for certain algorithms when the sequence of
iterative solutions lie in a compact set. However, guaranteed convergence to a global
minimum is still an unsolved problem. Another interesting problem is to find com-
pact constraints which can be efficiently implemented with the factorization based
algorithms, give a descent move at every iteration, and are able to rule out all the
false solutions, at least for 3D to 2D projections. A partial solution to this problem
has been given in Sect. 3.3.1.4, where we introduced a compact constraint with all
these desired properties, except that it only rules out most cases of wrong solutions.
Finding such constraints which can exclude all possible wrong solutions is still an
unanswered problem.

For the case of arbitrary dimensional projections we obtained our results assum-
ing a generic configuration of projection matrices and high-dimensional points, with-
out specifying the corresponding generic set clearly in geometric terms. Therefore,
it would be useful to compile a simplified list of all the required generic properties
needed for the proof of projective reconstruction. This is because, in almost all appli-
cations (motion segmentation, nonrigid shape recovery, etc.) the projection matrices
and points have a special structure, meaning they are members of a nongeneric set.
It is now a nontrivial question whether the restriction of the genericity conditions to
this nongeneric set is relatively generic.

Bibliography

Agarwal, P. K. and Mustafa, N. H., 2004. k-means projective clustering. In Pro-
ceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, PODS ’04 (Paris, France, 2004), 155–165. ACM, New York,
NY, USA. doi:http://doi.acm.org/10.1145/1055558.1055581. http://doi.acm.org/10.

1145/1055558.1055581. (cited on page 106)

Agarwal, S.; Snavely, N.; Seitz, S. M.; and Szeliski, R., 2010. Bundle adjustment in
the large. In Proceedings of the 11th European Conference on Computer Vision: Part II,
ECCV’10 (Heraklion, Crete, Greece, 2010), 29–42. Springer-Verlag, Berlin, Heidel-
berg. http://dl.acm.org/citation.cfm?id=1888028.1888032. (cited on page 13)

Angst, R. and Pollefeys, M., 2013. Multilinear factorizations for multi-camera rigid
structure from motion problems. International Journal of Computer Vision, 103, 2
(2013), 240–266. (cited on pages 24, 116, and 118)

Angst, R.; Zach, C.; and Pollefeys, M., 2011. The generalized trace-norm and
its application to structure-from-motion problems. In Computer Vision (ICCV), 2011
IEEE International Conference on, 2502 –2509. doi:10.1109/ICCV.2011.6126536. (cited
on pages 17 and 51)

Bradley, P. S. and Mangasarian, O. L., 2000. k-plane clustering. J. of Global Op-
timization, 16 (January 2000), 23–32. doi:10.1023/A:1008324625522. http://portal.

acm.org/citation.cfm?id=596077.596262. (cited on page 106)

Bregler, C.; Hertzmann, A.; and Biermann, H., 2000. Recovering non-rigid 3d
shape from image streams. In Computer Vision and Pattern Recognition, 2000. Pro-
ceedings. IEEE Conference on, vol. 2, 690–696 vol.2. doi:10.1109/CVPR.2000.854941.
(cited on page 115)

Buchanan, T., 1988. The twisted cubic and camera calibration. Computer Vision,
Graphics, and Image Processing, 42, 1 (1988), 130–132. (cited on page 32)

Costeira, J. P. and Kanade, T., 1998. A multibody factorization method for indepen-
dently moving objects. International Journal of Computer Vision, 29 (1998), 159–179.
http://dx.doi.org/10.1023/A:1008000628999. 10.1023/A:1008000628999. (cited on
pages 105 and 106)

Dai, Y.; Li, H.; and He, M., 2010. Element-wise factorization for n-view projective
reconstruction. In Proceedings of the 11th European conference on Computer vision: Part
IV, ECCV’10 (Heraklion, Crete, Greece, 2010), 396–409. Springer-Verlag, Berlin,

133

http://dx.doi.org/http://doi.acm.org/10.1145/1055558.1055581
http://doi.acm.org/10.1145/1055558.1055581
http://doi.acm.org/10.1145/1055558.1055581
http://dl.acm.org/citation.cfm?id=1888028.1888032
http://dx.doi.org/10.1109/ICCV.2011.6126536
http://dx.doi.org/10.1023/A:1008324625522
http://portal.acm.org/citation.cfm?id=596077.596262
http://portal.acm.org/citation.cfm?id=596077.596262
http://dx.doi.org/10.1109/CVPR.2000.854941
http://dx.doi.org/10.1023/A:1008000628999

