
Calculus 234

Problems

May 15, 2003

A book reference marked [TF] indicates this semester’s official text; a book
reference marked [VPR] indicates the official text for next semester. These are

[TF] Thomas and Finney: Calculus and Analytic Geometry, Fifth Edition;

[VPR] Varberg, Purcell, Rigdon: Calculus, Eighth Edition.
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Part I

Partial Derivatives

1 Review of vectors

1. Consider the point P0(2,−2, 1) and the vector v = 2i + j− k.

(a) Find parametric equations for the line through P0 parallel to v.

(b) Find an equation of form

ax + by + cz = d

for the plane through P0 perpendicular to this line.

2. Let u = u1i + u2j + u3k, v = v1i + v2j + v3k, w = w1i + w2j + w3k.

(a) Write the formula for the area of the parallelogram with edges u and v.

(b) Write the formula for the volume of the parallelopiped with edges u, v, and
w.

3. Let P0 = (x0, y0, z0), P1 = (x1, y1, z1), P2 = (x2, y2, z2), P3 = (x3, y3, z3).

(a) Write the formula for the area of the parallelogram with edges P0P1 and
P0P2.

(b) What is the fourth vertex of this parallelogram?

(c) Write the formula for the volume of the parallelopiped with edges P0P1,
P0P2, P0P3.

2 Velocity, acceleration, and curvature

1. (a) Find the unit tangent vector T (as a function of t) for the space curve

x = et cos t, y = et sin t, z = et.

(b) Find the length of this parametric curve from t = 0 to t = π.

Answer: (a) The velocity vector is

v =
dx

dt
i +

dy

dt
j +

dz

dt
k = (et cos t− et sin t)i + (et sin t + et cos t)j + etk.
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Its length is

|v| =
p

(et cos t− et sin t)2 + (et sin t + et cos t)2 + e2t =
√

3et

The unit tangent vector is

T =
v

|v| =
cos t− sin t√

3
i +

sin t + cos t√
3

j +
1√
3
k

(b) The length isZ
ds =

Z π

0

ds

dt
dt =

Z π

0

|v| dt =

Z π

0

√
3et dt =

√
3eπ −

√
3e0.

2. Here are the important quantities associated with a parametric curve.

• The velocity vector v =
dr
dt

.

• The acceleration vector a =
dv
dt

.

• The speed
ds

dt
= |v|.

• The unit tangent vector T =
dr
|dr| =

v
|v| .

• The curvature vector
dT
ds

.

• The curvature κ =
∣∣∣∣
dT
ds

∣∣∣∣.

• The unit normal vector N =
dT
|dT| =

dT/ds

|dT/ds| .

Evaluate them for the parameterization

x = a cos t, y = a sin t

of the circle of radius a.

3 Surfaces in three-space

1. Describe and sketch each of the following surfaces. What is each one called?
(See [TF] pages 526-530.)

(a)
x2

a2
+

y2

b2
+

z2

c2
= 1. (b)

x2

a2
+

y2

b2
=

z

c
. (c)

x2

a2
+

y2

b2
=

z2

c2
.
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(d)
x2

a2
+

y2

b2
− z2

c2
= 1. (e)

x2

a2
+

y2

b2
− z2

c2
= −1. (f)

x2

a2
− y2

b2
=

z

c
.

2. Describe the graph z = f(x, y) of the function f(x, y) = y.

Answer: The graph of z = f(x, y) = y in the yz-plane is a line through the origin.
Since f does not depend on x, all cross sections of the graph of f parallel to this one
are identical. Thus the graph of f in xyz-space is a plane containing the x-axis.

3. Describe the graph of the surface
x2

a2
+

y2

b2
= 1.

4. Describe the graph of the surface
x2

a2
+

z2

c2
= 1.

The following problems introduce the idea of a parameterization

x = x(u, v), y = y(u, v), z = z(u, v)

of a surface. This is analogous to parameterization

x = x(t), y = y(t), z = z(t)

of a curve. Here we will use curve parameterization to compute some arc lengths; in

Section 20 of Part II we will use surface parameterization to compute some areas.

5. Show that the equations

x = cos t, y = sin t

give a parameterization of the unit circle x2 + y2 = 1. Is the parameterization
one-to-one? Onto?

6. Show that the equations

x =
t2 − 1
t2 + 1

, y =
2t

t2 + 1

give a parameterization of the unit circle x2 + y2 = 1. Is the parameterization
one-to-one? Onto? Which point is left out?

