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Eventually reaches the sea

Sodo salutations to various deities
Reach the same almighty

From Sandhyavandanam (A salute to the twilight)
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Beyond the worlds

Their rulers and their denizens
Beyond the unwordly void
The one Who shines alone
Him I worship

From Andhra Maha Bhagavatam by Bammera Potana
(c. 1400 A.D.)
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PREFACE

It is now more than a decade since I wrote the book Nonlinear Systems Analysis. Since that
time, several developments have taken place in this area which have made it desirable to
update the contents of the book. Accordingly, virtually the entire book has been rewritten.
The most notable changes are the following:

1) During the past decade, there have been some significant advances in the area of
nonlinear control system design based on the use of differential geometric methods. Thus it
is imperative thatanyone interested in nonlinear system theory should have at least a passing
acquaintance with these methods. In this second edition, I have included a new chapter
which discusses the differential geometric approach (Chapter 7). For ease of exposition, all
systems are considered to evolve over an open subset of R"; thus the analysis is only local.
Topics covered include reachability, observability, and feedback linearization (in both the
input-state and input-output settings), zero dynamics, and the stabilization of linearizable
systems. In addition to presenting the theory, I have also included some applications of the
theory to problems in robotics. Motivated by this chapter, an interested and diligent student
could pursue a more rigorous course of study with an advanced text.

2) Several significant results have been obtained in the "traditional” areas of Lyapunov
stability and input-output stability since the writing of the firstedition. Some of these results
are included in the present edition, such as: observer-controller stabilization of nonlinear
systems, and the stability of hierarchical systems (Section 5.8); relationships between
Lyapunov stability and input-output stability (Section 6.3); and a useful class of transfer
functions,of distributed systems (Section 6.5). In addition to the above, Section 4.2, contain-
ing a rigorous analysis of the describing function method, is also new.

3) Various standard texts in stability theory have gone out of print, making their con-
tents all but inaccessible to the student. Two examples of such books are: Stability of Motion
by W. Hahn and Feedback Systems: Input-Output Properties by C. A. Desoer and myself.
At the same time some of the techniques presented in these books are finding new and previ-
ously unsuspected applications. With this in mind, in the present edition I have included
some relevant material from these and other classic books, such as the converse Lyapunov
theory (Section 5.7), and the feedback stability of time-varying and/or nonlinear systems
(Section 6.6).

4) In view of the increasing importance of digital computers, I have included a discus-
sion of discrete-time systems in the chapters dealing with Lyapunov stability and input-
output stability.

5) Three new appendices have been added. Appendix A describes a sixty year-old
theorem due to Witold Orlicz, on the prevalence of differential equations with unique solu-
tions. This paper is quite inaccessible, but its contents deserve wide dissemination. Appen-
dix B gives a proof of the Kalman-Yacubovitch lemma, while Appendix C contains a proof
of the Frobenius theorem. The contents of the last two appendices are of course readily
available elsewhere, but their inclusion in the present text makes it more self-contained.

1X



6) The original edition of this book contained examples which were mostly drill prob-
lems or exercises. During the recent years I have come to feel that nonlinear system theory
is most useful in studying the behavior of an entire class of systems rather than a given
specific system. Accordingly, several applications of nonlinear system theory have been
included throughout the book. Most of them have to do with robotics in some form or other.

With these changes, the book is somewhat bigger than the first edition. It would be
difficult to cover the entire book during a single semester. However, I hope its value as a
reference has been enhanced by the changes. Chapter 2 contains basic material which
should be covered in order to appreciate the remainder of the text. But a sincere attempt has
been made to ensure that Chapters 3 through 7 are independent, so that an instructor can pick
and choose material to suit his/her needs. Even within a chapter, it is possible to cover cer-
tain sections and omit others. A perusal of the Contents reveals the amount of flexibility
available in putting together a suitable course from the contents of the text.

In spite of the enlargement in the size of the book, some topics which deserve the atten-
tion of system theorists are not included. Examples of such topics are chaotic motions,
averaging analysis, Volterra series, bifurcation theory, and catastrophe theory. I have made
a conscious decision to omit these topics, mainly to keep the length of the book within rea-
sonable limits. But no study of nonlinear systems is complete without at least an introduc-
tion to these topics. Moreover, there are several excellent texts available addressing each of
the above topics.

In the preface to the first edition, I wrote fancifully that the book could be used by
"engineers, mathematicians, biologists et cetera.” Judging by the Science Citation Index,
no biologists appear to have read the book (though two social scientists have, amazingly
enough). More realistically, I would expect the present edition to be of interest primarily to
engineers interested in a rigorous treatment of nonlinear systems, and to mathematicians
interested in system theory. Though some aspects of control are covered in the book (espe-
cially in Chapter 7), the focus is still on analysis rather than synthesis. Hence I have retained
the original title. I do expect that the book can be used not just in Electrical Engineering
departments, but also in Mechanical Engineering departments, and perhaps in some depart-
ments of Applied Mathematics. Above all, I hope it will continue to serve as a reference
source for standard results in nonlinear system analysis.

I would like to thank Toshiharu Sugie for his careful reading of early versions of
Chapters 5 and 6. I would also like to thank those who reviewed the text, particularly Brian
Anderson, Aristotle Araposthasis, Ragu Balakrishnan, Joseph Bentsman, Alan Desrochers,
Brad Dickinson, Ashok Iyer, Bob Newcomb, Charles L. Phillips, and Irwin Sandberg.

It is my pleasure and honor to dedicate to this book to Professor Charles A. Desoer of
the University of California at Berkeley. Though I was not privileged to be one of his Ph.D.
students, I was fortunate enough to have come under his influence while still at a formative
stage in my career. Any instances of originality, creativity and clarity in my research and
exposition are but pale imitations of his shining example.



NOTE TO THE READER

All items within each section are numbered consecutively, be they equations, theorems,
definitions, or something else. A reference such as "(17)" refers to the 17-th item within the
same section. When it is necessary to refer to an item from another section, the full citation
is given, e.g., "Theorem (5.1.16)." All theorems, lemmas, and definitions are stated in ital-
ics. In a definition, the concept being defined is displayed in bold face. The same conven-
tion is used in the running text as well. The use of italics in the running text is reserved for
emphasis. The box symbol B is used to denote the end of a proof. In cases where there
might be some ambiguity, the same symbol is also used to denote the end of an example.
Lower-case bold letters such as x denote vectors, upper-case bold letters such as A denote
matrices, and italic letters denote scalars; however, there are a few exceptions to this con-
vention. For example, the identity matrix is denoted by 1.

Finally, the reader is urged to attempt all the problems, since they are an integral part of
the text. Happy reading!

Xi






1. INTRODUCTION

The topic of this book is the analysis of nonlinear systems. The adjective "nonlinear"” can be
interpreted in one of two ways, namely: "not linear" or "not necessarily linear." The latter
meaning is intended here.

Why should one study nonlinear systems? The fact is that virtually ail physical sys-
tems are nonlinear in nature. Sometimes it is possible to describe the operation of a physical
system by a linear model, such as a set of ordinary linear differential equations. This is the
case, for example,4f the mode of operation of the physical system does not deviate too much
from the "nominal” set of operating conditions. Thus the analysis of linear systems occupies
an important place in system theory. But in analyzing the behaviour of any physical system,
one often encounters situations where the linearized model is inadequate or inaccurate; that
is the time when the contents of this book may prove useful.

There are several important differences between linear systems and nonlinear systems:
1) In the case of linear systems described by a set of linear ordinary differential equations, it
is often possible to derive closed-form expressions for the solutions of the system equations.
In general, this is not possible in the case of nonlinear systems described by a set of non-
linear ordinary differential equations. As a consequence, it is desirable to be able to make
some predictions about the behaviour of a nonlinear system even in the absence of closed-
form expressions for the solutions of the system equations. This type of analysis, called
qualitative analysis or approximate analysis, is much less relevant to linear systems. 2)
The analysis of nonlinear systems makes use of a wider variety of approaches and
mathematical tools than does the analysis of linear systems. The main reason for this variety
is that no tool or methodology in nonlinear systems analysis is universally applicable (in a
fruitful manner). Hence the nonlinear systems analyst needs a wide variety of tools in his or
her arsenal. 3)In general, the level of mathematics needed to master the basic ideas of non-
linear systems analysis is higher than that for the linear case. Whereas matrix algebra usu-
ally occupies center stage in a first course in linear systems analysis, here we use ideas from
more advanced topics such as functional analysis and differential geometry.

A commonly used model for a nonlinear system is
1 x(0)=flr, x(t), u(r)], Vt 20,

where ¢ denotes time; x(r) denotes the value of the function x(-) at time ¢ and is an »n-
dimensional vector; u(¢) is similarly defined and is an m-dimensional vector; and the func-
tion f associates, with each value of t, x(t), and u(t), a corresponding n-dimensional vector.
Following common convention, this is denoted as: reR,, x(r)eR", u(r)e R", and
f: R, xR"XR™ - R". Note that (1) is a first-order vector differential equation. The quantity
x(r) is generally referred to as the state of the system at time ¢, while u(¢) is called the input
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or the control function. It is clear that (1) represents a continuous-time system. Its
discrete-time counterpart is

2 X =f(x, ), k=0,1,2,3,,

which is a first-order vector difference equation. There is no loss of generality in assuming
that the system at hand is described by a first-order (differential or difference) equation. To
see this, suppose the system is described by the n-th order scalar differential equation

n n—1 .
LY _ppr v,y 2D ), vezo.
ar” dat"

This equation can be recast in the form (1) by defining the n-dimensional state vector x() in
the familiar way, namely

d"ly ()

4 xl(t)=y(t)~x2(t)=)}(t)’”.vxn(t): n—-1
dt

Then (3) is equivalent to

X, (1) =x,(1),

x2(1)=x5(1),

Xy (1) =X,(2)
Xy =R [t x (1), x2(1), -, xu (D), w ()]
Now (5) is of the form (1) with
6 x(t)=[x (1) x, D],
7 X u)=lx; xp X Rt Xy, X))

More generally, even coupled nonlinear differential equations can be put into the form (1).
Analogous remarks apply also to difference equations. In fact, much of the power of
"modern” control theory derives from the generality and versatility of the state-space
descriptions (1) and (2).

In studying the system (1), one can make a distinction between two aspects,! generally
referred to as analysis and synthesis, respectively. Suppose the input function u(-) in (1) is

! Henceforth attention is focused on the continuous-time system (1), with the understanding that all
remarks apply, mutatis mutandis, to the discrete-time system (2).
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specified (i.e., fixed), and one would like to study the behaviour of the corresponding func-
tion x(-); this is usually referred to as analysis. Now suppose the problem is turned around:
the system description (1) is given, as well as the desired behaviour of the function x(-), and
the problem is to find a suitable input function u(-) that would cause x(-). to behave in this
desired fashion; this is usually referred to as synthesis. Most of this book is devoted to the
analysis of nonlinear systems.

The rest of this chapter is devoted to introducing several commonly used terms. The
system (1) is said to be forced, or to have an input; in contrast, a system described by an
equation of the form

8 )'((t).=f[t, x(0)], vVt 20,

is said to be unforced. Note that the distinction is not too precise. In the system (1), if u(-) is
specified, then it is possible to define a function f,: R, xR" — R" by

9 f,(t, x)=1T¢, x, u(r)].
In this case (1) becomes
10 x()=f,[1, x(1)}, Vt >0.

Moreover, if u(-) is clear from the context, the subscript u on f,, is often omitted. In this case
there is no distinction between (10) and (8). Thus it is safer to think of (8) as describing one
of two possible cases: (i) there is no external input to the system, or (ii) there is an external
input, which is kept fixed throughout the study.

11 Definition The system (1) or (8) is said to be autonomous if the function f does not
explicitly depend on its first argument t; it is said to be nonautonomous otherwise.

Note that some authors use "time-invariant” instead of "autonomous" and "time-
varying" instead of "nonautonomous."”

Consider the system (1), and suppose it is autonomous, i.e., f is independent of 1. Now
suppose a non-constant input function u(') is applied. Then the corresponding function f,
defined in (10) may in fact depend on ¢ [since u(t) depends on t]. The point to note is that a
system may be either autonomous or nonautonomous depending on the context.

The next concept is central to nonlinear system theory.

12 Definition A vectorxyc R" is said to be an equilibrium of the unforced system (8) if
13 11, x5)=0, Vt 20.

If x, is an equilibrium of the system (8), then the differential equation
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14 x(0)=fl1, x(1)], Vi 219; X(29) =Xo,

has the unigue solution

15 x(t)=xg, Vt21,.

In other words, if a system starts in an equilibrium, it remains in that state thereafter.

Many features that are taken for granted in the case of linear systems do not hold for
nonlinear systems. This is one of the major challenges of nonlinear systems analysis. To
illustrate a few of these features, consider the system description (8). In order to represent a
physical system, the model (8) should satisfy one of the following statements:

1.
2.

Equation (8) has at least one solution (existence of a solution).

Equation (8) has exactly one solution for all sufficiently small values of ¢ (local
existence and uniqueness of solution).

Equation (8) has exactly one solution for all ¢ in the interval [0, ) (global
existence and uniqueness of solution).

Equation (8) has exactly one solution for all ¢ in the interval [0, o), and this solu-
tion depends continuously on the initial condition x(0) (well-posedness).

Statements 1 to 4 are progressively stronger. Ideally one would wish that the system
description (8) exhibits the behaviour described in Statement 4. Unfortunately, without
some restrictions on the nature of the function f, none of these statements may be true, as
illustrated by the following examples.

16 Example Consider the scalar differential equation

17 x()=—signx(s), V120;x(0) =0,

where the "sign" function is defined by

1, ifx=20
signx={ _

1, ifx <O

It is easy to verify that no continuously differentiable function x(-) exists such that (17) is
satisfied. Thus even Statement 1 does not hold for this example.

18 Example Consider the scalar differential equation

x()=

1
2x (1)

,Vt20;x(0)=0.

This equation admits two solutions, namely
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x()=x1"2.

Thus Statement 1 is true, but Statement 2 is false.

19 Example Consider the scalar differential equation

20 x()=1+x2(t), V1 20;x(0)=0.

Then, over the interval [0, 1), this equation has the unique solution
x(t)=tant.

But there is no continuously differentiable function x(-) defined over the entire interval
[0, ) such that (20) holds. This is because, as ¢t — n/2, the solution x(¢) >0, a
phenomenon known as "finite escape time." Thus Statements 1 and 2 are true for this sys-
tem, but Statement 3 is false. B

It is therefore clear that the questions of existence and uniqueness of solutions of (8),
and their continuous dependence on the initial conditions, are very important. These ques-
tions are studied in Chapter 2.

The subject of Chapter 3 is second-order systems. Before attempting a study of n-th
order systems in all of their generality, it is fruitful to begin with the special case of second-
order systems, since many of the arguments are simplified in this special case.

In Examples (18) and (19), it was possible to derive closed-form expressions for the
solutions of the differential equations under study, because the equations were of a very sim-
ple nature. However, this is not possible in general, and one must be content with approxi-
mate analysis methods. These are the subject of Chapter 4.