134 BIBLIOGRAPHY

Heidelberg. http://dl.acm.org/citation.cfm?id=1888089.1888119. (cited on pages
16, 17, 21, and 51)

Dai, Y.; Li, H.; and He, M., 2013. Projective multi-view structure and motion from
element-wise factorization. PAMI, PP, 99 (2013), 1–1. doi:10.1109/TPAMI.2013.20.
(cited on pages 2, 16, 17, 21, 51, and 55)

Elhamifar, E. and Vidal, R., 2009. Sparse subspace clustering. In 2009 IEEE Confer-
ence on Computer Vision and Pattern Recognition (Miami, FL, June 2009), 2790–2797.
IEEE. doi:10.1109/CVPRW.2009.5206547. http://dx.doi.org/10.1109/CVPRW.2009.

5206547. (cited on pages 107 and 108)

Faugeras, O. D., 1992. What can be seen in three dimensions with an uncalibrated
stereo rig. In Proceedings of the Second European Conference on Computer Vision, ECCV
’92, 563–578. Springer-Verlag, London, UK, UK. http://dl.acm.org/citation.cfm?id=

645305.648717. (cited on page 11)

Favaro, P.; Vidal, R.; and Ravichandran, A., 2011. A closed form solution to robust
subspace estimation and clustering. In 2011 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE. (cited on page 109)

Fischler, M. A. and Bolles, R. C., 1981. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24, 6 (1981), 381–395. (cited on page 107)

Hartley, R.; Gupta, R.; and Chang, T., 1992. Stereo from uncalibrated cameras.
In Computer Vision and Pattern Recognition, 1992. Proceedings CVPR ’92., 1992 IEEE
Computer Society Conference on, 761–764. doi:10.1109/CVPR.1992.223179. (cited on
page 11)

Hartley, R. and Kahl, F., 2007. Critical configurations for projective reconstruction
from multiple views. Int. J. Comput. Vision, 71, 1 (Jan. 2007), 5–47. doi:10.1007/

s11263-005-4796-1. http://dx.doi.org/10.1007/s11263-005-4796-1. (cited on pages
36 and 37)

Hartley, R. and Vidal, R., 2008. Perspective nonrigid shape and motion recov-
ery. 276–289. doi:doi:10.1007/978-3-540-88682-2_22. http://dx.doi.org/10.1007/

978-3-540-88682-2_22. (cited on pages 5, 22, 23, 115, and 116)

Hartley, R. I. and Schaffalitzky, F., 2004. Reconstruction from projections using
Grassmann tensors. In European Conference on Computer Vision. (cited on pages 2,
5, 6, 12, 17, 19, 22, 65, 66, 67, 69, 71, 89, and 116)

Hartley, R. I. and Zisserman, A., 2004. Multiple View Geometry in Computer Vision.
Cambridge University Press, second edn. (cited on pages 2, 11, 13, 15, 16, 17, 18,
20, 24, 30, 31, 32, 36, 37, 39, 43, 52, and 53)

Heinrich, S. B. and Snyder, W. E., 2011. Internal constraints of the trifocal tensor.
CoRR, abs/1103.6052 (2011). (cited on page 18)

http://dl.acm.org/citation.cfm?id=1888089.1888119
http://dx.doi.org/10.1109/TPAMI.2013.20
http://dx.doi.org/10.1109/CVPRW.2009.5206547
http://dx.doi.org/10.1109/CVPRW.2009.5206547
http://dx.doi.org/10.1109/CVPRW.2009.5206547
http://dl.acm.org/citation.cfm?id=645305.648717
http://dl.acm.org/citation.cfm?id=645305.648717
http://dx.doi.org/10.1109/CVPR.1992.223179
http://dx.doi.org/10.1007/s11263-005-4796-1
http://dx.doi.org/10.1007/s11263-005-4796-1
http://dx.doi.org/10.1007/s11263-005-4796-1
http://dx.doi.org/doi:10.1007/978-3-540-88682-2_22
http://dx.doi.org/10.1007/978-3-540-88682-2_22
http://dx.doi.org/10.1007/978-3-540-88682-2_22

BIBLIOGRAPHY 135

Heyden, A.; Berthilsson, R.; and Sparr, G., 1999. An iterative factorization method
for projective structure and motion from image sequences. Image Vision Comput.,
17, 13 (1999), 981–991. (cited on pages 2, 5, 15, 21, and 53)

