1018 Chapter 13: Multiple Integrals

Exercises 13.2

Area by Double Integration

20. Find the moments of inertia and radii of gyration about the co-

in Exercises 1—25 sketch the reglon bounded Dy the g ven lines and
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and evaluate the integral.
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1. The coordinate axes and the line x + y =2

2 The 1 0O o] 4

ordinate axes of a thin rectanoular n]ana of constant density §

€s Of rectanguiar piate of constanl Gensit

bounded by the lines x =3 and y = 3 in the first quadrant.

21. Find the centroid of the region in the first quadrant bounded by

the x-axis, the parabola y? = 2x, and the line x + y = 4.

22. Find the centroid of the triangular region cut from the first quad-

e TS X——=u, Yy —2zX; and y="

3. The parabola x = —y? and the line y = x + 2

4. The parabola x = y — y? and the line y = —x
. The curve y = e* and the lines y =0,x =0, and x =In 2

6. The curves y =1In x and y =2 In x and the line x = e, in the
first quadrant

s

rant by the line x + y = 3.

24. The area of the region in the first quadrant bounded by the
parabola y = 6x — x? and the line y = x is 125/6 square units.
Find the centroid.

. The parabolas x = y? and x =2y — y?
8. The parabolas x = y2 — l and x =22 — 2

The integrals and sums of integrals in Exercises 9—14 give the areas
of regions in the xy-plane. Sketch each region, label each bounding
curve with its equation, and give the coordinates of the points where
the curves intersect. Then find the area of the region.
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Average Values
15. Find the average value of f(x, y) = sin(x + y) over

a) the rctangle0<x<7r 0<y<m,

Sla < -/

o)
angle 0 <x<n, O0<y<m/2

b) the recta

16. Which do you think will be larger, the average value of f(x, y) =
xy over the square 0 < x <1, 0 <y <1, or the average value
of f over the quarter circle x> + y*> < 1 in the first quadrant?
Calculate them to find out.

17. Find the average height of the paraboloid z = x? + y? over the
square 0 <x <2, 0<y<2.
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Constant Density

19. Find the center of mass of a thin plate of density § = 3 bounded
by the lines x =0, y = x, and the parabola y =2 — x? in the
first quadrant.

25. Find the centroid of the region cut from the first quadrant by the

circle x> + y? = a?.

[
(=

. Find the moment of inertia about IhP x-axis of a thin pla[_. of

density § = 1 bounded by the circle x2 + y*> = 4. Then use your
result to find /, and I, for the plate.

27

Find the centroid of the region between the x-axis and the arch
y=sinx, 0<x<m.

28. Find the moment of inertia with respect to the y-axis of a thin
cha AF Anmctan Aanmaite, £ — 1 haundad tha
bllCCl O1 LUllbLﬂll\ UCllbll_y 0 — 1 vvunucu Uy \.IIC curve _y -

(sin? x)/x? and the interval w < x < 27 of the x-axis.

29. The centroid of an infinite region. Find the centroid of the
infinite region in the second quadrant enclosed by the coordinate
axes and the curve y = e*. (Use improper integrals in the mass-

moment formulas.)

The first moment of an infinite piate. Find the first moment
about the y-axis of a thin plaie of density 6 (x, y) = |

i covering
the infinite region under the curve y = ¢~/ in the first quadrant.
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Variable Density

31. Find the moment of inertia and radius of gyration about the x-
axis of a thin plate bounded by the parabola x = y — y? and the
linex+y=0if §(x,y) =x+y.

32. Find the mass of a thin plate occupying the smaller region cut
from the ellipse x> +4y? =12 by the parabola x = 4y? if
8 (x,y) =5x.

33. Find the center of mass of a thin triangular plate bounded by the
y-axis and the lines y =x and y =2 —x if &(x,y) =6x +
3y + 3.

34. Find the center of mass and moment of inertia about the x-axis
of a thin plate bounded by the curves x = y? and x = 2y — y?
if the density at the point (x, y) is 8§ (x,y) =y + 1.