An important issue in nonlinear systems analysis is that of the well-behavedness, in a
suitably defined sense, of the solutions to the unforced system (8) or the forced system (1).
This is usually called the question of "stability.” Ideally one would like to draw conclusions
about the well-behavedness or otherwise of these solutions without actually solving the sys-
tem equations. Chapter 5 is concerned with the stability of unforced systems of the form (8),
while Chapter 6 is concerned with the stability of forced systems—so-called "input-output™
stability. An added bonus in Chapter 6 is that the systems studied are more general than (1);
in fact, the theory developed there applies equally well to delay systems, and systems
described by partial (not ordinary) differential equations.

Chapter 7 focuses on a recent development in the study of nonlinear control systems,
namely the use of differential-geometric methods. The general theme of this chapter is that
many results from the theory of linear control systems can be extended to a broad class of
autonomous nonlinear control systems.



2. NONLINEAR DIFFERENTIAL
EQUATIONS

In this chapter, we undertake a systematic study of nonlinear ordinary differential equations
(o.d.e.’s). As one can see from the examples given in Chapter 1, a nonlinear equation can in
general exhibit very wild and unusual behavior. However, it is shown in this chapter that,
for a practically significant class of nonlinear o0.d.e.’s, it is possible to ascertain the existence
and uniqueness of the solutions corresponding to each initial condition, as well as continu-
ous dependence of the solution on the initial condition.

Except for very special cases which are usually "cooked"” in advance, it is not possible
to obtain a closed-form expression for the solution of a nonlinear o.d.e. Hence it is neces-
sary to devise methods for analyzing the behavior of the solution of a given nonlinear o.d.e.
without relying on being able to find a closed-form solution for it. The numerical solution of
o.d.e.’s is a well-developed subject in its own right, and it is not covered in the present book;
the interested reader is referred to any of the several excellent books on the topic, e.g., Gear
(1971). In this chapter, we content ourselves with a method for obtaining bounds on the
solution of a given equation without actually solving the equation. Using this method, it is
possible to determine, at each instant of time, a region in R" in which the solution of the
given equation must lie. Such a method is useful for two reasons: (i) By obtaining bounds on
the solution, one can draw conclusions about the qualitative behavior of the solution, and the
labor involved is considerably less than that needed to find an exact solution. (ii) The
bounds obtained by this method can serve as a check on approximate solutions obtained by
other means, e.g., numerical solution using a computer.

The study of nonlinear o.d.e.’s in general terms requires rather advanced mathematical
tools. The first two sections of this chapter are devoted to developing these tools.

2.1 MATHEMATICAL PRELIMINARIES

This section contains an introduction to several concepts that are used subsequently,
such as linear vector spaces, normed linear spaces, Banach and Hilbert spaces, conver-
gence, and continuity.

2.1.1 Linear Vector Spaces

This subsection is devoted to an axiomatic development of linear vector spaces, both
real and complex. In most practical situations, it is enough to deal with real vector spaces.
However, it is sometimes necessary to deal with complex vector spaces in order to make the
theory complete. For example, a polynomial of degree n has n zeros only if one counts com-
plex zeros.
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Note that it is also possible to define a linear vector space over an arbitrary field (e.g.,
the binary field, the field of rational functions, etc.). However, such generality is not needed
in this book.

1 Definition A real linear vector space ( respectively, a complex linear vector space)
is a set'V together with two operations: the addition operation +: VXV — V and the multipli-
cation operation -:RXV — V (respectively -: CXV — V), such that the following axioms
hold:

vV x+ y=y+x, Vx, ye V (commutativity of addition).
(V2) x+(y+2)=(x+y)+z Vx,y, ze V(associativity of addition).

(V3) There is an element Oy in V such that x +0, =0y +x =x, Vxe V (existence of
additive identity).

(V4) ForeachxeV, there exists an element denoted by —x€ V such that x + (—x) =0y,
(existence of additive inverse).

(V5) For each r,, r,eR (respectively, c,c,€C), and each xeV, we have that
riy-(ryx)=(ryry)x[respectively c,"(cox)=(cc,)x].

(V6) For each reR (respectively ceC) and each x,yeV, we have
r(x+y)=rx+ry[respectivelyc:(x +y)=c'x +cy].

(V7) Foreachr, r,eR (respectively, for each c, c,€C) and each x€ V, we have
(ri+ryyx=ryx+ryx

(V8) ForeachxeV,wehavel-x=x.
This axiomatic definition of a linear vector space is illustrated by several examples.

2 Example The set R”, consisting of all ordered n-tuples of real numbers, becomes a
real linear vector space if addition and scalar multiplication are defined as follows: If

x=(x(, ", %), Y=, ", ¥, )€ R" and ris areal number, then
x"'y=(-xl +ylv “"xn+yn)~
Y orx=(rxg, o, rxy).

In other words, the sum of two n-tuples is obtained by component-wise addition, while the
product of a real number and an n-tuple is obtained by multiplying each component of the
n-tuple by the real number.

As a limiting case, it is interesting to note that R! =R, the set of real numbers, is itself a
real linear vector space.

Now let C” denote the set of all ordered n-tuples of complex numbers. By defining
addition and scalar multiplication as above, one can make C” into either a real linear vector
space or acomplex linear vector space, depending on the set of values to which the "scalar” r
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is restricted to belong. This shows that whether a linear vector space is real or complex is
determined, not by the nature of the elements of the space, but by whether the associated set
of scalars is the field of real numbers or the field of complex numbers.

3  Example Let F [a, b]denote the set of all real-valued functions defined over an inter-
val [a, b]in R. Thus a typical element of F [a, b] is a function f(-) mapping [a, b] into R.
The set F [a, b] becomes a real linear vector space if addition and scalar multiplication are
defined as follows: Let x() and y(-) be two functions in F [a, b]and let re R. Thenx +yis
the function defined by

x+y)t)=x(t)+y (1), Vte[a, b],
(rx)t)=rx@),Vtela, b].

Thus the sum of two functions is obtained by point-wise addition and the multiple of a scalar
and a function is obtained by point-wise multiplication.

If one thinks of an n-tuple as a function mapping the finite set {1, ---, n} into R, then
one can see that the definition of addition and multiplication in F {a, b ] are entirely analo-
goustothosein R".

4  Example Theset F"[a, b]consisting of all functions mapping the interval [a, b ] into
the set R” defined in Example (2) is a linear vector space if addition and scalar multiplica-
tion are defined as follows: Suppose x() and y() are functions in F"{qa, b] and that re R.
Then

xX+y)(t)=x(t) +y(t), Vte|a, b], /
(rx)(t)=rx@), Vtela, b].

Note that the addition and the scalar multiplication on the right side are in accordance with
Example (2). )

5 Example Let S denote the set of all complex-valued sequences {x;};.g. Then S can
be made into either a real or a complex linear vector space, by appropriate choice of the
associated set of scalars, if addition and scalar multiplication are defined as follows: Let
x={x;} andy = {y;} be elements of the set S and suppose re R. Then

(x+y)i=x;+y;, Vi,
(r'.x),- =Trx;, Yi.

If one thinks of a sequence as a function from the set of nonnegative integers into the set C,
then one can see that the linear vector space in the present example is entirely analogous to
bothC" andto F[a, b].
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6  Definition A subset M of a linear vector space V is called a subspace of V if M
satisfies two conditions:

1. Ifx, yeM, thenx +yeM.
2. IfxeM,reRorC, thenrxeM.
Roughly speaking, M is a subspace of Vif it is a linear vector space in its own right.

7 Example Let F[a, b] be as in Example (3). Let toe[a, b], and let F, [a, b ] denote
the subset of F [a, b] consisting of all functions x(*) in F [a, b ] such that x (¢() =0. In other
words, F; [a, b] consists of all functions in F[a, b] that vanish at ¢,. Then F, [a, b]is a
subspace of F'[a, b].

2.1.2 Normed Linear Spaces

The concept of a linear vector space is a very useful one, because in that setting it is
possible to define many of the standard concepts that are useful in engineering such as linear
operators, and linear dependence. It is also possible to study the existence and uniqueness of
solutions to linear (algebraic) equations. However, the limitation is that there is no notion of
distance or proximity in a linear vector space. Hence it is not possible to discuss concepts
such as convergence or continuity. This limitation is the motivation for introducing the
notion of a normed linear space, which is basically a linear vector space with a measure of
the "length” of a vector.

8  Definition A normed linear space is an ordered pair (X, |- 1) where X is a linear
vector space and I |: X = R is a real-valued function defined on X such that the following
axioms hold:

(ND Ixl 20, VxeX; x| =0ifand only if x =0y
N llox il =lal-lixll, Vxe X, VoeRorC.
(N lx+yli<iixll + Iyll, Vx, yeX.

The norm on a normed linear space is a natural generalization of the length of a vector
on R2 or R?, Thus, given a vector x in a normed linear space (X, - I1), the nonnegative
number |l x Il can be thought of as the length of the vector x. Axiom (N1) states that only the
zero vector has zero length, and that every other vector has positive length. Axiom (N2)
states that if a vector is "scaled” by multiplying it by a scalar, then the length of the vector
gets "scaled” by multiplying it by the magnitude of the scalar. The condition in (N3) is
known as the triangle inequality, and states that the length of the sum of two vectors is no
larger than the sum of their lengths.

9  Example Consider the linear vector space R”, together with the function
I-ll.:R" -5 R, defined by
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10 lixll.= max Ix;I.
I<i<n

(The reason for the subscript o> will become clear later.) The function [I- I, satisfies axioms
(N1) through (N3), as can be easily verified. In fact, (N1) and (N2) can be verified by
inspection. To verify (N3), supposex=(x{, -, x,)andy=(y,, - -, y,)€ R". We know, by
the triangle inequality for real numbers, that

Ixi+yi| < Ix,'l + |y,|,Vl
Therefore

Ix+yll..=max lx;+y
i
<max lx; | +maxly;| = lIxll,+ llyll.,
1 1

so that (N3) is satisfied. Thus the pair (R”, I!-1l_,) is anormed linear space. The norm II-1l,
iscalled the ! .-normon R".

11 Example Consideronce again the linear vector space R”, but this time with the func-
tion Il ll;: R" —» R, defined by

12 ||x|||=2|x,<|.

i=1

Clearly II- I, also satisfies (N1) and (N2). To verify (N3), supposex, ye R". Then

!

Hx+y|||=2|xi+y,»| SZ(IX,‘ + |y,l)

i=1 i=]
n n .

=Y Ix1+ Yy = Ixll + 1yl
i=1 i=1

Hence the pair (R”, II-11,) is also a normed linear space. The norm Il Il is called the /-
normonR",

It is important to note that, even though the underlying linear vector space is the same
in Examples (9) and (11), the normed linear space (R", il- Il ) is a different entify from the
normed linear space (R”, Il Il ).

13 Example Consider once again the linear vector space R", together with the function
i-l,: R" = R, defined by
n
14 lxl,=[¥1x171",
i=1

where p is any number in the interval [1, e]. If p = 1, then II- Il , becomes the norm function
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of Example (11), whereas if p — <o, then Il 1l , approaches the norm function of Example
(9). [This is the reason for the subscripts in Examples (9) and (11).} The function Il-H,
clearly satisfies the conditions (N1) and (N2), and can be shown to satisfy (N3) whenever
1 £p <o, Thus the pair (R”, I I ) is a normed linear space for each value of p in the inter-
val [1, e}; of course, for distinct values of p we have distinct normed linear spaces. The
norm ll- I, is called the /,-norm on R".

In particular, if p =2, then
15 lixll,=[3 1x 1712,
i=1

which is generally called the Euclidean norm on R". It is also called the /,-norm on R".
The Euclidean norm is a particular example of a so-called inner product norm, which is
defined in Section 2.1.3.

The norm H- 1, can also be defined on the set C” in an entirely analogous fashion, sim-
ply by interpreting the quantity |x; | in (14) as the magnitude of the complex number 1x;1.
Thus the pair (C”, II-1l ) is also a normed linear space for each pe |1, e].

Both R” and C" are examples of finite-dimensional linear vector spaces. As a conse-
quence, it can be shown that, given any two norms li-ll, and lI- |, on R”, there exist con-
stants k| and k, such that

kylxl, < xll, <k, lixll,, VxeR" (or C™).
Forin§tance,

Ixil, < ixlly <nlixll,,, VxeR",
and

Hxh. < lxli,<n?lxll.., Vxe R

A similar relationship exists between any twonormson R" and C". B

Suppose (X, II-II) is a normed linear space, and that x, ye X. Then one can think of the
quantity Hx —y |l as the distance between x and y. With the aid of this notion of distance (or
proximity), it is possible to define the notion of convergence in a normed linear space set-
ting.

16 Definition A sequence {x;};_ in a normed linear space (X, |-} is said to converge
tox o€ X if, forevery € > 0, there exists an integer N = N (€) such that

17 Nx;=xoll <g ViZN
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The basic definition of convergence can be interpreted in many ways. The sequence of
"vectors" {x;} converges to x, if and only if the sequence of real numbers { lx; —xq Il } con-
verges to 0. Alternatively, let B (x,€) denote the ball in X defined by

18 B(xg.e)={xeX:lx—-x4ll <e}.

Then the sequence {x; } converges to x if and only if, for each positive €, the ball B (x, €)
contains all but a' ’l\initc number of elements of the sequence {x;}.

Definition (16) gives a means for testing whether or not a given sequence {x;} con-
verges to a given element xg€ X. In other words, to test for convergence using Definition
(16), it is necessary to have at hand a candidate for the limit of the sequence. However, in
many cases we generate a sequence {x; } without knowing to what, if anything, it might con-
verge. Thus it is desirable to have a criterion for convergence that does not involve a candi-
date for the limit in an explicit fashion. This is provided by the concept of a Cauchy
sequence.

19 Definition A sequence {x;} inanormed linear space (X, - ) is said to be a Cauchy
sequence if, for every € > 0, there exists an integer N = N (€) such that

20 Hx;—x;ll <g, wheneveri, j2N.

Thus a sequence is convergent if its terms approach arbitrarily closely a fixed element,
whereas a sequence is Cauchy if its terms approach each other arbitrarily closely. The rela-
tionship between convergent sequences and Cauchy sequences is brought out next.

21 Lemma Everyconvergent sequence in a normed linear space is a Cauchy sequence.

Proof Suppose {x;} is 2 convergent sequence in a normed linear space (X, ll-il), and
denote its limit by xo. To prove that the sequence is also a Cauchy sequence, suppose € >0
is given; then pick an integer N such that

22 lix;—xqll <€/2, Vi2N.

Such an integer N exists, by Definition (16). Then, whenever i, j > N, it follows from the tri-
angle inequality that
€

€
B —x: ll <« — + ==
23 Wx—x; <2+2 €

Thus {x;} is a Cauchy sequence. B

Lemma (21) shows that if the elements of a sequence are getting closer and closer to a
fixed element, then in the process they must also be getting closer and closer to each other.
One can ask whether the converse is true: If the elements of a sequence are getting closer
and closer to each other, are they in fact getting closer and closer to a fixed element? In gen-
eral, the answer is no. But some normed linear spaces have the special property that every
Cauchy sequence in them is also convergent. This property is so important that such spaces
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are given a special name.