Ho, J.; Yang, M.-H.; Lim, J.; Lee, K.-C.; and Kriegman, D., 2003. Clustering ap-
pearances of objects under varying illumination conditions. In Computer Vision
and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on,
vol. 1, I–11 – I–18 vol.1. doi:10.1109/CVPR.2003.1211332. (cited on page 105)

Hong, W.; Wright, J.; Huang, K.; and Ma, Y., 2005. A multiscale hybrid linear
model for lossy image representation. In Computer Vision, 2005. ICCV 2005. Tenth
IEEE International Conference on, vol. 1, 764 – 771 Vol. 1. doi:10.1109/ICCV.2005.12.
(cited on page 105)

Kanatani, K., 2001. Motion segmentation by subspace separation and model selec-
tion. In Proc. 8th Int. Conf. Comput. Vision, 586–591. (cited on pages 105 and 106)

Lin, Z.; Chen, M.; and Wu, L., 2010. The augmented lagrange multiplier method for
exact recovery of corrupted low-rank matrices. Analysis, math.OC, Technical Re-
port UILU-ENG-09-2215 (2010), –09–2215. http://arxiv.org/abs/1009.5055. (cited
on pages 17 and 21)

Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; and Ma, Y., 2010a. Robust recovery of sub-
space structures by low-rank representation. CoRR, abs/1010.2955 (2010). (cited
on page 108)

Liu, G.; Lin, Z.; and Yu, Y., 2010b. Robust subspace segmentation by low-rank
representation. In International Conference on Machine Learning, 663–670. (cited on
page 108)

Lu, L. and Vidal, R., 2006. Combined central and subspace clustering for computer
vision applications. In Proceedings of the 23rd international conference on Machine
learning, ICML ’06 (Pittsburgh, Pennsylvania, 2006), 593–600. ACM, New York,
NY, USA. doi:http://doi.acm.org/10.1145/1143844.1143919. http://doi.acm.org/10.

1145/1143844.1143919. (cited on page 105)

Luenberger, D. G., 1984. Linear and Nonlinear Programming. Addison-Wesley Pub-
lishing Company, 2nd ed. edn. (cited on page 5)

Ma, Y.; Derksen, H.; Hong, W.; and Wright, J., 2007. Segmentation of multivariate
mixed data via lossy data coding and compression. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 29, 9 (2007), 1546–1562. (cited on page
107)

Mahamud, S.; Hebert, M.; Omori, Y.; and Ponce, J., 2001. Provably-convergent
iterative methods for projective structure from motion. In CVPR, 1018–1025. (cited
on pages 2, 5, 15, 16, 18, 21, 53, and 55)

http://dx.doi.org/10.1109/CVPR.2003.1211332
http://dx.doi.org/10.1109/ICCV.2005.12
http://arxiv.org/abs/1009.5055
http://dx.doi.org/http://doi.acm.org/10.1145/1143844.1143919
http://doi.acm.org/10.1145/1143844.1143919
http://doi.acm.org/10.1145/1143844.1143919

136 BIBLIOGRAPHY

Oliensis, J. and Hartley, R., 2007. Iterative extensions of the Sturm/Triggs algo-
rithm: convergence and nonconvergence. PAMI, 29, 12 (2007), 2217 – 2233. doi:doi:
10.1109/TPAMI.2007.1132. http://dx.doi.org/10.1109/TPAMI.2007.1132. (cited on
pages 2, 3, 13, 15, 16, and 18)

Semple, J. and Kneebone, G., 1952. Algebraic Projective Geometry. Oxford Classic
Texts in the Physical Sciences Series. Clarendon Press. ISBN 9780198503637. http:
//books.google.com.au/books?id=qIFzkgBikEUC. (cited on pages 32 and 37)

Sinkhorn, R., 1964. A relationship between arbitrary positive matrices and doubly
stochastic matrices. The Annals of Mathematical Statistics, 35, 2 (1964), pp. 876–879.
(cited on pages 15, 51, and 52)

Sinkhorn, R., 1967. Diagonal equivalence to matrices with prescribed row and col-
umn sums. The American Mathematical Monthly, 74, 4 (1967), pp. 402–405. (cited on
pages 15, 51, and 52)

Sturm, P. F. and Triggs, B., 1996. A factorization based algorithm for multi-image
projective structure and motion. In ECCV, 709–720. http://dl.acm.org/citation.cfm?

id=645310.649025. (cited on pages 2, 14, and 18)

Tipping, M. E. and Bishop, C. M., 1999. Mixtures of probabilistic principal com-
ponent analyzers. Neural Comput., 11 (February 1999), 443–482. doi:10.1162/

