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Exercises 12.7
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Calculating Gradients at Points

In Exercises 1-4, find the gradient of the function at the given point.

nen K n gradien 0geln 1 NE UV nat pa
through the point.

1 Fly v) — v — v {
e J\AS)Y) — ) Ay u
2. fx,y)=In@x*+y), (1,1
3. g(x,y)y=y—x% (=10

4. g(x,y) == —y?', W2, 1)

2
2

In Exercises 5-8, find Vf at the given point.

5 f(x,y,20)=x*+y>=2224zInx, (1,1,1)

6. f(x,y,2) =22 =32+ y)z+tan""xz, (1,1,1)
7. f, )=+ 4+ +In(xyz), (—1,2,-2)
8

. f(x,v,2)=e*cosz+ (y+ 1)sin™' x, (0,0, 7/6)

Finding Directional Derivatives in the xy-Plane

Directions of Most Rapid Increase and Decrease

and decrease m
functions in these directions.

17, f,yy=x2+xy+y%, P(=11
i8. f(x,y)=xy+esiny, Py(1,0)
19. f(x,y,2)=(x/y)—yz, Py4,1,1)
20. g(x,y,2) =xe* +22, Py(1,In2,1/2)

. f(x,y,2)=Inxy+In yz+In xz,
22.

Py(1, 1, 1)

h(x,y,2) =In(x2+y* = 1)+ y+6z, Py(1,1,0)

Estimating Change

23.

In Exercises 9-16, find the derivative of the function at P, in the

direction of A.

9, f(x.vy)=2xy—3y? P.(5,5) A—=4i+3i
J e ) J J [ACE T+ 2J

10. f(x,y) =27 +y%, P=i, 1), A=3i-4j

11 g(x,y) = x — (y2/x) + V/3sec™! (2xy),  Po(1, 1),
A=12i+5j

12. h(x,y) =tan"'(y/x) + +/3sin""(xy/2), Po(l, 1),
A=3i-2j

13. f(x.v.2) =xy+yz+zx, PFPy(l,—1,2),
A=3i+6j-2k

4. f(x,y,2) =x>+2y> =322, Py(1,1,1), A=i+j+k

15. g(x,y,2z) =3¢’ cos yz, Py(0,0,0), A=2i+j—2k

16. h(x,y,z) =cos xy+e'* +1n zx, Py(1,0,1/2),

A=i+2j+2k

25.

26.

By about how much will
fay,)=lVx2+y2+22

change if the point P(x, y, z) moves from P,(3, 4, 12) a distance
of ds = 0.1 units in the direction of 3i + 6j — 2k?

By about how much will
f(x,y,2) =€ cos yz

change as the point P(x, y, z) moves from the origin a distance

of ds = 0.1 units in the direction of 2i +2j — 2k?

By about how much will
glx,y,2) =x+x

change if the point P (x, y, z) moves from Py(2, —1, 0) a distance

of ds = 0.2 units toward the point P (0, 1, 2)?

cos z—ysinz+y
Z—Y Z+

By about how much will
h(x,y,z) = cos(mwxy) + xz?

change if the point P(x,y,z) moves from Py(—1,—1,—-1) a
distance of ds = 0.1 uniis toward the origin?

Tangent Planes and Normal Lines to Surfaces

In Exercises 27-34, find equations for the (a) tangent plane and (b)
normal line at the point Py on the given surface.

27.

2+ +22=3, P, 1,1
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52.

Is there a direction A in which the rate of change of the tem-
perature function T (x, y, z) = 2xy — yz (temperature in degrees
Celsius, distance in feet) at P(1, —1, 1) is —3°C/ft? Give reasons

for-Vour-ansSwer.
F-ans

53.

TOF-You WEF-

The derivative of f(x,y) at Py(1,2) in the direction of i + j is

28. 24+ y2—22=18, Py(3,5.—4)

29, 2z —x>=0, Py2.0.2)

30 x4 2xy —y2 472 =7 Py, =1,3)
31. cos mx —x’y+e' +yz=4, Py0,1,2)
32 Xl —xy—yr'—z=0, Py(1,1,—1)

33. x+y+z:1. Py(0,1,0)

34.