24 Definition A normed linear space (X, I-W) is said to be a complete normed linear
space, or a Banach space if every Cauchy sequence in (X, I- 1) converges to an element of
X. :

Banach spaces are important for two reasons: (i) If (X, II-I}) is a Banach space, then
every Cauchy sequence is convergent. This property provides a means of testing whether a
sequence is convergent without having at hand a candidate for the limit of the sequence. (ii)
Even if a particular normed linear space (X, I 1l) is not complete, it can be made into a
Banach space by adding some elements; for obvious reasons, this process is known as "com-
pleting” the space. Thus, in most situations, it can be assumed without loss of generality that
the normed space at hand is complete.

25 [Example Let [a, b]be a bounded interval in R, and let C [a, b ] denote the set of all
continuous functions mapping the interval [a, b] into R. Define a function
-0 Cla, b1 5 R, asfollows: Ifx(-)eCla, b}, then

26 lx()lic= max Ix(¢)!.
tefa, b)

Since the interval [a, b] is assumed to be bounded, the maximum on the right side is well-
defined and is finite for each x(-)e Cla, b]. Now it is easy to verify that the function 1I- i -
verifies axioms (N 1) and (N2). To verify axiom (N3), suppose x(*), y(-)e Cla, b}. Then

Hx(:)+y()h e =max Ix(£)+y(€)} <max (Ix ()| + Ly ()!)
1 ]
/ <max Ix (1)} +max iy(0)| = lx()lic+ Ny i,
] I

where all maxima are taken over [a, b] Thus the pair (C{a, b}, Il-ll¢) is a normed linear
space. Thenorm [l Il - is called the "sup” norm (for "supremum”).

Note that a sequence of functions {x;(*)} in Cla, b] converges to a function
x()eCla, b] if and only if the sequence of real numbers {x;(t)} converges to x(f) uni-
formly for all t€ [a, b]. Now we know from advanced calculus that if each of the original
functions x;(-) is continuous and the convergence is uniform, then the limit function is also
continuous. Thusthe space Cla, b], Il I ¢)is a Banach space. B

The notion of distance in a normed linear space enables us to define continuity of func-
tions.

27 Definition Let (X, Il-llx) and (Y, - lly) be two normed linear spaces, and suppose
J<X Y. Then the function f is said to be continuous at xyc X if, for every € >0, there
exists ad =g, xq) such that
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28 Hf(x)—f(xg)lly <&, whenever llx —xqllx <d.

fis said to be continuous if it is continuous at all xe X. Finally, f is said to be uniformly
continuous if, for every € > 0, there exists a = 8(€) such that

29 lf (x)-f )ty <g, whenever llx -y llx <¥.

The concept of a continuous function from one normed linear space to another is a
natural extension of the concept of a continuous real-valued function of areal variable. In a
general normed linear space setting, the norm plays the same role as the absolute value does
in the set of real numbers. The important difference between continuity and uniform con-
tinuity is that in the latter case 8 depends only on € and not on x.

Itis fairly easy to show that if f : X — Yis continuous at xo€ X, and if {x;} is a sequence
in X converging to x ¢, then the sequence {f (x;)} in Y converges to f (x,); see Problem 2.9.

The next example combines several of the concepts presented thus far.

30 Example Suppose ll-1l is a given norm on R”, and let C"[a, b ] denote the set of all
continuous functions mapping the interval [a, b ]into R", where [a, b ] is abounded interval
inR. Define the function ll-ll : C"[a, b] — R, as follows: Ifx(-)e C"[a, b}, then

31 iIx()le= ’élllaa)l(,] ().

Toshow that II- Il - is anorm on C"[a, b], one proceeds exactly as in Example (25). Axioms
(N1) and (N2) are readily verified. To verify (N3), suppose x(-) and y(-) belong to C"[a, b ].
Then

IX() +y()llc =max Ix(D) + y()
<max(I(r) I+ Ily(1) I} from the triangle inequality on R"
<max Ix(r) I + max ly(o)
= Ix() e+ NyC)lle,

where all maxima are taken as ¢ varies over the interval [a, b]. Thus (N3) is satisfied and
II-ll - isanorm on C"[a, b]. By the same reasoning as in Example (25), one can see that the
pair (C"[a, b], Il li o) is a Banach space.

In this example, it is essential to note the difference between -1l and il-llc; -1l is a
norm on R”, while ll- ll - is a norm on the space C"[a, b]. The former has an n-vector as its
argument, while the latter has a vector-valued function as its argument. When we study
nonlinear differential equations in Section 2.4, this difference becomes crucial.
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2.1.3 Inner Product Spaces

An inner product space is a special type of normed linear space in which it is possible to
define geometrically appealing concepts such as orthogonality and Fourier series. An inner
product space can be defined axiomatically as follows:

32 Definition Aninner productspace is a linear vector space X with associated field F,
together with a function <-,->: XxX — F such that the following axioms are satisfied:

(an <x,y>=<y, x> ifF =R, <x, y>=<y, x> ifF=C, Vx, yeX.
(12) <x,y+z>=<x,y>+<x,z>,Vx,y, zeX.

(I13) <x, ay>=a<x, y>, VaeF, Vx, yeX.

(I4) <x, x> 20, VxeX; <x, x> =0ifand only ifx =0y.

The quantity <x, y > is an abstraction of the familiar scalar product or dot product on
R2orR3.

An inner product space can be made into a normed linear space in a natural way.

33 Theorem Given aninner product space (X, <-,>), define the function lI- lI: X - R
by

12
M lixi=<x, x> .

Then ll- Il isanormon X, so that the pair (X, |l l) is anormed linear space.

The proof of Theorem (33) depends on the following extremely useful inequality,
known as Schwarz’ inequality.

35 Lemma (Schwarz’ Inequality) Let x,y belong to the inner product space
X, <-,>). Then

36 I<x,y>I<lxli-ilyll,
and
37 I<x,y>Il=Ilxll-liyll

if and only if the elements x, y are linearly dependent, i.e., there exist scalars ., Be F, not
both zero, such that ox + By =0x.

Proof of Lemma (35) The proof is only given for the case of areal linear vector space;
the case where F = Cis quite similar and is left as an exercise.
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Consider the function
38  f(a,B)= o +PBylI” = <ou + By, ax + Py >
=0 Nx 112 + 20 <x, y> + BNy lI%

By Axiom (I4), we have that f (o, B) 20 for all scalars a, B. Since f'is a quadratic form in
these two scalars, it follows that f (¢, B) 20 Vo, 8 if and only if the discriminant of the qua-
dratic form is nonpositive, i.e.,

2
39 <x,y> <Nxi>Nyll?

Taking square roots of both sides proves (36). Now suppose the vectors x and y are linearly
independent, i.e., that ox + By#0 whenever not both o and P are zero. Then f (o, B) >0
whenever either acor B is nonzero. Thisis true if and only if the discriminant of the quadratic
formin (38) is negative, i.e., if

2
40 <x,y> <lUxlyN
Taking square roots of both sides proves (37).
Proof of Theorem (33) One can verify by inspection that |l -1l satisfies Axioms (N1)
and (N2). To verify (N3), suppose x, ye X. Then
41 Nx+ylP=<x+y,x+y>=lxIiZ+ iyl +2<x, y>
<lx U2+ lly 12 +21x - liy Il (by Schwarz’ inequality)
=(lx Il + Ity 2.

Taking square roots of both sides establishes the triangle inequality. B

Theorem (33) shows that every inner product space can be made into a normed linear
space in a natural way. Hence it makes sense to ask whether an inner product space is com-
plete (in the norm defined by the inner product).

41 Definition An inner product space which is complete in the norm defined by the inner
product is called a Hilbert space.

43 Example Consider the linear vector space R", together with the function
<> :R"xR" - Rdefined by

n
44 <x, y> = Z XiYi

i=1

It is routine to verify that the function in (44) satisfies all four axioms of an inner product.
The norm on R” defined by the inner product is
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lx =[i lx; 1212,

i=1

which is recognized as the /,-norm defined in Example (13). Note that R” together with the
inner product defined in (44) is in fact a Hilbert space. B

45 Example Let C"[qa, b] be the linear space of Example (30), and define the inner pro-
duct <-,-> . on this space as follows: If x(*), y(-)e C"[a, b], thenlet

b
46 <x(),¥()>c=[<x(0.y®)>d,

where the inner product inside the integral is that on R” defined in Example (43). Once
again the function defined in (46) satisfies all the axioms of the inner product. However,
with this inner product, C"[a, b] is not a Hilbert space; contrast this with the fact that
C"{a, b} is a Banach space with the norm li-il- defined in Example (30). To see that
C"[a, b] is not a Hilbert space with the inner product in (46), pick a time T such that
a < T < b, and consider the function y(-) defined on [a, b ] by

0, ifa<t<T,
YO=11 ifT<r<b.

Define the Fourier series expansion of y(¢) in the familiar fashion, namely

y(®)=Y p;sinlot +q, coslwt,
=0

where @=2n/Ab —a). Then the Fourier series above converges to the discontinuous func-
tion y(°) in the mean-squared sense, i.e., in the sense of the norm defined by the inner product
of (46). Thus the partial sums of the Fourier series constitute a Cauchy sequence in the space
C"[a, b] which does not converge (to an element of the space in question). Hence C"[a, b]
is not a Hilbert space, even though it is an inner product space.

The completion of C”[a, b] under the norm corresponding to the inner product (46) is
the space of Lebesgue-measurable, square-integrable functions mapping [a, b] into R",
and is denoted by L3 [a, b]. The inner product on L3 [a, b] is also defined by (46), except
that the integral must now be interpreted as a Lebesgue integral. @

This section is concluded with two useful examples of continuous functions.

47 Lemma Let (X, II' ) be a normed linear space. Then the norm function l-II: X - R
is uniformly continuous.

Proof Use Definition (27) of uniform continuity. Given any € >0, let 8(g)=€. To
show that the definition is satisfied with this choice, suppose x, ye X and that
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48 |lx-yll|<d=e

Then
49 Mxi-lylj<lx-yll <.

This completes the proof. B

50 Corollary Suppose that (X, Il 1) is a normed linear space, and that {x;} is a
sequence in X converging to xo€ X. Then the sequence of real numbers { | x; 1|} converges
to llxgll.

51 Lemma Suppose (X, <:,->>) is an inner product space. Then, for each yeX, the
function mapping x into <x,y>:X — Ris uniformly continuous.

Proof Ify =0, then <x, 0> =0 Vxe X, which is clearly a uniformly continuous func-
tion, so it is only necessary to study the case where y #0. Use Definition (27) of uniform
continuity, and given e > 0, define 8(¢) =¢/lly Il. Now suppose

52 x zeX, andllx—zll <8= —=—.
iyl

Then
53 I<x,y>-<z,y>I=1<x-z,y>1|

< llx~-zli-HlyIl, by Schwarz’ inequality

€
iy

< Ayl =g

This completes the proof. B

Problem 2.1 Show that the zero element of a linear vector space is unique. [Hint:
Assume that the linear vector space V has two zero elements 0, and 0,, and use Axiom
(V3).]

Problem 2.2 Show that, in a linear vector space, the additive inverse of an element is
unique.

Problem 2.3 Give an example of a set which is not a linear vector space.

Problem 2.4 Let S be the sequence space of Example (5), and define a subset S, of § as
the set of all sequences converging to r. For what values of ris S, a subspace of $?

Problem 2.5 Consider the normed linear space R?, with the norm II-Il p defined in
Example (13). Sketch the unit spheres, i.e., the sets



Sec.2.2 Induced Norms and Matrix Measures 19

{xe R llxll, =1}

forthe valuesp =1, 2, 5, oo,

Problem 2.6 (a) Let 1I-1l be any norm on R", and let x,, - - -, X,,, be any collection of
vectors in R". Using the triangle inequality, show that

m m
¥ 1<y lix; 1.
i= i=l

(b) Let C"[a, b] be as in Example (30). Using the Riemannian approximation to the
integral, show that

b b
| x(eyde <[ ix(ey il d.

Problem 2.7 Prove Schwarz’ inequality for complex inner product spaces.

Problem 2.8 Suppose (X, <-,->>) is an inner product space. Show that the inner pro-
duct function is jointly continuous in its two arguments; i.e., show that if {x;}, {y;} are two
sequences in X converging respectively to x and yg, then the sequence of real numbers

{<x;,y;>} converges to <x;, yo>>. [Hint: Write
<x, ¥ > —<xg, Yo = <X, ¥i 2> — <X, ¥; > + <X, yi > — <X¢, Y0,

and use Schwarz’ inequality.]

Problem 2.9 Suppose X and Y are normed linear spaces and that f : X — Y is continu-
ous at xo€ X. Suppose {x;} is a sequence in X converging to xo. Show that the sequence
{f (x;)} in Y converges to f (xp).

2.2 INDUCED NORMS AND MATRIX MEASURES

In this section the concepts of the induced norm of a matrix and the measure of a matrix
are introduced. These concepts are used in Section 2.5 to derive estimates for the solutions
of nonlinear differential equations, without actually solving them.

2.2.1 Induced Norms

Let C™*" (respectively, R™") denote the set of all nxn matrices with complex (respec-
tively, real) elements. Then C™* can be made into a complex linear vector space if addition
and scalar multiplication are done componentwise. Moreover, for each matrix Ae C™*
there is a corresponding linear mapping a from C” intoitself, defined by

1 o(x) = Ax, VxeC".

Conversely, for every linear mapping o from C” into itself, there is a corresponding matrix
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Ae C™” such that (1) holds. Thus there is a one-to-one correspondence between matrices in
C™* and linear mappings mapping C” into itself. (Actually, this correspondence is one-to-
one only after the basis on C”" has been chosen. However, in this book such subtleties of
linear algebra are not explored.) We do not in general distinguish between a matrix in C™
and the corresponding linear mapping on C". However, this correspondence is the motiva-
tion behind the concept of the induced norm of a matrix.

2 Definition Let |I- Il be a given norm on C". Then for each matrix Ae C™®, the quan-
tity WA W\;, defined by

HAxH
= HAxIl = Axll,
x20,xeC" xi ll?l}pl Iiugl I

3 NAN;=

is called the induced (matrix) norm of A corresponding to the vector norm |- |l

It should be noted that there are two distinct functions invblved in Definition (2); one is
the norm function Il 1l mapping C” into R, and the other is the induced norm function Il- IIJ
mapping C"* intoR.

The induced norm of a matrix can be given a simple geometric interpretation. Equation
(3) shows that ll A ll; is the least upper bound of the ratio Il Ax lI/llx ]}l as x varies over C". In
this sense, [IAll; can be thought of as the "gain" of the linear mapping corresponding to A.
Alternatively, let B denote the closed unitballin C"; i.e., let

4 B={xeC™ lxlt<1}.

Now suppose We distort B by replacing each x in B by Ax, i.e., its image under the mapping
A. Then what results is the image of the set B under the mapping A. In this setting, the
induced norm A li; of A can be thought of as the radius of the smallest ball in C" that com-
pletely covers the image of B under A.

Lemma (5) shows that the function Il ll; is a valid norm on C™*.

5 Lemma Foreach norm -l on C", the induced norm function \l- ||; maps C™ into
[0, ), satisfies Axioms (N1) through(N3), and is therefore a norm on C™*.