089976699300016728. http://portal.acm.org/citation.cfm?id=309394.309427. (cited
on page 106)

Triggs, B., 1996. Factorization methods for projective structure and motion. In CVPR,
845–. http://dl.acm.org/citation.cfm?id=794190.794634. (cited on pages 2, 15, 18,
52, and 53)

Triggs, B.; McLauchlan, P. F.; Hartley, R. I.; and Fitzgibbon, A. W., 2000. Bundle
adjustment - a modern synthesis. In ICCV Proceedings of the International Workshop
on Vision Algorithms, 298–372. (cited on pages 2 and 18)

Tseng, P., 2000. Nearest q-flat to mpoints. J. Optim. Theory Appl., 105 (April
2000), 249–252. doi:10.1023/A:1004678431677. http://portal.acm.org/citation.cfm?

id=345260.345322. (cited on page 106)

Ueshiba, T. and Tomita, F., 1998. A factorization method for projective and
euclidean reconstruction from multiple perspective views via iterative depth
estimation. Computer, I (1998), 296–310. http://www.springerlink.com/index/

vcxuej3m7d300f4d.pdf. (cited on pages 2, 15, 16, 21, and 56)

Vidal, R., 2011. Subspace clustering. Signal Processing Magazine, IEEE, 28, 2 (march
2011), 52–68. doi:10.1109/MSP.2010.939739. (cited on pages 106 and 107)

Vidal, R. and Abretske, D., 2006. Nonrigid shape and motion from multiple per-
spective views. In ECCV, vol. 3952 of Lecture Notes in Computer Science, 205–218.
Springer. (cited on pages 5, 21, and 115)

http://dx.doi.org/doi:10.1109/TPAMI.2007.1132
http://dx.doi.org/doi:10.1109/TPAMI.2007.1132
http://dx.doi.org/10.1109/TPAMI.2007.1132
http://books.google.com.au/books?id=qIFzkgBikEUC
http://books.google.com.au/books?id=qIFzkgBikEUC
http://dl.acm.org/citation.cfm?id=645310.649025
http://dl.acm.org/citation.cfm?id=645310.649025
http://dx.doi.org/10.1162/089976699300016728
http://dx.doi.org/10.1162/089976699300016728
http://portal.acm.org/citation.cfm?id=309394.309427
http://dl.acm.org/citation.cfm?id=794190.794634
http://dx.doi.org/10.1023/A:1004678431677
http://portal.acm.org/citation.cfm?id=345260.345322
http://portal.acm.org/citation.cfm?id=345260.345322
http://www.springerlink.com/index/vcxuej3m7d300f4d.pdf
http://www.springerlink.com/index/vcxuej3m7d300f4d.pdf
http://dx.doi.org/10.1109/MSP.2010.939739

BIBLIOGRAPHY 137

Vidal, R.; Ma, Y.; and Sastry, S., 2005. Generalized principal component analysis
(gpca). IEEE Trans. Pattern Anal. Mach. Intell., 27, 12 (2005), 1945–1959. (cited on
page 106)

Vidal, R.; Tron, R.; and Hartley, R., 2008. Multiframe motion segmentation with
missing data using powerfactorization and gpca. Int. J. Comput. Vision, 79 (August
2008), 85–105. doi:10.1007/s11263-007-0099-z. http://portal.acm.org/citation.cfm?

id=1363334.1363356. (cited on pages 104, 105, and 106)

Wolf, L. and Shashua, A., 2002. On projection matrices Pk → P2, k = 3, . . . , 6, and
their applications in computer vision. IJCV, 48, 1 (2002), 53–67. (cited on pages 5,
21, 23, and 110)

Xiao, J. and Kanade, T., 2005. Uncalibrated perspective reconstruction of deformable
structures. In Tenth IEEE International Conference on Computer Vision (ICCV ’05),
vol. 2, 1075 – 1082. (cited on pages 5, 6, 21, and 115)

Yang, A. Y.; Wright, J.; Ma, Y.; and Sastry, S. S., 2008. Unsupervised segmentation
of natural images via lossy data compression. Comput. Vis. Image Underst., 110 (May
2008), 212–225. doi:10.1016/j.cviu.2007.07.005. http://portal.acm.org/citation.cfm?

id=1363359.1363381. (cited on page 105)

Yang, J. and Yuan, X., 2013. Linearized augmented Lagrangian and alternat-
ing direction methods for nuclear norm minimization. Math. Comp., 82, 281
(2013), 301–329. doi:10.1090/S0025-5718-2012-02598-1. http://dx.doi.org/10.1090/