7. Show that the equations

x = cosh t, y = sinh t

give a parameterization of the hyperbola x2 − y2 = 1. Is the parameterization
one-to-one? Onto?

5



8. Show that the equations

x =
t

2
+

1
2t

, y =
t

2
− 1

2t

give a parameterization of the hyperbola x2 − y2 = 1. Is the parameterization
one-to-one? Onto?

9. Show that the equations

x = cos u sin v, y = sin u sin v, z = cos v

give a parameterization of the unit sphere x2 + y2 + z2 = 1. Is the parameteri-
zation one-to-one? Onto?

10. Show that the equations

x = v cos u− sin u, y = v sin u + cos u, z = v

give a parameterization of the hyperboloid x2 + y2 = z2 + 1. Is the parameteri-
zation one-to-one? Onto?

11. Use the parameterization of Problem 5 to find the arclength of the quarter
circle from (1, 0) to (0, 1). Then find this same arclength using the parameteri-
zation of Problem 6. (Compare with Problem 9 of Part II.)

12. Use the parameterization of Problem 8 to set up an integral for the ar-
clength of the portion of the hyperbola x2−y2 = 1 between (1, 0) and (5/4, 3/4).
Then do this using the parameterization of Problem 7. Do not attempt to eval-
uate either integral. (Compare with Problem 10 of Part II.)

4 Cylindrical and Spherical coordinates

1. Write the formula relating cylindrical coordinates (r, θ, z) and rectangular
coordinates (x, y, z).

Answer: x = r cos θ, y = r sin θ, z = z.

2. Write the formula relating spherical coordinates (ρ, θφ) and rectangular co-
ordinates (x, y, z).

Answer: x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ.
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3. Write the equation of the surface tan φ = c/a in rectangular coordinates.
What is it called?

4. Write the equation of the surface r = 1 in rectangular coordinates. What is
it called?

5. Write the equation of the surface φ = π/6 in rectangular coordinates. What
is it called?

6. Write the equation of the surface θ = π/6 in rectangular coordinates. What
is it called?

7. Write the equation of the surface ρ = 1 in rectangular coordinates. What is
it called?

5 Multivariate functions

1. Sketch the graph z = f(x, y) of each of the following functions f(x, y).

(a) f(x, y) = 1 (b) f(x, y) = x (c) f(x, y) = 2− x− 2y

(d) f(x, y) = x2 (e) f(x, y) = x2 + y2 (f) f(x, y) = x2 − y2

2. For each function sketch the three contours (level curves) f(x, y) = −1,
f(x, y) = 0, f(x, y) = 1.

(a) f(x, y) = 3x + 4y (b) f(x, y) = xy (c) f(x, y) = x2 + y2

(d) f(x, y) =
x2

a2
+

y2

b2
(e) f(x, y) =

x2

a2
− y2

b2
(f) f(x, y) = −x2

a2
− y2

b2

3. Repeat Problem 2 with f(x, y) replaced by f(x, y) + 1.

4. Repeat Problem 2 with f(x, y) replaced by f(x, y)− 1.

5. Suppose f(x, y) = xy. What is f(x + 3, y + 4)? f(x− y, x + y)?

In Problems 6-10 you are asked to graph some level curves of f(T (x, y))
where you have previously graphed the corresponding level curves of f(x, y).
This is essentially the problem of graphing a general second degree equation
(as in Math 222 except that here you are told how to translate and/or rotate
the axes. Here is the general procedure. First introduce new variables (x̃, ỹ)
and graph the level curves of f(x̃, ỹ) on a diagram where the horizontal axes
is labelled x̃ and the vertical axes is labelled ỹ. Then make a second diagram
where the horizontal axes is labelled x and the vertical axes is labelled y, write
the equations

(x̃, ỹ) = T (x, y),
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and draw (in the xy plane) the x̃-axis (i.e. the line ỹ = 0) and the ỹ-axis (i.e.
the line x̃ = 0.) Finally copy the graph you made in the x̃ỹ plane in the xy-plane
using the appropriate axes.

6. Repeat Problem 2 with f(x, y) replaced by f(T (x, y)) where

T (x, y) = (x− h, y − k), (h, k) = (1, 2).

7. Repeat Problem 2 with f(x, y) replaced by f(T (x, y)) where

T (x, y) = (x cos α− y sin α, x sinα + y cosα), α =
π

4
.

8. Repeat Problem 2 with f(x, y) replaced by f(T (x, y)) where

T (x, y) = (x cos α− y sin α, x sinα + y cosα), α =
π

3
.