Proof Itis clear that A Il;20VAe C™", and Axioms (N1) and (N2) can be verified
by inspection. To verify (N3), suppose A, Be C"”. Then

6 A+Bll;= sup H(A+B)xll= sup HAx+Bxll
lxl=1 xli=1

< ,Sup [I1Ax 1l + {IBx|l] by the triangle inequality on C"

< sup llAxI+ sup IBxll=HNAH;+ IBH;.

lixii<i lixit<)

Hence (N3) is also satisfied, and thus Il -} ;isanormon C™". W
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In view of Lemma (5), is clear that, for each norm on C”, there is a corresponding
induced norm on C™”. However, the converse is not true. Consider the function
I-1l;: C™*" — R defined by

7 Al =max la;l.
ij

Then one can verify that |l Il ; is a norm on C™”. Indeed, I A Il is simply the [, norm of the
n2x1 vector consisting of all the components of the matrix A. However, there is no norm on
C” such that II- Il is the corresponding induced matrix norm. This is a consequence of the
next result.

8 Lemma Let |- Il; be an induced norm on C™". Then
9 HABI; < Al IBI;, VA, Be C™".
Proof By definition,

10 lIABI; = Isup TABx .

Hxil'=1

However, it follows from (3) that

11 Ayl <IAN;-liyll, VyeC".

Soin particular,

12 IABxIli <Al IIBxIl, Vxe C". .
Similarly,

13 UIBxI <IIBIl;-lIx1l, Vxe C”.
Combining (12) and (13) gives

14 IABxII < AN IBI-Itx]l, Vxe C".

Now (9) follows immediately from (14). B

Thus induced norms have the special feature that they are submultiplicative; i.e., the
induced norm of the product of two matrices A and B is less than or equal to the product of
the induced norms of A and B. It can be readily verified by example that the norm II- 1l of
(7) does not have this property (and hence cannot be an induced norm).

In general, given a specific norm on C" [say, for instance, the /,-norm defined in Exam-
ple (2.1.13)], it is not always easy to find an explicit expression for the corresponding
induced norm on C™"—the equations in (3) serve more as definitions than as computable
expressions. However, the induced matrix norms corresponding to the vector norms |I- I,
-1y, and -1l [as defined in Examples (2.1.9), (2.1.11) and (2.1.13) respectively] are
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known and are displayed in Table 2.1. Note that A * denotes the conjugate transpose of the
matrix A, and A, (M) denotes the largest eigenvalue of the Hermitian matrix M.

Table 2.1
Normon C" Induced Norm on C™
n
lIx N, =max!|x;| NA ;. =max}’ la;!
" s
||X||l=2|x,| ||A||,1‘—'maXZ|a,]|

i=] J =1

IIxII2=(£:Ix,~I2)m NA Il ;5 = [Amax (A*A)]?

i=1
2.2.2 Matrix Measures

Let Il ll; be an induced matrix norm on C™". Then the corresponding matrix meas-
ure is the function p(-): " — R defined by '

M +€eAll;~1

15 p(A)= lim
£—0" €
Note that some authors use the term logarithmic derivative instead.

The measure of a matrix pP(A) can be thought of as the directional derivative of the
induced norm function Ii-1l;, as evaluated at the identity matrix / in the direction A. The
measure function has several useful properties, as shown next.

16 Theorem Ler ll-ll; be an induced matrix norm on C™" and let W(-) be the
corresponding matrix measure. Then \(-) has the following properties:

(M1) Foreach Ae C™", the limit indicated in (15) exists and is well-defined.

M2) -NIAI;<SWA)YL AN, VAeC™™.

(M3) woA)=opA), Ya>0, YVAe CV*,

(M4) max{p(A) - u(-B), 1(B)—~u(-A)} SH(A +B) Sp(A) + u(B), VA, Be C"™".
(MS) u(-) isa convex function; i.e.,

oA +(1- Bl <ap(A)+ (1 - o) u(B), Yae [0, 1], VA, Be C.

(M6) IfA\isaneigenvalue of Ae C™", then
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—p(-A)<Re A<u(A).

Proof Since |l ll; is a convex function on C™", it can be shown to have a directional
derivative at every point in C"*" in every direction; see Eggleston (1966). However, a direct
constructive proof is given below. Fix Ae C™" and define

N +eAll; -1 1 1
17 f(e)=——=1—I+All;——,Ve>0.
€ € €

Clearly £(-) is continuous. It is shown that f (€) is nonincreasing as € — 0*, and is bounded
below. This shows that

18 lim f(€)=:K(A)

is well-defined. Towards this end, it is first shown that
19 0<d<e=>f(B)<f(e).

Suppose 0 < 3 < &, and note that
20 f@=NLr+al,-L f@=ntrean-L.
5 ‘8 £ g

Now, using the triangle inequality and the fact that I/ ll; = 1, one obtains

1 1 1 1
1 =7 =ll—I+A ———11l;
2 8/+A”’ c +A+ 5 e] ;
s||l1+A||i+||[i—lJ1||,.
€ 5 €|
1 1 1
=l—I+All;+———.
£ R

Rearranging (21) and using (20) shows that f (8) < f (€). Hence f (€) is nonincreasing as
£ —0". Again, the triangle inequality shows that

22 1-ellAl; < W +eAll;<1+€llAll;, VE>O,
23 -lIAl;Lf(&)<IAIll;, VE>DOQ.

Hence f (€) is bounded below. By previous discussion, this shows that f (¢) has a well-
defined limit as € - 0*. Therefore p(A) is well-defined [Property (M1)] and satisfies Pro-
perty (M2). To prove (M3), observe that
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. M +eaAll; -1 . I +eaAll; -1
24 p(eA)=lim ——— = lim o ——.

e—-0* € e —0* gQ
To prove (M4), we begin by showing that
25 puA+B)<u(A)+u(B).

A slight rearrangement of (15) gives

26 wA+B)=lim |I—£1-1+A+BII,-—%.

e—0"
But, for each € > 0, we have

1 1

1 1 1 1
27 I—I1+A+Bl;——=I—I+A+—I+Bll,———-—
£ A £ 2e 2e "2 2
1 1 1 1
<t =1 - Il—I+BIl,— —
{ 2e +Al, 2 | V| " 2e +Bl ZS:I

Letting € —» 0* in (27) proves (25). Now replace A by A +B and B by —B in the right side of
(25). Then inthe left side of (25) A + Bisreplaced by A + B—-B = A, which gives

28 WA)<WA +B)+u(-B),

or

29 wA)-u-B)<p(A+B). ’
By symmetry,

30 uB)-u-A)su(A+B).

This establishes (M4). Now (M5) is a ready consequence of (M3) and (25). Finally, to
prove (M6), let A be an eigenvalue of A, and let v be a corresponding eigenvector. Assume
without loss of generality that llvIl =1, where Il 1l is the norm on C" which induces the
matrix norm - It ; on C™*. For each £ > 0, we have

31 lI+€All;= “s“ElII(I+£A)xII
2 (I +eA)vli
=l1+eAl-llvll=11+¢€Al.

Similarly it follows that
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32 |1-€eAlLliI-€All;, Ve>O0.

Now, it is easy to verify that

33 Rei= lim AL od
£—0" €

34 ReAi=-lim k—e—)";l.
£— 0" €

Combining (31) to (34) establishes (M6). B

Comparing the properties of the matrix measure and the induced matrix norm, we see
that, although both functions are convex, the similarity-almost ends there. The measure can
have positive as well as negative values, whereas a norm can assume only nonnegative
values. The measure is "sign-sensitive" in that p(—A)#p(A) in general, whereas
lI-All;= IIAll;. Because of these special properties, the measure function,is useful in
obtaining tight upper bounds on the norms of solutions of vector differential equations.

Theorem (16) lists only some of the many interesting properties of the measure func-
tion. A more complete discussion can be found in Desoer and Vidyasagar (1975) and
Desoer and Haneda (1972).

In defining the measure of a matrix in C™", we have assumed that the norm used in
(15) is an induced norm. It is possible, given any norm on C™*, to define a corresponding
measure function u(-) mapping C"*" into R. In this case, Properties (M1) through (M5) still
hold, but (M6) does not. Such a measure function is of no use in estimating the norm of a
solution to a vector differential equation; for such a purpose, only measures corresponding
to induced matrix norms are useful.

In most applications, such as those involving differential equations, the linear vector
space in question is R”, and the matrices of interest belong to R™". Suppose 1l [l is a norm
on R”, and let II-|l; denote the corresponding induced matrix norm defined on R™™"; sup-
pose we define the corresponding matrix measure p(-) as in (15), except that now Ae R™"
and [t-1l; is only defined on R™". What properties does such a measure function have? An
examination of the proofs of Properties (M1) through (M5) of Theorem (16) reveals that
they carry over without modification to the case of real matrices. However, in proving Pro-
perty (M6), essential use was made of the fact that the space in question is C" and not R”,
since in general the both the eigenvalue A and eigenvector v could be complex. To get
around this difficulty, one can "extend" the given norm on R" to a norm on C". The details
are not given here, but it can be shown that even Property (M6) is true for such a measure
(see Problem 2.12). This can be summarized as follows:

35 Theorem Let -l be a norm defined on R", and let I-ll;:R”" 5 R and
nC): R™" 5 R be defined in a manner analogous to (2) and (15), respectively. Then p(-)
satisfies Properties (M) through (M6) of Theorem (16).
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Given a particular vector norm Il-ll on C" (or R"), it is in general a difficult task to
obtain an explicit expression for the corresponding induced matrix norm (as mentioned ear-
lier), and it is therefore still more difficult to obtain an explicit expression for the
corresponding matrix measure. Nevertheless, the measure. functions corresponding to the

norms |- ll, ll-1l,,and ll- Il can be calculated, and are displayed in Table 2.2 below.
Table 2.2
Normon C" Matrix Measure on C™*"
IIx 1l = max ;| Ho(A) =max [a; + Y 1a;; ]
! ! j#i
le“l:EIxil ul(A)=max[a”+E|a,J|]
i=l J

i#j
Ixl=(T 151D py(A)=Aax (A* +A)2
i=l
36 Example Let

-6 2 1
A=| 0 -12].
1 30

Using the formulas given in Table 2.2, one obtains by inspection that
Hi(A)=4, 1 (-A)=T,

Using Property (M6) of Theorem (35) to estimate the real parts of the eigenvalues of A, one
obtains

—-7<Re); <4,

using the measure {1, and
~9<ReA; <4,

using the measure [i... The actual eigenvalues of A are
{—6.0426, -3.1271, 2.1698 }.

Hence the smallest interval which contains the real parts of all eigenvalues of A is
[-6.0426, 2.1698]. So the estimate obtained above, namely [~ 7, 4] is not too bad. To com-
plete the picture, let us compute the measure [t,. This gives
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H2(A)=2.289, uy(-A)=6.245.
This implies that
—6.245<Re}; <2.289.

This estimate is almost exactly accurate. But of course it requires more work than comput-
ing either of the two measures L, or ll,. Moreover, in another example some other measure
might give a better bound. W

Problem 2.10 Calculate the matrix norm Il A Il; and the measure (A ) corresponding to
each of the vector norms Il Il |, Il Il , and II- Il ., for each of the matrices below:

-4 1 1 4 21
A= 2 0 -24,| 2 -5-3].
1 -3-6; |-=20 0

Compute an interval in the real line containing the real parts of all the eigenvalues of A using
Property (M6) of Theorem (16). Compare with the exact answer.

Problem 2.11 Suppose Me R is a nonsingular matrix, and define a norm |1+ llpy, on
R" as follows:

11X [l pgo = IMx 1, = (x"M’ Mx) 2.
Show that the corresponding matrix measure on R™” is given by

Hm2(A) = A [(A'P’ + PA)2],

where P=M’'M. Suppose we define the vector norms
Ix iy = IMxil, Ix g, = IMxIl...

Obtain explicit expressions for the corresponding the matrix measures.

Problem 2.12 Prove Theorem (35).

2.3 CONTRACTION MAPPING THEOREM

In this section, we state and prove a very important theorem, which is used in Section
2.4 to derive the existence and uniqueness of solutions to a class of nonlinear vector dif-
ferential equations.

The theorem proved here is generally known as the contraction mapping theorem (or
sometimes the Banach fixed point theorem), and is usually given in two forms: the global
version and the local version. The local version assumes weaker hypotheses than the global
version, and obtains correspondingly weaker conclusions. The global version is given first.



28 Nonlinear Differential Equations Ch.2

Note that, hereafter, the terms mapping, function, and operator are used interchange-
ably. Also, if T is a (possibly nonlinear) mapping, we write Tx instead of T(x) in the
interests of clarity.

2.3.1 Global Contractions

1 Theorem (Global Contraction Mapping) Let (X, |- 1) be a Banach space, and let
T:X — X. Suppose there exists a fixed constant p < 1 such that

2 NTx-Tyl <pllx—yll, Vx, ye X.

Under these conditions, there exists exactly one x*€ X such that Tx* = x*. For each xy€ X,
the sequence (x, } in X defined by

3 Xn+1 =Txn

converges to x*. Moreover,
o
4 Ix*—x, Il < n NTxg—~xgll.
-P

Remarks An operator T satisfying the condition (2) is known as a contraction,
because the images of any two elements x and y are closer together than x and y are. More-
over, Tis a global contraction, since (2) holds for all x, y in the entire space X. An element
x€ X such that Tx* =x* is called a fixed point of the mapping 7, since x * remains fixed when
the mapping T is applied to it. Theorem (1) asserts that every contraction has exactly one
fixed pointin X. Moreover, this fixed point can be determined simply by taking any arbitrary
starting point x€ X and tepeatedly applying the mapping T to it. Finally, (4) provides an
estimate of the rate of convergence of this sequence to the fixed point. Note that the bound in
(4) decreases by a fixed ratio (namely p) at each iteration; such convergence is known as
"linear convergence."

Proof Let xy€ X be arbitrary and define the sequence {x,} as in (3). It is first shown
that the sequence is a Cauchy sequence. For each n >0, it follows from (2) that

5 Hxpo =X, U <pllx,—x, S <p i —xg W =p" W Txg—xg .
Suppose m =n +r, r 20, is given. Then it follows from (5) that

6 Wxp —x, I = U,y ~x, Ml

r—1

< Z "xn+i+l “Xn+i I
i=0
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r-1
<Y P " ITxg—xpll
i=0

<3P T —xoll = —&— ITxo~x .
i=0 1-p

Now, as n — o, the quantity p” approaches zero. Hence it is clear from (6) that lix,, —x,, |l

can be made arbitrarily small by choosing » sufficiently large. Hence {x,} is a Cauchy

sequence, and since X is assumed to be a Banach space, the sequence converges to an ele-

ment of X. Let x* denote this limit. Now, using Definition (2.1.27) of uniform continuity,-
one can show that T is a uniformly continuous mapping. Therefore, by Problem 2.9,

7 Tx*=T(lim x,)= lim Tx,= lim x,,; =x*
n—oeo n—oco n—oo

Hence x* is a fixed point of T. To show that it is the only fixed point of T, suppose xe X is
another fixed pointof 7, i.e., that Tx = x. Then, by (2),

8 Bx*~xl=NTx*-Txll <plix*—xIl.

Since p < 1, this inequality can be satisfied only if llx*—x 1l =0, i.e., if x* =x. Finally, to
prove the estimate (4), consider the inequality (6), and let m — o, Since the norm function
is continuous, it follows that

9 Ix*~x, Il =1l lim x, —x,l
m—yoo

C = lim Wxy—x S B W Txg—xo,
m-— o l—p

where we have used the fact the right side of (6) is independent of m. B

Note that in general it is not possible to replace (2) by the weaker condition
10 ITx-Tyll <lix—yll,Vx, yeX, withx #y.

