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To calculate the remaining partial derivatives, we apply what we know about the
dependence and independence of the variables involved. As shown in the diagram

(5), the variables x, y, and z are independent and ¢ = x + y. Hence,
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Exercises 12.6

Finding Partiai Derivatives with
Constrained Variables

In Exercises 1-3, begin by drawing a diagram that shows the relations
among the variables.

7. Suppose that x?> + y?> = r? and x = r cos#, as in polar coordi-

nates. Find
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1L If w=x?>+4y>+z*and z = x* + y?, find 8. Suppose that
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. Let U = f(P,V,T) be the internal energy of a gas that obeys

the ideal gas law PV = nRT (n and R constant). Find
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at the point (x, y,z) = (0, 1, ) if

Partial Derivatives without Specific Formulas
9. Establish the fact, widely used in hydrodynamics, that if f (x, y, z)

=0, then
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(Hint: Express all the derivatives in terms of the formal partial
derivatives df/dx, df/dy, and 9f/dz.)

10. If z = x + f(u), where u = xy, show that
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. Find (a—u) at the point (u, v) = (v/2, 1) if x = u? + v? and
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g. # 0. Show that

(3_2) __0g/dy
dy /), dg/dz
12. Suppose that f(x, y,z, w) =0 and g(x, y, z, w) = 0 determine

z and w as differentiable functions of the independent variables




x and y, and suppose that
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We know from Section 12.5 that if f(x, y) is differentiable, then the rate at which
f changes with respect to ¢ along a differentiable curve x = g(z), y = h(t) is
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12.33 The rate of change of f in the

direction of u at a point P, is the rate at
which f changes aiong this iine at P,.
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df _ofde o dy
dt ~ dxdr  dydt

At any point Py(xo, yo) = FPolg{i), h{iy)), this equaiion gives the raie of change
of f with respect to increasing ¢t and therefore depends, among other things, on
the direction of motion along the curve. This observation is particularly important
when the curve is a straight line and ¢ is the arc length parameter along the line
measured from P, in the direction of a given unit vector u. For then df/dt is the
rate of change of f with respect to distance in its domain in the direction of u.
By varying u, we find the rates at which f changes with respect io distance as we
move through P, in different directions. These “directional derivatives” have useful
interpretations in science and engineering as well as in mathematics. This section
develops a formula for calculating them and proceeds from there to find equations
for tangent planes and normal lines on surfaces in space.
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Suppose that the function f(x, y) is defined throughout a region R in the xy-plane,
that Py(xg, yo) is a point in R, and that u = u, i+ u, j is a unit vector. Then the
equations

X = Xo+suy, Y =Yo+suz

parametrize the line through P, parallel to u. The parameter s measures arc length

paran

from P, in the direction of u. We find the rate of change of f at P, in the direction
of u by calculating df/ds at P, (Fig. 12.33):
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provided the limit exists.