9. Repeat Problem 2 with f(x, y) replaced by f(T (x, y)) where

T (x, y) = (x cos α− y sin α, x sin α + y cos α), α = −π

6
.

10. Repeat Problem 2 with f(x, y) replaced by f(T (x, y)) where

T (x, y) = (x cos α + y sin α,−x sin α + y cos α), α =
π

6
.

11. Suppose that f(x, y) = Ax2 + Cy2 + Dx + Ey where A,C 6= 0. Find a
point (h, k) such that

f(x, y) = A(x− h)2 + C(y − k)2 + f(h, k).

Problems 12-15 show how to reverse the process that was illustrated by
Problems 6-10. Here we start with a complicated quadratic polynomial f(x, y)
and find T so that f(T (x, y)) is simple.

12. Suppose that f(x, y) = Ax2 + Bxy + Cy2 and that

T (x, y) = (cx− sy, sx + cy).

(a) Find Ã, B̃, C̃ so that f(T (x, y)) = Ãx2 + B̃xy + C̃y2. (The quantities Ã,
B̃, C̃ are expressions in in A, B, C, c, s.)

(b) Show that B̃ = 0 if (c2 − s2)B = 2cs(A− C).
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13. Suppose that f(x, y) = Ax2 + Bxy + Cy2 and that

T (x, y) = (x cos α− y sin α, x sinα + y cosα).

(a) Find Ã, B̃, C̃ so that f(T (x, y)) = Ãx2 + B̃xy + C̃y2. (See [TF] page 428
or [VPR] page 537.)

(b) Show that B̃2−4ÃC̃ = B2−4AC and Ã+ C̃ = A+C. (See [TF] page 430.)

14. Suppose that f(x, y) = Ax2 + Bxy + Cy2 and that

T (x, y) = (x cos α− y sin α, x sinα + y cosα).

Show that there are numbers a, b, and α such that

f(T (x, y)) =





x2

a2
− y2

b2

x2

a2
+

y2

b2

−x2

a2
− y2

b2

if





B2 − 4AC > 0;

B2 − 4AC < 0, A + C > 0;

B2 − 4AC < 0, A + C < 0;

15. Suppose that f(x, y) = Ax2 + Bxy + Cy2 + Dx + Ey and that

T (x, y) = (x cos α− y sin α− h, x sinα + y cosα− k).

Show that there are numbers a, b, h, k, and α and a choice of signs such that

f(T (x, y)) = ± (x− h)2

a2
± (y − k)2

b2
+ f(h, k)

where the two signs ± need not be the same.

Answer: First write f(x, y) as a sum of two functions q(x, y) and `(x, y) where

q(x, y) = Ax2 + Bxy + Cy2, `(x, y) = Dx + Ey.

By Problems 12 and 13 there is an angle α such that

q(T1(x, y)) = Ãx2 + C̃y2

where
T1(x, y) = (x cos α− y sin α, x sin α + y cos α).

Since B2 − 4AC = −4ÃC̃ 6= 0 it follows that Ã and C̃ are not zero. Now

`(T1(x, y)) = D̃x + Ẽy

where D̃ = D cos α + E sin α and Ẽ = −D sin α + E cos α. Hence

f(T1(x, y)) = q(T1(x, y)) + `(T1(x, y))
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fits the form of Problem 11 so there are numbers h̃ and k̃ such that

f(T1(T2(x, y))) = Ãx2 + C̃y2

where
T2(x, y) = (x− h̃, y − k̃).

Now take T (x, y) = T1(T2(x, y)), a = 1|Ã|−1/2, b = |B̃|−1/2, and (h, k) = T1(h̃, k̃).

16. There is a theorem which says that for any quadratic polynomial f(x, y)
with nonzero discriminant there is a transformation T (x, y) so that f(T (x, y))
has a very simple form. State this theorem and explain how to use it to describe
the level curves of the function f .

17. Suppose that (x̃, ỹ) = T (x, y) where

T (x, y) = (x cos α− y sin α, x sinα + y cosα).

Find T1 so that (x, y) = T1(x̃, ỹ).

18. Let Q(m) = Am2 + Bm + C.

(a) Show that if B2 − 4AC > 0, then the function Q(m) is zero for two distinct
values of m and takes both positive and negative values.

(b) Show that if B2−4AC < 0, then the function Q(m) is either always positive
or always negative.

(c) Give an example (i.e. values for A, B, C) illustrating the situation of part (a)
and two examples illustrating the situation of part (b), one where Q(m) is always
positive and another where Q(m) is always negative. Draw the graphs of each
of the three examples.