Itis easy to show that any mapping satisfying (10) can have at most one fixed point, but quite
possibly it may not have any at all. As a simple example, let X =R, and define f : R > Rby

11 fO)=x+ g —tan~! (x),

and define Tx = f (x). Then

12 f)=1-——<1,VxeR
l+x

By the mean-value theorem,
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13 f(x)-f )=f(2) (x —y) for some z& (x,y).

Hence T satisfies (10). However, it follows from (11) that f(x)=x if and only if
tan™' (x) = /2. Clearly no such x exists. Hence T has no fixed pointin R.

14 Example Letf: R — R be acontinuously differentiable function, and suppose
sup If ) =p<l.
X€

Then, by the mean-value theorem, it follows as in (13) that fis a contraction on R. Thus, by
Theorem (1), there is a unique number x*€ R such that f (x*) =x* Moreover, this number
can be determined as the limit of the sequence {x,} obtained by choosing any arbitrary
x9€ R and repeatedly applying the function f. The sequence of points so obtained is dep-
ictedinFigure 2.1. )

r y y=x
xy = flxg) - —— = ¥ = fix)
|
x'3 xIZ 1 1 N
x*,‘: [ Qy xg g
I: | P x3 =f(x))
AT xy = 1(x,)

Fig.2.1

2.3.2 Local Contractions

The applicability of Theorem (1) is limited by the fact that the operator T is required to
satisfy (2) for all xe X. In other words, T has to be a global contraction. In Theorem (15), we
examine the case where T satisfies (2) only over some region M in X, i.e., the case where T'is
alocal contraction, and derive correspondingly weaker results.

15§ Thearem Let (X, |- ) be a Banach space, let M be a subset of X, and let T: M — X.
Suppose there exists a constant p < 1 such that

16 NITx-Tyll<plix—ylt, Vx, ye M,
and suppose there exists an element x o€ M such that the ball

I Txg - xo
1-p

is contained in M. Under these conditions, T has exactly one fixed point in M. If x* denotes

17 B={xeX:llx—xyll <
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the fixed point of T in M, then the sequence {x, } defined by
18 x,, =Tx,,n20,

converges to x*. Moreover,
n
19 le,,—x*llS—lp—pIITxo—xoll,VnZO.

Remarks

1. Thesignificance of Theorem (15) lies in the fact that T'is only required to be a con-
traction over the set M, not all of X. The price paid for this weaker hypothesis is
that the conclusions of Theorem (15) are also'weaker than those of Theorem (1).

2. Everything is contingent on finding a suitable element x e M such that the ball B
defined in (17) is contained in M. In effect, this means that we must be able to find
an element x in M such that repeated applications of T to x result in a sequence
that is entirely contained in M. Even if T satisfies (16), it may not be possible to
find such anelement x,. Forexample, let X =R, and let T: R — R be the function
defined by

2, iflxl<l
20 Tx=Y0 ifixi>1I

If Mis chosen as the interval [-1, 1], then T is a contractiorr over M. However, itis
not possible to find an x o€ M such that the ball B defined in (17) is contained in M.
Accordingly, Thas no fixed pointin M.

3. Suppose we do succeed in finding an x € M such that the hypotheses of Theorem
(15) hold. Then the particular sequence defined in (18) converges to the unique
fixed point x* of T in M. However, if we choose another starting point for the
iteration, there is no guarantee that the resulting sequence will converge to x*. In
contrast, if T'is a global contraction, then the sequence defined in (3) converges to
x* converges for every starting point. There is one small consolation: If the
sequence of iterations remains in M, then it must in fact converge to x*; see
Theorem (22) below.

Proof First, it is clear from (16) that T has at most one fixed point in M. If x,e M is
chosen in such a way that the ball B defined in (17) is contained in M, then it follows that the
sequence (x, } defined in (18) stays in B for all n; to see this, apply the inequality (6) with
n =0. Because the contraction condition holds in B, one can show, just as in the proof of
Theorem (1), that {x, } is a Cauchy sequence in X and therefore converges to an element of
X. Denote this limit by x*; then a routine application of the continuity of the norm function
shows that the limit must also belong to B and hence to M. The rest of the proof exactly fol-
lows that of Theorem (1). I
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21 Example Consider once again the case where X =R, and let f : R — R be continu-
ously differentiable. Suppose

sup If(x)l:=p<l,

xe[-1,1]

and that there exists an x g€ (-1, 1] such that

fxo)—x¢ Sxo)—xg
s Xo+
1-p 1-

B=|xo- cl-1,11.

Then Theorem (15) tells us that there is a unique x*€ [-1, 1] such that f (x*) =x*, and that x*
is the limit of the sequence {x, f (xo), f [f (xg)], : - - }. The situation is depicted in Figure
2.2.

This section is concluded with another theorem whose hypotheses and conclusions lie
between those of Theorems (1) and (15). This theorem is convenient for later applications.
A

y y=x

\y = f(x)

22 Theorem Let(X, ll- ) be a Banach space, and let B be a closed ballin X, i.e., a set of
the form

Fig.2.2

23 B={x:llx—-zll<r}

forsomeze Xandr20. Let T: X — X be an operator satisfying the following conditions: (i)
Tmaps Binto itself, i.e., Txe Bwhenever xe B. (ii) There exists a constant p < 1 such that

24 NITx-Tyli<plix-yll, Vx, yeB.

Under these conditions, T has exactly one fixed point in B. If x* denotes the fixed point of T
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in B, then for each x (€ B, the sequence {x, } defined by
25 x,.,=Tx,,n20,

convergestox*. Moreover

26 nx,,—xouslp 1 Txg~xo I, Vi 20.

The proof is obvious from Theorem (15).

The difference between Theorems (15) and (22) is that in the latter case T'is assumed to
map the entire ball B into itself, whereas in the former case it is only assumed that for a par-
ticular point xy€ B the sequence of iterations is contained in B. As a consequence, in the
latter case one can start from an arbitrary starting point in B to compute x*.

Troblem 2.13 Give a detailed proof of Theorem (22).

2.4 NONLINEAR DIFFERENTIAL EQUATIONS

In this section, we derive some general and very useful conditions which guarantee the
existence and uniqueness of solutions to the nonlinear differential equation

1 x(r)=1s, x(1)], £ 20;x(0) =x,,

where x(r)e R" and f: R, XxR"” — R". As shown in Chapter 1, the existence and uniqueness

; of solutions to (1) is not guaranteed unless some restrictions are placed on the nature of f. By
a solution of (1) over an interval [0, T], we mean an element x(*) of C"[0, T] such that (i)
x(-) is differentiable everywhere, and (ii) Equation (1) holds atall «.

We first establish some conditions under which (1) has exactly one solution over every
finite interval [0, 8] for sufficiently small §, i.e., conditions for local existence and unigue-
ness. Then we present stronger results which guarantee global existence and uniqueness,
i.e., conditions under which (1) has exactly one solution over [0, o).

One small point is to be cleared up before we proceed to the theorems. First, if x(-) is a
solution of (1) over [0, T ] and fis continuous, then x(-) also satisfies the integral equation

t
2 x(t)=x¢+] M1, x()]d1, 1€ [0, T1.
0

On the other hand, if x(-)e C"[0, T] satisfies (2), then clearly x(°) is actually differentiable
everywhere and satisfies (1). Thus (1) and (2) are equivalent in the sense that every solution
of (1) is also a solution of (2) and vice versa.
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2.4.1 Local Existence and Uniqueness

3

4
5

Theorem (Local Existence and Uniqueness) Suppose the function f in (1) is con-
tinuous in t and X and satisfies the following conditions: There exist finite constants T, r, h,
and k such that

/

I, x)— £, )l <k lx—yll, VX, ye B, Vie(0, T,

WGz, %) Il <h, Ve€[0, T),

where B isa ball in R" of the form

6

B={xeR": lIx—-xyll <r}.

Then (1) has exactly oné solution over [0, 8] whenever the number & is sufficiently small 10
satisfy the inequalities

7

and

8

hdexp (kd)<r,
. p _r
d<min{T, P h+kr}

forsome constantp < 1.

Remarks

9

1.

While following the proof of Theorem (3), it is important to keep in mind the dis-
tinction between - Il (which is a norm on R"), and !l ll -, (which is a norm on
C"[0, 8)). Also, it should be noted that B is a ball in R", while S defined in (10)
below is a ball in C"[0, §).

The condition (4) is known as a Lipschitz condition, and the constant & is known
as a Lipschitz constant. Notice that we say a Lipschitz constant, because if kisa
Lipschitz constant for the function f, then so is any constant larger than k. Some
authors reserve the term Lipschitz constant for the smallest number k such that (4)
is satisfied. A function that satisfies a Lipschitz condition is said to be Lipschitz-
continuous. Note that a Lipschitz-continuous function is also absolutely continu-
ous [see Royden (1963)] and is therefore differentiable almost everywhere.

Equation (4) is known as a loecal Lipschitz condition, because it holds only for all
X, y in some ball around x,, for te€ [0, T]. Accordingly, Theorem (3) is a local
existence and uniqueness theorem, because it guarantees existence and unique-
ness of solutions over a sufficiently small interval [0, 8). Note that, given any
finite constants &, r, T and A, (7) and (8) can always be satisfied by choosing &
sufficiently small.
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Proof By a slight abuse of notation, we use Xq(-) to denote the function in C"{0, 8]
whose value is X, for all te [0, 8). Suppose & satisfies (7) and (8), and let S be the ball in
C™{0, 8] defined by
10 S={x(")e C"[0, 8}: Ix(-)—xo() N <r}.

Let P denote the mapping of C"[0, 8} into itself defined by
t
11 (Px)(0)=%o+ [ fIT, x(1)] dt, Vte [0, 3].
. 0

Clearly x(-) is a solution of (2) over the interval [0, 8] if and only if (Px)(-) =x(*), i.e.,x(*) isa
fixed point of the map P.

It is first shown that P is a contraction on S. Let x(-) and y(-j be arbitrary elements of S;
then x(z) and y(¢) lie in the ball B, for all te [0, 8]. Thus

12 (Px)}()-(PY)®) =i {fl, x(1)] - f[7, y()]} 4,

13 W(Px)(@®) - (Py)nli Si‘ T, x(v)] - fT, y(0)1ll a7
Sj kIx(t)-y(tildr
<ktx() -yl ¢

<plix()-y() e,

where in the last line we have used the fact that kt < k8 <p by (8). Because the last term on
the right-hand side of (13) is independent of ¢, it follows that

14 1PDO-PYOTc= sup 1EOO=PHOI£PIX)-0) le.

This shows that P is a contraction on S.

Next it is shown that P maps S into itself. Suppose x(-)e S. Then
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ano tun
[aws t’&

15 1Px)()—xo ) = I flz, x(D) drll
0
= {17, x(1) ~ £(T, x0) + (T, %)} dl
0
< [T, x(D] - (T, %) 1l + (T, %) 1} dT
0

<kr8+hd<r,

Pdw H(L)‘(' (I (:0:{]

/4
16  I(Px)()—x() = s[%psl HPx)(t)—xyll <7

by (8). Hence

This shows that Pxe S, so that P maps S into itself.

Now, since P maps S into itself and is a contraction on S, it has exactly one fixed point
in S, by Theorem (2.3.22). Our objective, however, is to show that P has exactly one fixed
point in C"*[0, 8], not just S (the point being that S is a proper subset of C"[0, 8]). Thus the
proof is completed if it can be shown that any fixed point of Pin C"[0, 8} must in fact liein S.
Accordingly, suppose x(-) C"[0, 8] satisfies (2). Then x(0) =xy€ B. Also, since X(*) is con-
tinuous, it follows that x(¢)e B for all sufficiently small . Now it is shown that x(¢)e B for all
te [0, 8). To show this, assume the contrary, namely that there exists a time ¢4€ (0, 8) such
that x(¢,) does not belong to B, i.e., Ix(ty)—xy 1l > r. Since lix(¢)—x, |l is a continuous
function of ¢ and since 1x(0)—x Il =0, there is a unique first time 0. < t( < § with the pro-
perty that

17 Ix(t)-xpll <r, Vte[0, o), and lIx(0) — x5 I = 7.

Now, since X(*) satisﬁgs (2), we have

18 Ix(t)-xoll = [ flt, x(v)] dT
0
=J (T, (0] - £(1, %0) +£(T, o)} d1, V€ [0, a,
] .

!
19 Ix()-xll <[ kx(t)—xo Il dT+ht
0
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H
<ho+ [ kIx(H) - xo 1l d, Vi€ [0, al.
0

Equation (19) gives an implicit bound for the quantity [{x(¢)—x, Il. This implicit bound can
be replaced by an explicit bound, using a result known as the Gronwall inequality {see
Lemma (5.7.1)]. Applying this inequality to (19) gives

20 (x(2)—xg ll <haexp (ka), Vte [0, a].
In particular, then,
21  lIx(o)—xg ll <haexp (ko) < hdexp (kd) <r, by (7).

But (21) contradicts (17). This shows that, if any function x()e C"{0, 8] satisfies (2), and &
is sufficiently small that (7) holds, then x(-) must necessarily belong to S. Thus we have
shown that any fixed pointof Pin C”[0, 8] must in fact be in §. Since P has exactly one fixed
pointin S, it follows that P has exactly one fixed pointin C"[0, §]. By the manner in which P
is defined, we conclude that (2) has exactly one solution over [0, 5]. B

The following result is actually a corollary to Theorem (3), but is in a form that can be
readily applied.

22 Corollary Consider the differential equation (1). Suppose that in some neighbor-
hood of (0, xy) the function f(t, X) is continuously differentiable. Then (1) has exactly one
solution over [0, 8] provided & is sufficiently small.

Proof The differentiability properties assumed on f ensure that f satisfies (4) and (5)
for some set of finite constants 7, T, kand 4. B

Thus far we have studied the existence and uniqueness of solutions to (1) over closed
intervals of the form [0, 8]. The reasons for this are primarily technical. For example,
C"[0, 8] is a Banach space, but C" [0, 8) is a much more tricky object. But now consider the
following question: Suppose (2, X) is continuously differentiable everywhere. What is the
largest interval over which (1) has a unique solution? Looking back over the proof of
Theorem (3), one can see that the proof is equally valid if the initial time is changed from O to
an arbitrary time ¢, and all hypotheses are adjusted accordingly. Thus, if (1) has a unique
solution over some interval [0, 8] [which it will, by Corollary (22)], then one can again apply
Corollary (22) with 3 as the initial time and x(9) as the initial state, and conclude that there is
a unique solution to (1) over some interval [6, 8 ]. This solution can be concatenated with
the earlier solution over {0, 8] to construct a unique solution to (1) over the larger interval
[0, &]. But the process can be repeated yet again with & as the initial time and x(8”) as the
initial state. Since this process can be repeated indefinitely, we see that there is no largest
closed interval over which (1) has a unique solution. Instead, there is a number 8, (which
may equal infinity) such that (1) has a unique solution over every closed interval {0, 8] in the
half-open interval [0, 8,5, ); this solution is called the maximal solution. Now, what can
happen as t — 8,,,,? If 8, is finite and if x(¢) remains well-behaved as ¢ — ,,, and
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approaches some finite vector X,,,, , then one can again apply Corollary (22) with §,,, as the
initial time and X, as the initial state, and thereby extend the solution still further in time,
which contradicts the definition of 8,,,. Thus, if 8, is finite, then lIx(¢) | must approach
infinity as # — &, . This discussion can be summarized as follows:

23  Corollary Consider the differential equation (1), and suppose that f(t, X) is continu-
ously differentiable everywhere. Then there exists a unique number 8, = 8., (Xo), which
could equal infinity, such that (1) has a unique solution over [0, &,,,) and over no larger
interval. If 8, is finite, then IX() Il = ccast — &y

24 Example Consider the scalar differential equation
x(0=1+xx(0)=0.

Then 8,,,x = /2, and the maximal solution is
x(t)=tant.