35. Find the center of mass and the moment of inertia and radius
of gyration about the y-axis of a thin rectangular plate cut from
the first quadrant by the lines x =6 and y=1 if §(x.y) =

x+y+1.
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36. Find the center of mass and the moment of inertia and radius integral 4

of gyration about the y-axis of a thin plate bounded by the line f / (y — a)’dydx

= 1 and the parabola y = x? if the density is § (x, y) =y + 1.

37. Find the center of mass and the momenl of inertia and radius of Find the value of @ thar minimizes 7.

the lines x = #1, and the paraboia y = x2 if 8 (x, y) = 7y + I. by the curves y = 1/+/T — x2, y = —1/+/T — x%, and the lines
38. Find the center of mass and the moment of inertia and radius x=0x=1

of gyration about the x-axis of a thin rectangular plate bounded 46. Find the radius of gyration of a slender rod of constant linear

by thelinesx =0,x =20,y =—1,and y = 1if § (x,y) = 1 + density § gm/cm and length L cm with respect to an axis

x/20). . s : .

b/ 20 a) through the rod’s center of mass perpendicular to the rod's
39. Find the center of mass, the moments of inertia and radii of axis;

ovrat;gn about the coordinate axes, and the nnla_r moment of h)Y  masmamdianlan s tha wadle asvic af ama am A ~F tha wnd

- ~ ~ ) lJCllJCllul\,uld U LUIT 1UU D aAld al VUIIC Cliu Ul UuIT 1vu.

inertia and radius of gyration of a thin triangular plate bounded

by the lines y = x,y — —x, and y = 1 if 8 (x, y) = y + 1. 47. A thin plate of constant density § occupies the region R in the

xy-plane bounded by the curves x = y and x = 2y — y? (see
40. Repeat Exercise 39 for § (x, y) = 3x2+ 1. Exercise 34).

heory
41

Exercise 34.
If f(x,y)=(10,000€*)/(1 + |x|/2) represents the “population b) Compare the value of & found in part (a) with the average

dpncn\/ of a certain bacteria on the Y\r.nlnma where x and v 1 rog \ L1 n
"""""" value of 8 (x, y) = y + 1 over R.

are measured in centimeters, find the total populauon of bacteria

within the rectangle —5 < x <5 and —2 < y < 0. 48. Acciordmg to the Texas.Almanfzc, Texas has 254 counties and a
) ) National Weather Service station in each county. Assume that
2. 1f f(x, )’).2 100 (y + 1) represents the population den.suy 9f a at time 7 each of the 254 weather stations recorded the local
planar region on Earth, wh;re X and. y are measured in miles, temperature. Find a formula that would give a reasonable ap-
find the number of people in the region bounded by the curves proximation to the average temperature in Texas at time . Your
x =y and x =2y -y answer should involve information that is readily available in the
ik} ppliance design. When we desien a nnlianca a of tha exas Almanac
5. ’_‘I"H' ance gesign. vwneén we Gesign an appiiance, i Of i Lexas Aumanac

concerns is how hard the appliance will be to tip over. When
tipped, it will right itself as long as its center of mass lies on
the correct side of the fulcrum, the point on which the appliance The Parallel Axis Theorem
is riding as it tips. Suppose the profile of an appliance of ap- Let L, be aline in the xy-plane that runs through the center of mass
proximately constant density is parabolic, like an old-fashioned of a thin plate of mass m covering a region in the plane. Let L be a
radio. It fills the region 0 € line in the plane parailel to and A units away from L .

e Axis Theorem says that under these conditions the moments of ine
to fall over? I, and I ., of the plate about L and L., satisfy the equation

Iy = I + mh*. (1)

- N This equation gives a quick way to calculate one moment when
the other moment and the mass are known.

C

no

49. Proof of the Parallel Axis Theorem

in the plane of the plate through the plate’s center of mass is
zero. (Hint: Place the center of mass at the origin with the
line along the y-axis. What does the formula x = M, /M
then tell you?)
Fulcrum b) Use the result in (a) to derive the Parallel Axis Theorem.
- 1 Assume that the plane is coordinatized in a way that makes
L. the y-axis and L the line x = h. Then expand the
integrand of the integral for /, to rewrite the integral as the

sum of integrals whose values you recognize.
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! a)  Show that the first moment of a thin flat plate about any line
1
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13.21 The profile of the appliance in Exercise 43.