19. Let f(x, y) = Ax2 + Bxy + Cy2.

(a) Show that if B2 − 4AC > 0, then the function f(x, y) positive (except at
the origin) along some lines y = mx and negative along others. (Hint: Use
Problem 18.)

(b) Show that if B2 − 4AC < 0, then the function f(x, y) is either positive
(except at the origin) along all lines y = mx or negative along all lines y = mx.

(c) Give an example (i.e. values for A, B, C) illustrating the situation of part (a)
and two examples illustrating the situation of part (b), one where f(x, y) is
always positive and another where f(x, y) is always negative. For each of the
three examples draw the three level curves f(x, y) = −1, 0, 1.
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6 Limits and continuity

1. Evaluate lim
(x,y)→(0,0)

xy

x2 + y2
or show that there is no limit.

Answer: If we take x = r cos θ, y = r sin θ we have

xy

x2 + y2
=

r2 cos θ sin θ

r2
= cos θ sin θ =

sin 2θ

2
.

and this function takes all values between −1/2 and 1/2 as the point (x, y), or (r, θ),
moves around the origin, no matter how small r may be. Therefore the limit does not
exist. The general principle here is that

lim
(x,y)→(0,0)

f(x, y) = lim
r→0

f(r cos θ, r sin θ)

when the limit on the left exists. Hence if the limit on the left exists, the limit on the
right must be independent of θ.

2. Evaluate lim
(x,y)→(0,0)

x2 − y2

x2 + y2
.

Answer: Along the line y = mx we have

x2 − y2

x2 + y2
=

x2 −m2x2

x2 + m2x2
=

1−m2

1 + m2
.

There is a different limit along each line through the origin; the limit as (x, y) → (0, 0)
does not exist.

3. Evaluate lim
(x,y)→(0,0)

(x2 − y2)2

x2 + y2
.

Answer: Since
0 ≤ (x2 − y2)2 ≤ (x2 + y2)2

we have

0 ≤ (x2 − y2)2

(x2 + y2)
≤ (x2 + y2).

But
lim

(x,y)→(0,0)
(x2 + y2) = 0

so

lim
(x,y)→(0,0)

(x2 − y2)2

(x2 + y2)
= 0

by the Sandwich Theorem.
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4. Is it always true that

lim
x→0

lim
y→0

f(x, y) = lim
y→0

lim
x→0

f(x, y)?

(Assume that the limits exist.)

5. Give an informal explanation of the notation lim
P→P0

f(P ) = L.

Answer: The notation limP→P0 f(P ) = L means that f(P ) is close to L whenever
P is close to (but not equal to) P0. Some people write this as

f(P ) ≈ L when P ≈ P0.

Alternate answer: The notation limP→P0 f(P ) = L means that f(P ) approaches L as
P approaches P0:

f(P ) → L as P → P0.

6. Give the formal definition of the notation lim
P→P0

f(P ) = L.

Answer: Let f(P ) be a real valued function defined on some subset of n-dimensional
space, P0 be a point in n-dimensional space (not necessarily in the domain of f), and
L be a real number. Then we say that

lim
P→P0

f(P ) = L

if and only if for every ε > 0 there is a δ > 0 such that |f(P ) − L| < ε whenever
0 < |P − P0| < δ. Here the notation |P − P0| denotes the distance from P to P0, i.e.

the length of the vector
−−→
P0P . For example, if n = 2, P = (x, y), and P0 = (x0, y0),

then
|P − P0| =

p
(x− x0)2 + (y − y0)2.

7. Write the definition of continuity.

Answer: Let f(P ) be a real valued function defined on some subset of n-dimensional
space and P0 be a point in its domain. We say that the function f is continuous at
the point P0 iff

lim
P→P0

f(P ) = f(P0).

A function f is said to be continuous on a set D iff it is defined and continuous at
every point of D.
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7 Partial derivatives

1. Let f(x, y) = 3x2 + 7xy + 5y2 and g(x) = f(x, 3). Evaluate

(a) g′(2) (b) fx(2, 3) (c)
∂f

∂x

∣∣∣∣
(x,y)=(2,3)

2. Find
∂f

∂z

∣∣∣∣
(x,y,z)=(1,e,0)

where f(x, y, z) = (xy)z. (This is Example 5 on

page 580 of [TF].)