Predictably, x (1) > ccast > /2. B

A solution x(¢) with the property that I1x(¢) ll — o as ¢ approaches some finite time is
said to exhibit finite escape time.

Another question one can ask about the differential equation (1) is this: Is it possible to
solve (1) for negative values of t7 The answer, under the hypotheses of Theorem (3), is yes.
In fact, if one is interested in solutions of (1) for both negative as well as positive values of ¢,
then Corollary (23) should be modified to speak of a maximal interval (=, Omax ), rather
than a half-open interval. Generally speaking, in control theory one is usually not interested
in solving for the past behavior of a system, only its future. Thus the topic is not pursued
further in this book. However, in the theory of dynamical systems, one is often interested in
both the past as well as the future of a system. The interested reader is referred to Hirsch and
Smale (1974) for further details.

2.4.2 Global Existence and Uniqueness

In this subsection, we show that (loosely speaking) if f satisfies a global Lipschitz con-
dition, then (1) has a unique solution over all time.

25 Theorem (Global Existence and Unigqueness) Suppose thatfor each T€ [0, o) there
exist finite constants ky and hy such that

26 (s, x)- £, YU <kylUx-yll, Vx,yeR", V|0, T},
27  Nif(t,xp) l <hg, Vte[0, T].

Then (1) has exactly one solution over [0, o).
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Remark Recall that by a solution over [0, e} we mean a solution over [0, T'] for each
finite T.

Proof We give two alternate proofs.

Proof No. 1 Let T < o be specified, and let k7 and h7 be finite constants such that (26)
and (27) hold. Then the hypotheses of Theorem (3) are satisfied with r =co. In this case (7)
holds for all 8. Thus, by Theorem (3), it follows that (1) has a unique solution over {0, 8]
whenever & satisfies

<P
28 o< K

for some constant p < 1. Suppose a positive number & satisfying (28) is chosen. If T<$§,
then by Theorem (3) there is a unique solution over [0, T'1, so suppose T > 6. Now (1) has a
unique solution over [0, §]. Denote this solution by x,(), and consider the "shifted" dif-
ferential equation

29 x()=f[1, x(1)], x(0)=x,(3),
where
30 f£,(s, x)=f(+9,x).

Then £, also satisfies (26) and (27); therefore once again by Theorem (3), (29) has unique
solution over [0, 8], where 3 is the same as before. Denote this solution by y, (). Itis easy to
verify that the function X, (-) defined by

x'(t), 05[58
M XO=) y-0), 52228

is the unique solution of (1) over the interval [0, 28]. Proceeding by induction, let x,,()
denote the unique solution of (1) over the interval [0, m3], and consider the differential
equation

32 x(r)=f,[t, x(2)], x(0)=x,,(m3d),
where
33 £, x)=f(t+md, x).

Let y,,,, denote the unique solution of (32) over the interval [0, 8] (the same & as before).
Then the function x,,, ,; () defined by
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xm(t), 0<t<md
34 x,. 0)= Y1 (t=m8), m8<t<(m+1)d

is the unique solution of (1) over the interval [0, (m+1)8]. In this manner, the unique solu-
tion can be extended to all of [0, T1.

Proof No.2 Let T <o be given,let P: C"[0, T]1— C"[0, T]be given by (11), and let
X,(*) denote (as before) the element of C"[0, T] whose value is x, for all re[0, T]. It is
shown first that the sequence {P™x,(-)};n; is a Cauchy sequence in C™[0, T] and that it
converges to a solution of (2).

Let x,,(*) = (P™xp)(*). Then we have, first,

35 x(-%0=]11x)dr,
0

t

36 lx () -xp(t)l <[ (T, X0) Il dT< g
0

In general, form 2 1, we have

37 X, ()—x,) sj IHfft, x,,, (D] - f£I1, X, (D]l dT
0

t
Skr [ 1%(T) = X1 (D1 d.
0 ’
Substituting (36) into (37) and proceeding by induction gives
tm
38 X, (1) =X, (DI k7! hTTn_v‘

Thus for any integer p 2 0 it follows that

p-1

39 "xm+p(t)_xm(t) i< Z ”xm+i+l(t)_xm+i(t)”
i=0

tm+i+1

p-l )
s h km-H_____
,.Z:O T (m+i+l)!
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40 Nx, ., — X llc= sup X, () ~x, (D)
1[0, T}

m+p X oo {
< Y hrkf ‘—< Y hrky 'T

i=m+1 i=m+1

Now consider the sequence of sums

4 {Ehrk‘ 1?'}

As m — oo, this sequence converges to (hy/kr) exp (krT). Moreover, the last term in (40) is
the difference between this limit and the partial sum in (41) and therefore converges to zero.
Thus by choosing m sufficiently large this sum can be made arbitrarily small. This shows
that {x,,(-)} is a Cauchy sequence in C"[0, T]. Since C"[0, T] is a Banach space, the
sequence converges to a limitin C"[0, T]. Denote this limit by x*(-).

Whenever z, (-) and z,(-) are two elements in C"[0, T'], we have

14
2 (Pz))()-(P2)(0) =] {fl1, 2,(D)] -1, (D]} d,
0
3 I(Pz)(0) - (PN < j 1z, 2, (1) —f[1, Z,(T)) It dT
0

' SkTT”ZI —Z ”C’
44 "(PZl)(')—(Plz)(')"c'—"ES[gPT] NPz, ) (1) - (Pz)(D)l
SkTT“Zl —Z ”C

Since k;Tis a finite constant, it follows that P is uniformly continuous on C"[0, T']. Hence if
{x,,(")} converges to x*, it follows that

45 (Px*)()= lim (Px,)()= lim X, ,, () =x*().

This shows that x*(*) is a solution of (2).

Next, to show that x * is the only solution to (2), suppose y(-) also satisfies (2). Then

46 y(r)—x*(0)=[{fl1, y(0)] - flt, x*(1)]) d1, Vee [0, T),
0
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47y -x*(ON <kg [ ly(t)-x*(v)ll d1, Vre[0, T].
0

Applying Gronwall’s inequality [Lemma (5.7.1)] to (47) gives
448  ly(t)-x*@)Il=0,Vee[0, T].

Thus y(-) =x*(), i.e., x*(*) is the unique solution of (2). B
49 Remarks

1. Thesequence {P"xy(-)} that converges to the solution x *(-) of (2) is known as the
sequence of Picard’s iterations, and this method of generating a solution to (2) is
known as Picard’s method. Actually, it is easy to show that Picard’s iterations
converge starting from any arbitrary starting function in C*{0, T'] and not just
Xo().

2. Note that some authors assume that f(z,0)=0Vz 20. This assumption, together
with (4), implies (5), because then lIf(z,xg) Il <k lIxgli. However, in "forced”
nonlinear systems, it is not necessarily true that f(1,0)=0Vr. The present
development does not require this assumption.

We next prove two theorems regarding the solution of (2). In effect, Theorem (25)
states that (2) has a unique solution corresponding to each initial condition. Theorem (50)
below shows that, at any given time, there is exactly one solution trajectory of (2) passing
through each pointin R". Theorem (57) shows that the solution of (2) depends continuously
on the initial condition.

50 Theorem Letf satisfythe hypotheses of Theorem (25). Then for each ze R" and each
Te|0, o) there exists exactly one element zoe R” such that the unique solution over [0, T of
the differential equation

51  x(0)=A1ls, x(1)], x(0)=2,
satisfies
52 x(T)=z

Proof Consider the equation
53  x()=f[1, x(1)], x(0)=2,
where
54 f.(4, x)=—f(T~1,x),Vte[0, T].

Then f; also satisfies the hypotheses of Theorem (25), so that (53) has a unique solution over
[0, T]. Denote this solution by y(-) and define z, =y(7). Then one can easily verify that the
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function y, () defined by
55 y,()=y(T-1),Vte[0,T]

satisfies (51) and also satisfies (52). To prove the uniqueness of the element z; correspond-
ing to a particular z, assume by way of contradiction that there exist two functions y, (:) and
y.() in C"[0, T] that satisfy (51) and (52). Let y,(0)=z,, y,(0)=2,. Then the functions
Y4(*) and y, () defined by

56 y,()=y,(T-1), y,(t)=y(T-1)

must both satisfy (53). However, because the solution to (53) is unique, it follows that
Yo()=Y,(). Hencez, =z,. M

57 Theorem Letf satisfy the hypotheses of Theorem (25), and let Te [0, o) be specified.
Then for each € > 0, there exists a 8(g, T) > 0 such that the following is true: Suppose x, and
Yo are vectors in R” that satisfy

58 lixg—yoll <d(g, T).

Suppose x(-) and y(*) are the corresponding solutions to the differential equations
59 x()=flt, x()], x(0)=x,,

60  y()=flr, (1)), y(0)=Yo.

Then

61 Ix(:)-y()lic<e

Proof The functions x(-) and y(-) also satisfy

62 x(1)=x, +j fl1, x(1)] dT,
0

t

63 y(t)=yo+] flt, y(m)dr.
0

Subtracting, we get

64 x(1)-y(t) =X —Yo + [ (flt, x(D] -1, y(D)]} dr,
0
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65 lIx() -yl < Ixg—yo i + k7 [ Ix(¥) - y(D) I d.
0

Applying Gronwall’s inequality [Lemma (5.7.1)] to (65) gives

66 lix(t)-y()Il < I'xg—yo Il exp (k;T).

Hence

67 lIx(:

)=y e < ixg —yo Il exp (k7 T).

Thus, givene > 0, (61) is satisfied if we choose 8(g, T) =¢e/exp (k;T). B

Remarks

1.

The results contained in Theorems (50) and (57) can be given a simple interpreta-
tion in terms of certain mappings being continuous. Let ¢: R" — C"[0, T'] be the
mapping that associates, with each initial condition Xo€ R”, the corresponding
unique solution of (2). Then Theorem (57) states that ¢ is uniformly continuous
on R”. In the same vein, let y;: R" — R" be the mapping that associates, with
each initial condition xo€ R”, the value at time T of the corresponding unique
solution of (2). Then Theorem (50) states that 7 is one-to-one [i.e., given Yz(x),
one can uniquely determine x], and onto (i.e., the range of w7 is all of R"). Furth-
ermore, Theorem (57) shows that both y and its inverse map W7 are continuous.

It is important to note that Theorem (57) is strictly limited to the case where the
interval [0, T] is finite. Theorem (57) does not say that the solution over the
infinite interval [0, ) depends continuously on the initial condition Xq. In fact,
we shall see in Chapter 5 that one possible interpretation of so-called Lyapunov
stability is precisely that the solution over the infinite interval depends continu-
ously on the initial condition.

68 Example Consider the scalar differential equation

69 x(1)

=tanh {x (1)]=:f [x (1], x(0)=x,.

Since the function tanh(x) is everywhere continuously differentiable, and since this deriva-
tive is everywhere bounded (in magnitude) by 1, it is easy to verify that f(-) satisfies a global

Lipschitz

condition of the form (26) with k+=1 for all T (see also Problem 2.15 below).

Also, for every x o, there exists a finite constant Ay such that (27) holds. Hence, by Theorem
(25), it follows that (69) has a unique solution over [0, <) corresponding to each x¢; more-
over, for every finite number 7, the map taking x into the corresponding solution function
in C {0, T'}is continuous, by Theorem (57). '

70 Example Consider the linear vector differential equation
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71 x(1)=A@) x(), x(0)=x,,

where A(-) is continuous. Let Il-1l be a given norm on R". Since A(-) is continuous. for
every finite T there exists a finite constant ky such that

IA)N; <kg, Vi€[0, T).

Hence it follows that
NA(x-A@Myll <kplix-yll, vx, yeR", Ve [0, T],
HA@®X Il <kplixgll, Vee[0, T).

So (26) is satisfied with k; as above, and (27) is satisfied with hy=ky. Therefore, by
Theorem (25), (71) has a unique solution over [0, ¢) corresponding to each initial condition
Xo. Moreover, over each finite interval [0, T |, this solution depends continuously on x,. B

In conclusion, in this section we have presented some conditions that are sufficient to
ensure that a given nonlinear vector differential equation has a unique solution over some
interval, or over all intervals. It is easy to construct counterexamples to show that the condi-
tions presented here are by no means necessary for the existence and uniqueness of solu-
tions. For instance, consider the scalar differential equation

72 x()=—x%,x(0)=1.

This equation has a unique solution over [0, o), namely x(¢) = 1A¢+1), even though the
function f (x) = x? is not globally Lipschitz-continuous.

At a first glance the condition of Lipschitz-continuity appears to be extremely restric-
tive, since it is known that "almost all" continuous functions are not differentiable and thus
not Lipschitz-continuous. Nevertheless, it can be shown that differential equations with
unique solutions are prevalent in the sense that "almost all" differential equations with con-
tinuous functions f have unique solutions. The arguments used to make this statement pre-
cise and to prove it are quite advanced; therefore, they are presented separately in Appendix
A. The contents of this appendix show that it is quite reasonable to assume that a given dif-
ferential equation has a unique solution. This is a useful fact to know, especially when we
study the stability of differential equations in Chapter 5.

Problem 2.14 Show that Lipschitz-continuity is independent of which norm on R” is
used. Precisely, let li-1l, and Il-1l,, be two given norms on R". Show that for each finite T
there exists a finite constant k7 such that

Mz, x) -~ £(2, )N <korlix~yll,, VX, ye R", Vte[0, T],

if and only if, for each finite T there exists a finite constant k; such that
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If(t, x)— (e, ), <kyrNx—yll,, Vx, ye R", Vee[0, T].

Problem 2.15 (a) Let f : R, XR — R be continuously differentiable in the second argu-
ment. Show that fsatisfies (26) if and only if, for each finite T there exists a finite constant kr
such that

| |
15 ) dreR, Vi [0, T],
| Ox

i.e., 19f (¢, x)/0x | is bounded independently of x over each finite interval [0, T]. (Hint: Use
the mean-value theorem.)

(b) Let f: R, XxR" — R" be continuously differentiable in the second argument. Show
that f satisfies (26) if and only if, for each finite T there exists a finite constant k; such that

1ofi(t, %) | .
| |<kp, Vi, j, YxeR", Vi [0, T].
| 0x;

i

(Hint: Use the results of Problem 2.14 above.)

" Problem 2.16 Determine whether or not the following functions satisfy a global
Lipschitz condition:

(@) fx)=[x}-xx, 2x,-x37,

b fx)=[x, exp(-x3) xzexp(=x])I'.