X4y —2xy—x+3y—z=-4, Py2,-3,18)

In Exercises 35-38, find an equation for the plane that is tangent to
the given surface at the given point.

1
o

37.

Tangent Lines to Curves

and the tangent line at the given point. Then write an equation for

54

by

ey

L\/L and in the direction of —LJ is —3. What is the derivative

i el Alaoaelo 739 Cive reacnne for volir ancwer
Ul j lll illC UllCLllUll Ul _l - LJ \JlVC IcaduIn IUI your answcl.

The derivative of f(x, y, z) at a point P is greatest in the direction
of A =i+ j— k. In this direction the value of the derivative is

24/3.

In(x2 + v2) (1.0.0) 36, 7
In(x“+y7), (1 36. z

s Vs V)

-
<

Jy—x, (1,2,1) 38.

~

the tangent line.

39 2430 =4, (V2,V2)

40. x2—y=1, 2.1

41. xy =—-4, (2,-2)

42, x> —xy+y*=7, (—=1,2) (This is the curve in Section 2.6,

Example 4.)

In Exercises 4348, find parametric equations for the line tangent to
the curve of intersection of the surfaces at the given point.

43.

44.

46

47

.

48.

Surfaces: x4+ y>+2z=4, x=1

Point: (1,1

Surfaces: xyz=1, x*+2y?+32=6

Point: (1, 1, 1)

Surfaces: x*+2y+2z=4. y=1

Point: (1,1,1/2)

Surfaces: x+ 3y’ +z=2, y=1

Point: (1/2,1,1/2)

Surfaces: x* 4 3x2y? + y¥ +4xy — 72 =0,
x4 yr+ 2 =11

Point:  (1,1,3)

Surfaces: x*+y2=4, x’4+y?—z=0

Point: (V2. V2. 4)

Theory and Examples

49.

50.

51.

In what directions is the derivative of f(x,y) =xy+ y? at

P(2 2) eqgual to zero?
15, «) €quar 0 Z8ero

In what two directions is the derivative of f(x,y)=
(x2 — y2)/(x* + ¥?) at P(1, 1) equal to zero?

Is there a direction A in which the rate of change of f(x,y) =
x? = 3xy +4y? at P(1,2) equals 14? Give reasons for your
answer.

56.

- L y 1~
. It'lll[.)t‘ldlult‘ criarige aio

k) Whatis Vf at P? Give reasons for your answer.
1)  What is the derivative of f at P in the direction of i + j?

Qrimca thot + OCaloie
. DUPpOSE nat the Celsius

temperature at the point (x, y) in the xy-plane is T(x,y) =

xsin 2y and that distance in the xy-plane is measured in me-

ters. A particle is moving clockwise around the circle of radius
m/sec.

Q
O
I‘\
E:
I

—_~ =

a) How fast is the temperature experienced by the particle
changing in °C/m at the point P(1/2, J3 /2)?

b) How fast is the temperature expenenced by the particle
changing in °C/sec at P?

Change along the involute of a circle. Find the derivative of

f(x,y) = x* + y? in the direction of the unit tangent vector of

the curve

P N P N I R T AY I foiem 4 Ao A - N
(/) =(COS i risiniji+ Sini—iCosi)j, {>VU
(Fig. 12.42)
T
0

/

/

! x

12.42 The involute of the unit circle from Section 11.3,
Example 5. If you move out along the involute, covering
distance along the curve at a constant rate, your distance
from the origin will increase at a constant rate as well.
(This is how to interpret the result of your calculation in
Exercise 56.)
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57.