Answer: From f(x, y, z) = (xy)z = ez ln(xy) we get fz(x, y, z) = ez ln(xy) ln(xy) =
(xy)z ln(xy). At (x, y, z) = (1, e, 0) we have fz(1, e, 0) = e0 ln e = 1.

3. Find
∂f

∂z

∣∣∣∣
(x,y,z)=(1,ee,π)

where f(x, y, z) = ln(xy)z.

Answer: First note that f(x, y, z) = ln(xy)z = z ln(xy) so that ∂f/∂z = ln(xy). At
(x, y, z) = (1, ee, π) we have ∂f/∂z = ln ee = e ln e = e.

4. In each of the following, find ∂w/∂x and ∂w/∂y.

(a) w = ex sin y (b) w = ex cos y (c) w = tan−1(y/x)

(d) w = sin(xy2) (e) w = sin x sin2 y (f) w = sin x(sin y)2

5. Three resistor of resistance R1, R2, R3 connected in parallel produce a resis-
tance R given by

1
R

=
1

R1
+

1
R2

+
1

R3
.

Find ∂R/∂R1. (This is Example 4 on page 580 of [TF].)

6. Express the polar coordinates (r, θ) in terms of the rectangular coordinates
(x, y) and then calculate ∂r/∂x, ∂r/∂y, ∂θ/∂x, ∂θ/∂x.

7. Express the spherical coordinates (ρ, φ, θ) in terms of the rectangular coor-
dinates (x, y) and then calculate ∂ρ/∂x, ∂φ/∂x, ∂θ/∂x, ∂ρ/∂y, ∂φ/∂y, ∂θ/∂y,
∂ρ/∂z, ∂φ/∂z, ∂θ/∂z. (See Problems 19-24 on page 581 of [TF].)
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8 Differentiability

1. Define the linear approximation to a function f(x, y) of two variables.

Answer: The linear approximation to the function f(x, y) at the point (x0, y0) is
the linear polynomial

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

It is the unique linear polynomial having the same value and first derivatives as f at
the point (x0, y0).

2. Write the definition of differentiability for a function f(x, y) of two variables.

Answer: A function f(x, y) is differentiable at a point (x0, y0) of its domain iff
the linear approximation at (x0, y0) is defined (i.e. the partial derivatives exist) and
satisfies

lim
(x,y)→(x0,y0)

f(x, y)− L(x, y)p
(x− x0)2 + (y − y0)2

= 0.

A function f is said to be differentiable on a set D iff it is defined and differentiable
at every point of D.

3. Prove that if the partial derivatives fx and fy of a function f(x, y) exist and
are continuous, then the function f is differentiable.

Answer: Choose (x0, y0) in the domain of f and let

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

be the linear approximation of f at (x0, y0). Then

f(x, y)− L(x, y) = R1 + R2

where
R1 = f(x, y0)− f(x0, y0)− fx(x0, y0)(x− x0)

and
R2 = f(x, y)− f(x, y0)− fy(x0, y0)(y − y0).

By the Mean Value Theorem from Calculus 221 there is a number x1 between x0 and
x such that

f(x, y0)− f(x0, y0) = fx(x1, y0)(x− x0)

so
R1 =

�
fx(x1, y0)− fx(x0, y0)

�
(x− x0).

Similarly there is a number y1 between y0 and y such that

f(x, y)− f(x, y0) = fx(x, y1)(y − y0)

so
R2 =

�
fy(x, y1)− fy(x, y0)

�
(y − y0).
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Now

1p
(x− x0)2 + (y − y0)2

≤ 1

|x− x0| and
1p

(x− x0)2 + (y − y0)2
≤ 1

|y − y0|
so

|f(x, y)− L(x, y)|p
(x− x0)2 + (y − y0)2

=
|R1 + R2|p

(x− x0)2 + (y − y0)2

≤ |R1|+ |R2|p
(x− x0)2 + (y − y0)2

≤ |R1|p
(x− x0)2 + (y − y0)2

+
|R2|p

(x− x0)2 + (y − y0)2

≤ |R1|
|x− x0| +

|R2|
|y − y0|

= |fx(x1, y0)− fx(x0, y0)|+ |fy(x, y1)− fy(x, y0)|

Since fx and fy are continuous,

lim
(x,y)→(x0,y0)

|fx(x1, y0)− fx(x0, y0)| = lim
(x,y)→(x0,y0)

fy(x, y1)− fy(x, y0)| = 0.