2.5 SOLUTION ESTIMATES

In this section, we give a method for obtaining both upper and lower bounds on the
norm of a solution of a given differential equation. The Gronwall inequality {Lemma
(5.7.1)] does give an easily applicable upper bound on the norm of the solution of a linear
differential equation, and a similar inequality known as Langenhop’s inequality provides a
lower bound. However, both of these bounds suffer from the deficiency of being sign-
insensitive; i.e., they give exactly the same estimates for

1 x(t)=Ax(¢)
as for
2 x()=-A@)x().

This is because both Gronwall’s inequality and Langenhop’s inequality (not presented in
this book) utilize ([A(#)1l, which is of course sign-insensitive. In contrast, the method given
here is based on the concept of the matrix measure, which is sign-sensitive. As aresult, the
bounds derived in this section are always "tighter" than (or the same as) those given by the
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Gronwall and Langenhop inequalities.

3 Theorem Considerthe differential equation
4  x()=A@)x(), 120,

where x(t)e R” and A(t) is a continuous nxn matrix-valued function. Let |l- || be a norm on
R", and let lI- | ; and U(-) denote respectively the corresponding induced matrix norm and
the corresponding matrix measure on R™", Then, whenevert 2ty>0, we have that

5 lx(to) Nl expy [-pl-A@]dr < Ix()1 < Ux(to)l expd [HA(D]dr .

Proof From Example (2.4.70), we know that the differential equation (4) has a unique
solution over [0, «). To prove the inequalities (5), observe first that, from the integral form
of (4), it follows that

6  x(1+0)=x(1)+dA(2)x(1) +0(8), V5 >0,
where 0(8) denotes an error term with the property that

7 lim Ae@®U _o
8§50 )

Rearranging (6) gives, successively,

8 x(t +8) =[I+ 6A ()] x(¢) + 0(5),

9 ix(t+8) Il < N[I+BAM - Ix() N +0(S),

10 Ux(t+8) Il = Ix() Il (NI +BA@)N; — 1) Ix(2) Nl +0(3),

ix(t +8) 1l — Ix(e) I
5

11 £+— Ix(£) Il = lim SUA@]Ix(H) 1,
dt 50"

where d*/dt denotes the right-hand derivative. Multiplying both sides of (11) by the
integrating factor

12 exps - [ulA(D]dr

(or, equivalently, applying the Gronwall inequality) gives the right-hand inequality in (5).
The proof of the left-hand inequality in (5) is entirely similar, starting with
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13 x(r-d)=x(r)— dA(r) x(1) + 0(5).

The completion of the proof is left as an exercise. B

Theorem (3) provides both upper and lower bounds for the norm of the solution of the
unforced linear equation (4). In applying the bounds (5), it is important to remember that the
norm being used and the measure must correspond to one another. Also, using different
norms in Theorem (3) will give rise to distinct bounds. This is illustrated by the following
examples.

14 Example Consider the equation (4) withn =2 and

=2t 1 |
1 | XO®=¢|-

First, let us calculate the measures [, , 15, 1., of the matrix A(z). This gives

Alt)=

AN =LA@M) =—1+1,
W FAM] =pL[-FAM] =21+ 1,
WL {A@] =-1, W [-A()] =21
Thus, applying the inequalities (5) with each of the above measures gives
exp(—1—t)<Ix () + lx (1) | Sexp(—t—1312),
exp (=1 —-12) < 1x (D)1, 1x,(t)| <exp (=1 —12/2),
exp(—12) <[lx; ()12 + 1 x,(1)12]? <exp (- 12/2).

Thus the same two inequalities (5), when applied with different vector norms and
corresponding matrix measures, yield different estimates for the vector x(¢). By way of
illustrating the bounds obtained above, the regions of R? to which the vector x(1) is confined
by each of the above bounds are shown in Figures 2.3, 2.4, and 2.5, respectively.

15 Example Consider the equation (4) with n =2 and
-3t 1t 1
2u-ar|> XO=];|-

Then the actual solution for x(¢) is

A=

x(1)={(473)exp (—12)— (173) exp (=5122) (4/3)exp (—12)+(23)exp9-5:12)].

However, if we calculate the various measures of A(z), we get
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K [A@D]=~¢, p[-A(1)] =51,
U, [A(D)] =—2.971, uy[-A(1)]=5.03t,
Mo [A(D)] =-21, p.[-A(t)] =61.
Thus the corresponding estimates for x(¢) are as follows:
3exp(=2.5t) < Ix ()| + lxy(t) ) <3exp(~0.5t2),
V5 exp (- 2.52:) <[ 1x (1) 1% + 1x,(8) 1212 <5 exp (- 1.48¢2),

2exp (=3t < lx (1)1, 1x3(2)] <2exp (~12).

The bounds are depicted for the case t =0.5 in Figures 2.6, 2.7 and 2.8, respectively.

49
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Fig.2.7

7

Fig.2.8

'

To extend the above estimation technique to nonlinear differential equations of the
form

16 x(1)=flz, x(1)], x(0) =Xy,
a preliminary result is needed.

17 Lemma Suppose f: R, XR" — R" is continuously differentiable. Then there exists a
continuous function A: R, XR" - R such that

18 £, x)=1(s, 0)+ A(s, X)X, Vt 20, VxeR".

Proof Fix tand x, and consider f(¢, Ax) as a function of the scalar parameter A. Then
1 4 1
19 (1, x)=£(, 0)+] 1 M) dh=1(r, 0)+ | Vuf, axydr | x.
0 0

Hence (18) holds with
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1
20 A, x)= j V, £(t, Ax) dA.
0

Note that there is nothing special about the origin in the above formula. Indeed, given
any fixed xye R", we can write

21 (¢, x)=1(s, x5) +B(1, X, Xp) (x~xg)

for a suitably chosen matrix-valued function B(¢, x, xg).

22 Theorem Consider the differential equation (16), and suppose (i) f is continuously
differentiable, and (ii)f(t, 0)=0V1t 20. Define A(t, x) asin(18). Let |- Il be anormon R",
and let I I|; and (") denote the corresponding induced norm and matrix measure on R,
Suppose there exist continuous functions () and P(-) such that

23 u[A@ <o), B Su-AE, x)], V20, VxeR".
Then

1

13
24 lixgliexp| - Bvydt| <lx(®)ll <lixqllexp | [ omydt|, Ve 20.
0 0

The proof is virtually the same as that of Theorem (1) and is left as an exercise.

Notes and References

The material in this chapter is quite standard, and can be found in most textbooks on
differential equations, e.g., Hartman (1964). The matrix measure was introduced by
Dahlquist (1959), while the solution estimates given in Section 2.5, based on the matrix
measure are due to Coppel (1965). Appendix A contains a result due to Orlicz (1932), to the
effect that "almost all" differential equations have a unique solution.



3.SECOND-ORDERSYSTEMS

3.1 PRELIMINARIES

In this chapter, we study several techniques for the analysis of autonomous second-order
systems. In subsequent chapters, this restriction on the order of the system is removed and
some techniques are presented for analyzing systems of any order, autonomous or other-
wise. Obviously the latter techniques are also applicable to second-order systems. How-
ever, second-order systems occupy a special place in the study of nonlinear systems. The
most important reason is that the solution trajectories of a second-order system can be
represented by curves in the plane. As a result, nonlinear systems concepts such as oscilla-
tions, vector fields, etc. have simple geometric interpretations in the case of second-order
systems. (All the technical terms used above will be defined shortly.) For these and other
reasons, second-order systems, by themselves, have been the subject of much research, and
inthis chapter we present some of the simpler results that are available.

Consider a general second-order system described by the scalar differential equations
1 x ()=filt x1(0), x2(0], X2() = [, x,(8), x2(0)].

A basic concept in the analysis of second-order systems is the so-called state-plane plot.
The state-plane is the usual two-dimensional plane with the horizontal axis labeled x| and
the vertical axis labeled x,. Suppose [x (), x2(-)] denotes a solution of (1). Then a plot of
x () versus x,(¢) as t varies over R, is called a state-plane plot or a state-plane trajectory
of the system (1). In such a plot, the time ¢ is a parameter that can either be explicitly
displayed or omitted. In the special case where the first equation in (1) is of the form

2 x()=x0),

it is customary to refer to the state plane as the phase plane. Correspondingly, in this case
one also refers to phase-plane plots or phase-plane trajectories. This special case arises
quite commonly in practice. In particular, if the system under study is governed by a
second-order scalar differential equation of the form

3 Y=gl y@),y0),
then a natural choice for the state variables is
4 x()=y@),x,(0)=y@).

In this case, the system equation (3) is equivalent to the following two first-order equations:

53
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5 x1(0)=x0t), x2(0)=g 1, x, (), x,(0)].

In the case of autonomous systems, i.e., where the function g in (5) does not explicitly
depend on the time ¢, phase-plane plots have another useful feature, namely: it is possible to
reconstruct the implicit parameter ¢ from the phase-plane plot. Suppose we are given a
phase-plane plot denoted by C, and suppose it is known that a particular point (x5, X20)
corresponds to a time . Typically ¢, is the initial time and (x ¢, x5) is the initial state of
the system. If (x i, x5) is another point on C, the value of ¢ (say #;) which corresponds to
(x5, X2p) can be determined as follows: If x, does not change sign along C between

(x10, x20) and (x 1, x ), then dXy - d?
X1z Yq ) Y
6 ¢ t+jabcl " ; Z‘t { o
f= 0 -, . ou, . ; -~ Lo ‘f___l.
c x2 Xz.~ {\7 - x1 “7 ! < 'Z—Z

where the integral in (6) is taken along the curve C (see Figure 3.1). If x, changes sign along
C, then the integral in (6) has to be evaluated as the sum of several integrals, one correspond-
ing to each segment of C along which x , does not change sign (see Figure 3.2). Note that, as
x4 — 0, the integral in (6) becomes an improper integral. The proof of the relationship (6) is
easily obtained starting from (5) and is left as an exercise (see Problem 3.1).

X2
[
(me-\Wzr)
t=t, 1=t
*1

Fig.3.1

p X2
(x10,X20) (le,xzf)

Fig.3.2
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Another very important concept is a vector field. A couple of preliminary notions are
needed to introduce this concept.

A function f:R? > R is said to be smooth if f (x,, x,) has continuous partial deriva-
tives of all orders with respect to all combinations of x, and x5, i.e., if the partial derivative
d"f /0x', x5~ is well-defined and continuous for all integers n 2i 2 1.

Suppose a, b are real numbers, not both zero. Then the two-argument arc tangent func-
tion Atan(a, b) is defined as the unique number 8¢ [0, 27) such that

. b
3 2,smB: 3 7
a‘+b a‘+b

7 cosf=

Note that Atan(a, b)= Atan(ra, rb) provided r >0 (but not if r <0). Atan(0,0) is
undefined.

8  Definition A functionf: R? — R? is called a vector field if both of its components are
smooth functions. A vector xe R? is called an equilibrium of a vector field f if f(x)=0. If
xe R? is not an equilibrium of £, then the direction of the vector field f at the point X is
denoted by 8¢(x) and is defined as

9 0¢(x) = Atan[f, (x), f2(x)].
Figure 3.3 depicts the quantity B¢(x).

| X2 f(x)

! of(x)

X (Lo

X1

Fig.3.3

To see the utility of these concepts, suppose f: R* — R? is a vector field, and consider
the associated differential equation

10 x,=f1(x),x3), x2=fo(xy, x3).

Note that here and in the remainder of the chapter we follow the standard practice of not
explicitly displaying the time variable z.

Suppose X =(x, X,) is a point in R?; then it is easy to see from (10) that if C is a solu-
tion trajectory of (10) passing through x, then the vector f(x) is tangent to C at x. Hence, in
principle at least, it is possible to construct graphically the solution trajectories of (10) by
plotting the vector field f(x). Actually, the concept is very deep and has many applications,
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only a few of which are touched upon in this book. Furthermore, the concept of a vector
field is applicable to (autonomous) systems of any order. The reader interested in a deeper
knowledge of the application of the vector field concept to differential equations may con-
sult Arnold (1973). Vector fields are encountered again in this book in Chapter 7.

Note that it is quite common to refer to f(x) as the velocity vector field associated with
the system of equations (10).

The objective of the present chapter is to present some ways of analyzing the system
(10) by either finding the state-plane trajectory of the system to a reasonably high degree of
accuracy or determining some qualitative features of the state-plane trajectory without
doing too much work. Throughout the chapter, the study is confined to autonomous sys-
tems, because even though the concept of a state-plane trajectory is valid for nonauto-
nomous systems, most of the significant results are applicable only to autonomous systems.
For example, the autonomous system (10) has a periodic solution x(¢) if the corresponding
solution trajectory is a closed curve in R?. An analogous statement for nonautonomous sys-
tems is false in general.

Finally, a word about the existence and uniqueness of solutions to the system of equa-
tions (10). Since f is smooth, it follows from Corollary (2.4.22) that (10) has a unique solu-
tion at least locally; that is, given the system (10) together with an initial condition

11 x(0)=x 9, x2(0)=x,

there exists a number & such that (10-11) has exactly one solution over [0, 8). Additional
conditions on f ensure that (10-11) has a unique solution over all of [0, o ); see Theorem
(2.4.25).

'

Problem 3.1 Prove the relationship (6). Hint: Use (5) to write
X, (t+A)=x () + At x,(2) + 0 (At).

Problem 3.2 Show that if C is a solution trajectory of (10) passing through x, then the
vector field f(x) is tangent to C at x. Hint: Express (10) in difference form as

x (t+ A =x () + At f1[x (1), x2(D)] + 0 (A1),
xp(t+ A =x,(0) + At frx, (1), x2(8)] + 0 (AD),

and eliminate At as At — 0.
Problem 3.3 Does the function f:R? — R? defined by

fiG,x)=x,+[1-(2 +x3)"2],
fabxg, xp)=—x; +[1-(xF +x3)?)

constitute a vector field? Justify your answer. Hint: Consider the behavior of f near the
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origin.
3.2 LINEARIZATIONMETHOD

We begin by studying linear systems, which are simpler to analyze than nonlinear sys-
tems and yet provide much insight into the behavior of nonlinear systems. The general form
of a second-order autonomous linear system is

1 X|=apx, +apXxy, X3 =ay X +anxy,
together with the initial conditions

2 x(0)=xy9, x2(0)=x2.

In matrix notation (1) and (2) can be expressed as
3 x(r)=Ax(1), x(0) =x,.

To understand better the behavior of solutions to (3), it is helpful to make a transforma-
tion of variables. Accordingly, let

4 z=Mx,

where M is a constant nonsingular 2x2 matrix with real coefficients. In terms of the
transformed variable z, (3) becomes

5  #(t)=MAM"' z(r), 2(0) = Mx,.

Itisknown [see, for example, Bellman (1970)] that by appropriately choosing the matrix M,
the matrix MAM ™ can be made to have one of the following forms:

1. Diagonal form: In this case,

Mo
6 MAM=0;VZ,

where A; and A, are the real (and not necessarily distinct) eigenvalues of the matrix A.

2. Jordan form: In this case,

Al
-1 _
7 MAM "[OK}’

where A is the real repeated eigenvalue of the matrix A.
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3. Complex conjugate form: In this case,
o-p
8 MAM_| = B N

where a tjf are the complex conjugate eigenvalues of A, and we choose B >0 to be
definite.