S0025-5718-2012-02598-1. (cited on pages 17 and 21)

Zangwill, W., 1969. Nonlinear programming: a unified approach. Prentice-Hall interna-
tional series in management. Prentice-Hall. http://books.google.com.au/books?id=

TWhxLcApH9sC. (cited on page 5)

Zelnik-Manor, L. and Irani, M., 2003. Degeneracies, dependencies and their im-
plications in multi-body and multi-sequence factorizations. In Computer Vision
and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on,
vol. 2, II – 287–93 vol.2. doi:10.1109/CVPR.2003.1211482. (cited on page 105)

http://dx.doi.org/10.1007/s11263-007-0099-z
http://portal.acm.org/citation.cfm?id=1363334.1363356
http://portal.acm.org/citation.cfm?id=1363334.1363356
http://dx.doi.org/10.1016/j.cviu.2007.07.005
http://portal.acm.org/citation.cfm?id=1363359.1363381
http://portal.acm.org/citation.cfm?id=1363359.1363381
http://dx.doi.org/10.1090/S0025-5718-2012-02598-1
http://dx.doi.org/10.1090/S0025-5718-2012-02598-1
http://dx.doi.org/10.1090/S0025-5718-2012-02598-1
http://books.google.com.au/books?id=TWhxLcApH9sC
http://books.google.com.au/books?id=TWhxLcApH9sC
http://dx.doi.org/10.1109/CVPR.2003.1211482

	Acknowledgments
	Abstract
	Contents
	Introduction
	Thesis Statement
	Introduction
	Thesis Outline

	Background and Related Work
	Conventions and problem formulation
	Notation
	Genericity
	The projection-point setup

	Projective Reconstruction Algorithms
	Tensor-Based Algorithms
	Bundle Adjustment
	Projective Factorization
	Rank Minimization

	Motivation
	Issues with the tensor-based approaches and theorems
	Projective Factorization Algorithms
	Arbitrary Dimensional Projections
	Points moving with constant velocity
	Motion Segmentation
	Nonrigid Motion

	Correspondence Free Structure from Motion
	Projective Equivalence and the Depth Matrix
	Equivalence of Points
	The depth matrix

	Summary

	A Generalized Theorem for 3D to 2D Projections
	Background
	The Fundamental Matrix
	The Triangulation Problem
	The Camera Resectioning Problem
	Cross-shaped Matrices

	A General Projective Reconstruction Theorem
	The Generic Camera-Point Setup
	The Existence of a Nonzero Fundamental Matrix
	Projective Equivalence for Two Views
	Projective Equivalence for All Views
	Minimality of (D1-D3) and Cross-shaped Configurations

	The Constraint Space
	Compact Constraint Spaces
	The Transportation Polytope Constraint
	Fixing the Norms of Rows and Columns
	Fixed Row or Column Norms
	Fixing Norms of Tiles

	Linear Equality Constraints
	Fixing Sums of Rows and Columns
	Fixing Elements of one row and one column
	Step-like Mask Constraint: A Linear Reconstruction Friendly Equality Constraint

	Projective Reconstruction via Rank Minimization
	Iterative Projective Reconstruction Algorithms
	Summary

	Arbitrary Dimensional Projections
	Background
	Triangulation
	An exchange lemma
	Valid profiles and the Grassmann tensor

	Projective Reconstruction
	The uniqueness of the Grassmann tensor
	Proof of reconstruction for the special case of i 1
	Proof of reconstruction for general case

	Restricting projective depths
	Wrong solutions to projective factorization
	A simple example of wrong solutions
	Wrong solutions: The general case
	Dealing with the views in I and J
	Dealing with the views in K
	Constructing the degenerate solution

	The special case of P3 P2

	Proofs
	Proof of Proposition [lemma][2][4]4.2
	Proof of Theorem [theorem][3][4]4.3 (Uniqueness of the Grassmann Tensor)
	Proof of Lemma [lemma][7][4]4.7

	Summary

	Applications
	Motion Segmentation
	Affine Cameras
	Subspace Clustering
	Projective Cameras
	The pure relative translations case
	The coplanar motions case
	General rigid motions

	Nonrigid Shape Recovery
	Correspondence Free Structure from Motion
	Summary

	Experimental Results
	Constraints and Algorithms
	3D to 2D projections
	Synthetic Data
	Real Data

	Higher-dimensional projections
	Projections P4 P2
	Projections P9 P2

	Summary

	Conclusion
	Summary and Major Results
	Future Work