Hence

lim
(x,y)→(x0,y0)

|f(x, y)− L(x, y)|p
(x− x0)2 + (y − y0)2

= 0

by the Sandwich Theorem [TF] pages 51 and 746, (called the Squeeze Theorem in
[VPR] pages 75-76 and 432).

4. Prove that a differentiable function is continuous.

Answer: Choose (x0, y0) in the domain of f and let

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

be the linear approximation of f at (x0, y0). Then

lim
(x,y)→(x0,y0)

f(x, y)− L(x, y)p
(x− x0)2 + (y − y0)2

= 0

because f(x, y) is differentiable. But

lim
(x,y)→(x0,y0)

p
(x− x0)2 + (y − y0)2 = 0

so
lim

(x,y)→(x0,y0)
f(x, y)− L(x, y) = 0

by the Product Law for limits. But f(x0, y0), fx(x0, y0), fy(x0, y0) are constants so

lim
(x,y)→(x0,y0)

L(x, y) = f(x0, y0).

Hence
lim

(x,y)→(x0,y0)
f(x, y) = f(x0, y0)

by the Addition Law for limits.
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9 Chain rule

1. Let f(x, y) = 3x2 + 5xy + y2 and let g(t) = f(1 + 2t, 1 + 3t2) be the value of
f along the parametric curve

x = 1 + 2t, y = 1 + 3t2.

(a) Simplify g(t) and then find dg/dt.

(b) Find ∂f/∂x, ∂f/∂y, dx/dt, dy/dt, and then plug in to find

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

as an expression in t.

(c) What does this illustrate?

2. Find dw/dt in two different ways, first by expressing w explicitly as a function
of t and differentiating, and then using the chain rule. Express your final answer
in terms of t.

(a) w = x2 + y2 + z2, x = et cos t, y = et sin t, z = et.

(b) w = x2 + y2 + z2, x = sin t cos t, y = sin t sin t, z = cos t.

(c) w = x2 + y2 + z2, x = t, y = 0, z = 0.

(d) w = xy2z3, x = t, y = t, z = 3t.

3. State the Chain Rule for a function of form f(x(t), y(t)).

Answer: If both the function f(x, y) and the parametric curve (x(t), y(t)) are dif-
ferentiable, then so is their composition f(x(t), x(t)) and

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

4. Find dw/dt at t = 3 if

w =
x

z
+

y

x
, x = cos2 t, y = sin2 t, z =

1
t
.

Answer:
dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
+

∂w

∂z

dz

dt

=

�
1

z
− y

x2

�
(−2 cos t sin t) +

�
1

x

�
(2 sin t cos t) +

�−x

z2

��−1

t2

�
=

�
3− sin2 3

cos4 3

�
(−2 cos 3 sin 3) +

�
1

cos2 3

�
(2 sin 3 cos 3) +

�−9 cos2 3
��−1

9

�
at t = 3.
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5. Show that if w = f(x + ct) + g(x− ct), then
∂2w

∂t2
= c2 ∂2w

∂x2
.

6. Find ∂z/∂u and ∂z/∂v when

(a) z = x2 + 3y2, x = u cos v, y = u sin v.

(b) z = x3y5, x = u7v11, y = u13v17.

(c) z = ex cos y, x = u2 − v2, y = 2uv.

(d) z = xy, x = eu cos v, y = eu sin v.

7. Assume that h(t) = f(g(t)). Find a formula for h′′(t) in terms of f ′, f ′′, g′,
g′′.

8. Assume that w = w(u, v), and that u = u(x, y), v = v(x, y). Find a formula
for wxx + wyy in terms of the derivatives of w with respect to u and v and the
derivatives of u and v with respect to x and y.

9. Assume that w = w(u, v), that u = u(x, y), v = v(x, y), that

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂u

∂y
,

and that
∂2w

∂u2
+

∂2w

∂v2
= 0.

Show that
∂2w

∂x2
+

∂2w

∂y2
= 0.

Hint: Use subscript notation for derivatives to make your work easier to follow.

10 Directional derivatives and gradients

1. Find a normal vector to the surface z = x2 − xy − y2 at the point P0 =
(1,−1, 1).

Answer: The gradient ∇F (P ) is perpendicular1 to the surface F (x, y, z) =constant
at a point P on this surface. To use this we write the given equation in the form

F (x, y, z) = x2 − xy − y2 − z = 0.

The gradient at P = (x, y, z) is

∇F = (2x− y)i + (−x− 2y)j− k

so the vector
∇F (P0) = 3i + j− k

is normal to the surface at P0. Any nonzero multiple of this vector is also a correct
answer.