44. Minimizing a moment of inertia. A rectangular plate of con- 50. a) Use the Parallel Axis Theorem and the results of Example 4
stant density § (x,y) = 1 occupies the region bounded by the to find the moments of inertia of the plate in Example 4
lines x =4 and y =2 in the first quadrant. The moment of in- about the vertical and horizontal lines through the plate’s

ertia 7, of the rectangie about the line y =a is given by the center of mass.
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b) Use the results in (a) to find the plate’s moments of inertia 53. Let A, B, and C be the shapes indicated in Fig. 13.22(a). Use

about the lines x =1 and y = 2. Pappus’s formula to find the centroid of
, a) AUB b) AUC ¢) BUC
Pappus’s Formula d AUBUC

In addition to stating the centroid theorems in Section 5.10, Pappus
knew that the centroid of the union of two nonoverlapping plane
regions lies on the line segment joining their individual centroids. b y (in)
More specifically, suppose that m; and m, are the masses of thin

. . . 5 -
plates P, and P, that cover nonoverlapping regions in the xy-plane. e
Let ¢; and ¢, be the vectors from the origin to the respective centers 3 B
of mass of P, and P,. Then the center of mass of the union P, U P, 2 > (1,2)
of the two plates is determined by the vector 1 A C

mC + myC, s - L i L X x (in.)
c= —= =, (2) 0 2 4 7
my +m;
(@

Equation (2) is known as Pappus’s formula. For more than two

nonoverlapping plates, as long as their number is finite, the formula 13.22 The figures for Exercises 53 and 54.

generalizes to
mi€ +myC; + -+ +m,C,

c= . (3
my+my+---+m, a4 1 L . S £os N s wme s, mmory
LR PR S4. Locate the center of mass of the carpenter s square in F1g. 13.22(b).

PRt Toin ~F
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Thic facemas:la 20 acenanialle: siaaficl £an PR LY N
A1 1o1nulda 1> cbycuauy usciul 10l llllulllg uiIc CClli
irregular shape that is made up of pieces of constant density whose
centroids we know from geometry. We find the centroid of each piece

and apply Eq. (3) to find the centroid of the plate.

. An isosceles triangle T has base 2a and altitude h. The base lies
along the diameter of a semicircular disk D of radius a so that
the two together make a shape resembling an ice cream cone.
What relation must hold between a and h to place the centroid

51. Derive Pappus’s formula (Eq. 2). (Hint: Sketch the plates as of T U D on the common boundary of T and D? inside T?
regions in the first quadrant and label their centers of mass as 56. An isosceles triangle T of altitude h has as its base one side of a
(X1,y,) and (X3,y,). What are the moments of P; U P, about e S ) - .

‘}'1' DSy AL ’f)’ ! ‘ square () whose edges have length s. (The square and triangle do
the coordinate axes?) not overlap.) What relation must hold between A and s to place

52. Use Eq. (2) and mathematical induction to show that Eq. (3) the centroid of T U Q on the base of the triangle? Compare your
holds for any positive integer n > 2. answer with the answer to Exercise 55.

Double Integrals in Polar Form

Integrals are sometimes easier to evaluate if we change to polar coordinates. This
section shows how to accomplish the change and how to evaluate integrals over
regions whose boundaries are given by polar equations.

Integrals in Polar Coordinates

When we defined the double integral of a function over a region R in the xy-plane,
we began by cutting R into rectangles whose sides were parallel to the coordinate
axes. These were the natural shapes to use because their sides have either constant

x-values or constant y-values. In polar coordinates, the natural shape is a *“polar
rectangle” whose sides have constant r- and 6-values.

Suppose that a function f(r, 8) is defined over a region R that is bounded by
the rays & = « and 6 = B and by the continuous curves r = g;(0) and r = g,(0).
Suppose also that 0 < g,(0) < g,(0) < a for every value of 6 between o and B.
Then R lies in a fan-shaped region Q defined by the inequalities 0 < r < a and
a <6 < B. See Fig. 13.23.