Each of these cases is studied in detail.

Case 1 Diagonal Form: In this case (5) assumes the form
9 Zi()=hz (1), 22() =Ry 2,(1),
21(0)=2,10, 22(0) =z.

The solution of (9) is

10 z,(0=z,0e™, (1) =259 €™

At this point it can be assumed that not both A, and A, are zero, because if both A;, A, are
zero then A =0 and z(¢) = z,, for all ¢; consequently the state-plane plot consists of just a sin-
gle point. Thus suppose A, #0. Then the parameter ¢ can be eliminated from (10) to give

z Ao/l
11 22=220'[‘—l‘} .

210

Equation (11) describes the state-plane tfajectory of (9) in the z;—z, plane. If A, and A, are
of the same sign, then the trajectories have the characteristic shape shown in Figure 3.4, but
if A; and A, have opposite signs then the trajectories have the characteristic shape shown in
Figure 3.5. The arrowheads in Figure 3.4 correspond to the case where A, < A; <0;if A; and
A, are both positive then the direction of the arrowheads is reversed, and the trajectories go
away from the origin as ¢ increases instead of going towards the origin as in Figure 3.4.
Similarly the arrowheads in Figure 3.5 correspond to the case where A, <0 < A,. It should
be emphasized that the trajectories depicted in Figures 3.4 and 3.5 are in the z,—z, coordi-
nate system; the corresponding trajectories in the x| —x, coordinate system, although they
will have the same general appearance as those in the z|—z, coordinate system, will be a lit-
tle distorted. This can be seen in Figures 3.6 and 3.7, where the trajectories in the x —x;
coordinate system are illustrated for the cases where A; and A, are of the same sign, and
where A; and A, are of opposite signs, respectively. If A; and A, are of the same sign, then
the equilibrium at the origin is referred to as a node. It is called a stable node if both A, and
A, are negative, and an unstable node if A, and A, are positive. In the case where A, and A,
are of opposite sign, the equilibrium at the origin is called a saddle. The rationale for this
nomenclature is that if one were to make a three-dimensional plot of [x(t), x5(¢), t ], then
the resulting surface would resemble a saddle.
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Fig.34
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Fig.3.7

Case 2 Jordan Form: In this case (5) assumes the form
12 2,(1)=Az, () +22(1), 2,(t) = Az, (),

21(0) =210, 22(0) =220.
The solution of (12) is
13 z,()=z0eM +zyte™, 2o(t) =250 ™.

Once again, ¢ can be eliminated from (13); the resulting expression describing the trajectory
is somewhat messy and its derivation is left as a problem (see Problem 3.4). The trajectories
in the z,—2z, coordinate system, which can be obtained from (13), are shown in Figure 3.8
for the case A < 0; if A > 0, then the direction of the arrows is reversed. The corresponding
trajectories in the x;—x, coordinate system are shown in Figure 3.9. In this case also, the
equilibrium (0, 0) is called a stable node if A < 0 and an unstable node if A > 0. )

\

Sy

e Y

Fig.3.8
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Xy

Fig.3.9
Case 3 Complex Conjugate Form: In this case (5) becomes
14 z,(0)=0z,(1) - Bz2(1), 2,() =Pz, (1) + &z, (1),
21(0)=20, 22(0) =220.
To simplify the equation further, introduce the polar coordinates
15 r=(@f +23)"%, ¢=Atan(z,, 2,).
Then (14),is transformed into
16 F)=or(), 6(t)=B,
which has the solution
17 r()=r0)e®, o(1)=¢(0) + Br.

In the z,—z, coordinate system, (17) represents an exponential spiral. If o> 0O, then the
spiral expands as ¢ increases, whereas if o < 0, then the spiral shrinks as ¢ increases; and if
o =0 the trajectory is a circle. The equilibrium (0, 0) is referred to as an unstable focus if
a >0, a stable focus if a < 0, and a center if a.=0. The trajectories in the z | ~z, coordinate
system corresponding to each of these cases are depicted in Figures 3.10, 3.11 and 3.12,

Table 3.1 summarizes the various kinds of equilibria for second-order linear systems.
Note that A, A, are the eigenvalues of the matrix A,

Now consider an autonomous nonlinear system described by
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Table 3.1
Eigenvalues of A Type of Equilibrium

A1, A; real, bothnegative  Stable node
A1, A, real, both positive Unstable node
Ay, Ay real, LA, <0 Saddle

A(, A, complex,ReA; <0  Stable focus
A1, Ay complex,Red; >0  Unstable focus
Ay, A, imaginary Center

18  x,=f1(x),x3), x2=f2(x ), x3).

The linearization method, as the name implies, consists of linearizing the given system in
the neighborhood of an equilibrium and determining the behavior of the nonlinear system
by studying the resulting linear system. The power of the method lies in the fact that, except
for special cases to be specified later, the method yields definitive results that are valid in
some neighborhood of the equilibrium.

The method can be summarized as follows: Suppose (0, 0) is an equilibrium of the sys-
tem (1) and that both f, and f, are continuously differentiable in some neighborhood of
(0, 0). Define

of;
19 au=[i} ,i7j=1’27
an
x=0
ap ap
20 A= .
az any

Then, by Taylor’s theorem, it is possible to expand f; and f, in the form
21 £, x2)=£1(0, 0 +a x +appxy+ri(xy, x3)
=a;x +apxy+ri(x;, x;),
faxy, x0)=ay X +apx, +ry(x1,x2), + 5, (00)

where r; and r, are the remainder terms, and we have used the fact that f£;(0, 0)=0 since
(0, 0) is an equilibrium. If the equilibrium is not at (0, 0) but at some other pointin R?, then
one can always translate the coordinates in such a way that the equilibrium is at the origin of
the new coordinate system. Now, associated with the nonlinear system (18), define the
linear system



64 Second-Order Systems Ch.3

22 él =a & +a,8,, &2=02|§1 +axk,.

The linearization method is based on the fact (proved in Section 5.5) that if the matrix A
does not have any eigenvalues with zero real parts, then the trajectories of the nonlinear sys-
tem (18) in the vicinity of the equilibrium x| =0, x, =0 have the same characteristic shape
as the trajectories of the linear system (22) in the vicinity of the equilibrium &, =0, &, =0.
Table 3.2 summarizes the situation.

Table 3.2

Equilibriumofthe  Equilibrium of the
Linear System (22)  Nonlinear System (18)

Stable node Stable node
Unstable node Unstable node
Saddle Saddle

Stable focus Stable focus
Unstable focus Unstable focus
Center

c
The last entry in the table can be explained as follows: If the equilibrium (0, 0) of the system
(22) is a center, then the linearized system exhibits perfect oscillations which neither grow
nor decay with time. In such a case, the behavior of the trajectories of the original nonlinear
system is determined by the remainder terms r | and r,, which are neglected in the lineariza-
tion. Studying the linearized system alone does not provide a definitive answer about the
behavior of the nonlinear system.

;

23 Example Consider the following second-order equation, commonly known as Van
der Pol’s equation:

24 j-pl-yH)y+y=0,

where |1 > Ois a constant. By defining the natural state variables
X1=y, X7 =Y,

(24) is transformed into the pair of first-order equations

25 x=xp,x,=—x;+p(1-x})x,.

The linearization of (25) around the equilibrium (0, 0) is

26 él =&, &2 ==& +u&,.

The eigenvalues of the associated matrix A satisfy the characteristic equation



Sec.3.2 Linearization Method 65

27 A’—pA+1=0.

For all positive values of p, the roots of (27) are complex with positive real parts, so that the
equilibrium &; =0, &, =0 of (26) is an unstable focus. Referring to Table 3.2, we see that the
equilibrium x| =0, x, =0 of the original system (8) is also an unstable focus.

!
{
|
{
i
|
|
I

Fig.3.13

Figure 3.13 shows the phase-plane trajectories of the Van der Pol oscillator. A notable
feature of this system is that all solution trajectories starting from an initial state other than
(0, 0) approach alimit cycle. This system is further analyzed in Section 3.4.

Problem 3.4 Eliminate ¢ from (13) and obtain an expression for the state-plane trajec-
tory involving only z |, 25, 29, and 2.

1
2 & 19
— AMM—

tb ' F +X1 | H x2
( T l

Fig.3.14

Problem 3.5 Consider the electrical circuit shown in Figure 3.14.

(a) Select the capacitor voltage x, and the inductor current x, as the state variables, and
show that the network is described by the equations
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.i[ =—2x1—Xx3+2v, .iz =X|—X3.

(b) Suppose v (1)=0. Determine the nature of the equilibrium at (0, 0) and find the
matrix M that transforms the above equations into the appropriate canonical form.

Problem 3.6 Suppose the 1/2 Ohm resistor in Figure 3.14 is replaced by a general resis-
tor R.

(a) Write the state equations for the network with v () =0.

(b) For what values of R is the equilibrium (0, 0) (i) a node, (ii) a focus, (iii) a saddle?
Problem 3.7 For each of the matrices A given below:

(a) Determine the matrix M that transforms A into the appropriate canonical form.

(b) Sketch the state-plane trajectories in both the z,—z, coordinates and the x;—x,
coordinate system.

(c) Classify the equilibrium at (0, 0) as to its type.

LR

Problem 3.8 Find all equilibria of the Volterra predator-prey equations
'il =—X +x1x2, .i'z =X7—X1X73.

Linearize the system around each of the ¢quilibria and determine, if possible, the nature of
the equilibrium. (Answer: One center, one saddle).

v, =1,)

Fig.3.15

Problem 3.9 Consider the nonlinear circuit shown in Figure 3.15. Suppose the
voltage-current relationship of the nonlinear resistor is given by

v, =i2 =32 +3i, = £ (i,).
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(a) Select the capacitor voltage x| and the inductor x, as the state variables, and show
that the system equations are

Xy =v_xy =Xy, xp=x; = f(x)).

(b) With v =0, calculate the equilibria of the system.

(c) Linearize the system around each of the equilibria and determine the nature of each
equilibrium.

3.3 PERIODIC SOLUTIONS

3.3.1 Introduction

Some autonomous systems exhibit periodic solutions. For example, consider a simple
harmonic oscillator, which is described by the linear equations

1 x =x3,x3=—x,.

The solution of (1) subject to the initial conditions

2 x1(0=x50, x2(0)=x9

is given by

3 xy(®)=rgcos(—t+dg), x,(t)=rgsin(—t+¢p),
where

4 ro=(xfy +x30)"2, 9o = Atan(x o, X ).

Thus the solution of (1) is periodic irrespective of the initial conditions. Furthermore, the
entire phase-plane is covered with periodic solutions of (1): Given any point (x 9, x9), One
can always find a periodic solution passing through it.

In contrast, consider the system of nonlinear equations
5 xi=xp+ox (BP-x{ —x%),,%2=—xl+a.x2([3¢—x% - x3).
These equations can be expressed as
6 x=f(x)+g(x),

where
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X2

X
7 f(x)=[_xl},g(x)=a(ﬁ*—x%—x%)[x2}

Note that f is exactly the velocity vector field of the system (1), while g is a so-called radial
vector field, i.e., g(x) is always aligned with the vector x. Now introduce the polar coordi-
nates

8 r=0(t+x3)"2, p=Atan(x,, x,).
Then the equations (5) are transformed to
9  i=or(B-r?),¢=-1.

Itcan be easily verified that the solution of (9) is

B
10 = s =¢0)-1¢,
FO= e Caa e MO =4O~
where
2
11 CO B

= -1
r*(0)

Thus the system (5) has only one nontrivial periodic solution, namely r=p, i..,
x3 +x3, =B%. (Note that the equilibrium solution x, =0, x, =0 can also be considered a
trivial periodic solution.) Furthermore, if ot > 0, any solution of (5) with r(0) #0 approaches
this periodic solution as ¢ — e, This example differs from the earlier example of a simple
harmonic oscillator in that there is only one nontrivial periodic solution, and moreover, this
periodic solution is isolated, i.e., there exists a neighborhood of it that does not contain any
other periodic solution.

It is common to refer to a nontrivial periodic solution as a limit cycle. Note that some
authors reserve this phrase only for an isolated periodic solution. By convention, an equili-
brium is not regarded as a periodic solution.

In the remainder of this section, some results are presented pertaining to the existence
or absence of periodic solutions in nonlinear systems.

3.3.2 Bendixson’s Theorem

Bendixson’s theorem presents a simple sufficient condition to guarantee that a given
simply connected domain in the plane does not contain a periodic solution. Before stating
the theorem, the terms "domain" and "simply connected" are defined. A domain in R? is
just an open set. A subset S ¢ R? is simply connected if it can be continuously shrunk to a
single point in S, i.e., if there exists a point xo€ S and a continuous function 4 :[0, 1] xS —> S
such that
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12 A0, x)=x, (1, x)=Xx,, VXES.

For example, a closed disk is simply connected, whereas an annular region is not.
13 Theorem Consider the second-order system

14 x =fi(x;, x3), X =f2(x}, x3).

Suppose D is a simply connected domain in R? such that the quantity VE(x) defined by

J d
15 Vix)= ‘a—fT(xl’xz)+ 5%(151,"2)

is not identically zero over any subdomain of D and does not change sign over D. Under
these conditions, D does not contain any nontrivial periodic solutions of (14).

Proof Suppose J is a closed trajectory of (14). Then at each point x=(x, x,)€ J, the
velocity vector field f(x) is tangent to J. Let n(x) denote the outward normal to J at x. Then
f(x)-n(x) =0 for all xe J. Therefore

16 j £(x)'n(x) dl = 0.
J

But by the divergence theorem,

17 j f(x)'n(x)dl = j | VEx) dx =0,
J S

where §is the area enclosed by J. Therefore, in order for (17) to hold, either Vf(x) must be
identically zero over S, or else Vf(x) must change sign over S. But if § is a subset of D, then
the hypotheses of the theorem rule out both possibilities. Hence D contains no nontrivial
periodic solutions of (14). W

18 Example Consider the application of Theorem (13) to the linear system of equations
X1 =@ X +a 12X, X3 =0y X| +apX).

From Section 3.2 we know that a necessary and sufficient condition for the system to have
periodic solutions is that the matrix

ap an
A=
az; ax

have two nonzero imaginary eigenvalues. Since the eigenvalues of A are the roots of the
characteristic equation
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2
A +@ap+an)A+(anan-apay)=0,

itis clear that the system has periodic solutions if and only if
apy+ap=0,aay-apay >0.

Equivalently, a necessary and sufficient condition for the absence of periodic solutions is
that either of the above conditions be violated.

Applying Theorem (13) to the present case gives
Vi(x)=a,, +a,,, VxeR?,

Hence Bendixson’s theorem states that if a || + a,; #0, then the system has no periodic solu-
tions, which is consistent with the previous discussion.

19 Example Consider the system of nonlinear equations
. 2 . _ 2
X1 =Xy +X X2, Xy =—X] +X]X2.

The linearization of this equation around the equilibrium at the origin is
X} =X, Xp =Xy,

which exhibits a continuum of periodic solutions. However, for the nonlinear system we
have

VE(x)=x? +x3 >0Vx=0.

'

Thus Vf never changes sign, and is zero only at the origin (which is not a subdomain since it
is not an open set). Hence 