1In this context the words normal and perpendicular are synonymous
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2. Find the directional derivative of f(x, y, z) = ex cos(yz) at P0 = (0, 0, π) in
the direction of A = 2i− j + k.

Answer: The partial derivatives of f are

fx = ex cos(yz), fy = −zex sin(yz), fz = −yex sin(yz)

so the gradient ∇f of f at the point P = (x, y, z) is

∇f(P ) = excos(yz)i− zex sin(yz)j− yex sin(yz)k.

The length of A is
|A| =

p
22 + (−1)2 + 12 =

√
6

so the normalization (i.e. unit vector in the same direction as A) is

v =
2√
6

i− 1√
6

j +
1√
6

k

so answer is

∇f(P0) · v = i · v =
2√
6
.

3. Find the directional derivative at P0 = (0, 0, 0) of the function f(x, y, z) =
ex cos(yz) in the direction of the vector A = 2i + j− 2k. (See [TF] page 604.)

4. Find the directional derivative at P0 = (1, 1, 1) of the function f(x, y, z) =
ln

√
x2 + y2 + z2 in the direction of the vector A = i + j + k.

5. Find the directional derivative at P0 = (0, 0, 0) of the function f(x, y, z) =
ax + by + cz in the direction of the vector A = mi + nj + pk.

6. In which direction does the derivative at (1, 1) of f(x, y) = (x2−y2)/(x2+y2)
vanish?

7. Find the electric intensity vector E = −∇V from the given potential func-
tion V at the given point: (See [TF] page 599.)

(a) V = x2 + y2 − 2z2, (1, 1, 1). (b) V = ex cos y, (0, 0, 1).

(c) V = ln
√

x2 + y2, (1, 0, 0). (d) V = 1/
√

x2 + y2 + z2, (1, 0, 0).

8. Verify that each of the four potential functions V in Problem 7 satisfies
Laplace’s equation:

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0.

9. (a) Find the derivative of F (x, y, z) = x2 + xy + xyz at the point (1, 2, 3) in
the direction

u =
2
3
i− 1

3
j− 2

3
k.

18



(b) In what direction is this function increasing the fastest at the point (1, 2, 3)?

10. Let f be a differentiable function, P a point in its domain, and ∇f(p) be
the value of the gradient of f at the point P . Assume ∇f(P ) 6= 0 and let

u = |∇f(P )|−1∇f(P )

be the normalization of ∇f(P ), i.e. the unit vector in the direction ∇f(P ).

(a) Prove that if v is any unit vector distinct from u, then the directional
derivatives satisfy the inequality

∇f(P ) · v < ∇f(P ) · u.

Hint: What is the geometric definition of the dot product?

(b) In which direction is f increasing the fastest?

11. Explain why the gradient ∇F (P0) is normal to the surface F (P ) = 0 at the
point P0.

Answer: Let (x(t), y(t), z(t)) be any parametric curve which lies in the surface and
passes through the point P0(x0, y0, z0) at t = 0. Then the velocity vector

v =

�
dx

dt
i +

dy

dt
j +

dz

dt
k

�
t=0

is tangent to the surface at the point P0. Differentiate the equation

F (x(t), y(t), z(t)) = 0

and evaluate at zero; the chain rule gives

∇F (P0) · v = 0,

i.e. ∇F (P0) is perpendicular to v. We have shown that ∇F (P0) is perpendicular to
(the tangent vector to) every curve through P0 which lies in the surface F (P ) = 0, i.e.
the vector ∇F (P0) is perpendicular to the surface ∇F (P0) at P0.

12. Find an equation for the tangent plane to the surface

x3z + y2x2 + sin(yz) + 54 = 0

at the point P0 = (3, 0,−2).

Answer: The gradient is

∇F = (3x2z + 2y2x)i + (2yx2 + z cos yz)j + (x3 + y cos yz)k,

so the vector
∇f |(3,0,−2) = −54i− 2j + 27k,

is normal to the surface at the point (3, 0,−2) and and hence an equation for tangent
plane at this point is is

−54(x− 3)− 2(y − 0) + 27(z + 2) = 0.
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13. Find an equation for the tangent plane to the surface x2 − y2 + z2 = 4 at
the point (2,−3, 3).

14. Find an equation for the tangent plane to the surface z = 1+x2 +y3 at the
point (x, y, z) = (2, 1, 6).

15. Find the plane tangent to the surface F (x, y, z) = 0 at the given point P0.
Also find the line through P0 normal to the surface.