Change along a helix. Find the derivative of f(x, y,z) = x> +
y% + 2% in the direction of the unit tangent vector of the helix

r(¢) = (cos t)i+ (sin¢)j+tk

at the points where t = —n /4,0, and 7 /4. The function f gives

58.

the square of the distance from a point P(x, y, z) on the heliX
to the origin. The derivatives caiculated here give the rates at
which the square of the distance is changing with respect to 7 as
P moves through the points where t = —n /4,0, and 7 /4.

The Celsius temperature in a region in space is given by 7 (x, y, z)

= 2x% — xyz. A particle is moving in this region and its position

at time ¢ is given by x =2¢?, y = 3¢,z = —t2, where time is

measured in seconds and distance in meters.

a) How fast is the temperature experienced by the part-
icle changing in °C/m when the particle is at the point
P(8,6,—4)?

b) How fast is the temperature experienced by the particle

¥
X

12.43 The graph of a function z = f(x, y) and its
linearization at a point (xo, o). The plane defined by L is
tangent to the surface at the point above the point

wn
}D

61.

62.

changing in °C/sec at P?

Show that A(x — xo) + B(v — vs) = Q is an eguation for the line
Show that A(x — x5) + B{(y — yo) = Oisanequ
in the xy-plane through the point (x¢, ) normal to the vector

N=Ai+ Bj.

. Normal curves and tangent curves. A curve is normal to a

surface f(x,y,z) =c at a point of intersection if the curve’s
velocnly vector is a scalar multiple of Vf at the point. The curve

Q $ANCLH ~ tha ciiefona ot 0 nnint ~F Tntaccantinn o & ralanity
is tangent to tne suriace at a point of intersection if its VCiGCity
vector is orthogonal to Vf there

a) Show that the curve

1
r(t) = VTi+Vij— FE+3k

is normal to the surface x> + y> —z =3 when ¢ = |
b) Show that the curve
r(t) = Vii+1j+ @t — Dk
is tangent to the surface x> + y> —z =1 when t = 1.
Another way to see why gradients are normal to level curves.

Suppose that a differentiable function f(x, y) has a constant value
¢ along the differentiable curve x = g(t), y = h(t) for all values
of . Differentiate both sides of the equation f(g().h(t)) =c
with respect to ¢ to show that Vf is normai to the curve’s tangent
vector at every point.

The linearization of f(x, y) is a tangent-plane approxima-
tion. Show that the tangent plane at the point Py(xq, Yo, f (X0, Yo))
on the surface z = f(x, y) defined by a differentiable function

f is the nlanP

Sx(x0, yo)(x — x0) + f(x0, yo)(y — yo) — {2 — f{x0, Yo
or
z = f(xo, Yo) + fx(x0, Yo)(x — x0) + fi(x0, Yo) (¥ — o).

Thus the tangent plane at P, is the graph of the linearization of
f at Py (Fig. 12.43).

(xo, o). This furnishes a geometric explanation of why the
values of L lie close to those of f in the immediate

el L. .\
neighborhood of (xo, yo) (Exercise 62).

63. Directional derivatives and scalar components. How is the
derivative of a differentiable function f(x, y, z) at a point P in
the direction of a unit vector u related to the scalar component
of (Vf)p, in the direction of u? Give reasons for your answer.

64, Directional derivatives and partial derivatives.

the necessary derivatives of f(x, y, z) are defined, how are

Actnmmo that

Dif,

D;f, and Dy f related to fy, f,, and f.? Give reasons for your

answer.
65. The algebra rules for gradients. Given a constant k and the
gradients
af f f
A R A T 1Y
v ay " ay? ! a2, "
x 3y 3z
and
dg. dg. 3¢
Vg=—i+_—j+—Kk,
g a dy 9z
use the scalar equations
af =~ dg
—(f+g) = =,
x ax ax  0x
af ag
oe  of o /r\ Sax Tax
—(fg) = f + 8- o\ D)
ax’  dx g

and so on, to establish the following rules:

a)  Vkf)=kVf

b) V(f+g)=Vf+Vg
) V(f-g=Vf-Vg
d) V(fg)=fVg+gVf

8vS — JVe

f —
oV (E) T