(a) F (x, y, z) = x2 + y2 + z2 − 14, P0 = (1, 2, 3).

(b) F (x, y, z) = x2 + y2 + z2 − 1, P0 = (x0, y0, z0).

(c) F (x, y, z) = 5x2 + 4y2 + 7z2 − 28, P0 = (1, 2, 1).

(d) F (x, y, z) = xyz − 30, P0 = (2, 3, 5).

16. Find the plane tangent to the surface z = f(x, y) at the given point P0.
Also find the line through P0 normal to the surface.

(a) z = x2 + y2, P0 = (3, 4, 25).

(b) z =
√

9− x2 − y2, P0 = (1,−2, 2).

(c) z = x2 − xy − y2, P0 = (1, 1,−1).

(d) z = tan−1(y/x), P0 = (1, 1, π/4).

17. Write a formula for a normal vector to the graph z = f(x, y) at a point
P0 = (x0, y0, f(x0, y0)) on that graph.

Answer: In general, a graph z = f(x, y) is a special case of F (x, y, z) = 0 via

F (x, y, z) = f(x, y)− z

so a normal vector to the surface z = f(x, y) at P0 = (x0, y0, f(x0, y0)) is

∇F (P0) = fx(x0, y0)i + fy(x0, y0)j− k.

18. Show that the tangent plane to the graph z = f(x, y) at the point

P0 = (x0, y0, z0), z0 = f(x0, y0)

is the graph of the linear approximation.

Answer: The graph z = f(x, y) can be written as F (x, y, z) = 0 where

F (x, y, z) = f(x, y)− z.

The equation for the tangent plane is

∇F (P0) · −−→P0P = 0
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where
∇F (P0) = fx(x0, y0)i + fy(x0, y0)j− k,
−−→
P0P = (x− x0)i + (y − y0)j + (z − z0)k.

Since
∇F (P0) · −−→P0P = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)− (z − z0)

and z0 = f(x0, y0), the equation ∇F (P0) · −−→P0P = 0 is the same as

z = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

19. Find an equation for the plane that is tangent to the surface z = f(x, y) at
the point P0 = (x0, y0, f(x0, y0)).

Answer: The equation for the surface has form z = f(x, y) so the answer is given
by the linear approximation

z = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0),

i.e.
z = −1 + (x− 1)− 3(y − 1).

Alternatively the surface has equation F (x, y, z) = 0 where F (x, y, z) = z−x2+xy+y2

so the equation for the tangent plane is

0 = ∇F (x0, y0, z0) · −−→P0P = −(x− 1) + 3(y − 1) + (z + 1).

(This is Problem 3 on page 583 of [TF].)

11 Implicit differentiation

1. A function z = z(x, y) satisfies the identity 3x2z + y3 − xyz3 = 0. Find
∂z/∂x and ∂z/∂y.

2. The function f(x, y) is defined by

f(x, y) = uv, x = u, y = v + u2.

Find the gradient ∇f at the point (x0, y0) = (3, 13). Express your answer in
the form ai + bj.

Answer: We can use implicit differentiation, but it is a little easier to express f in
terms of x and y directly using u = x and v = y − u2 = y − x2 so

f(x, y) = x(y − x2) = xy − x3.

Hence
∇f = (y − 3x2)i + xj.
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3. (a) Find an equation for the tangent plane to the surface z = −11 + x2 + y3

at the point (x, y, z) = (4, 0, 5).

(b) Find an equation for the tangent plane to the surface x+2y+3z−cos(xyz) =
18 at the point (x, y, z) = (4, 0, 5).

(c) A curve is given parametrically by the equations

x = 4 + t, y = u(t), z = v(t).

The curve lies in both surfaces and passes through the point P0 = (4, 0, 5) at
t = 0. Find the velocity vector of this curve at t = 0.

4. Suppose that f(u) is a function of one variable so that W (x, y) = f(x + y)
is a function of two variable x, y. Is it always true that ∂W/∂x = ∂W/∂y?

Answer: By the chain rule

∂W

∂x
=

df

du

∂u

∂x
,

∂W

∂y
=

df

du

∂u

∂y

where u = x + y. But
∂u

∂x
= 1 =

∂u

∂y
so

∂W

∂x
=

df

du

∂u

∂x
=

df

du
· 1 =

df

du

∂u

∂y
=

∂W

∂y
.

5. Suppose that x and y are given as functions of (s, t) via the equations

x = s + t, y = s− t.

If we regard s and t as functions of (x, y), what is
∂s

∂x
?

Answer: To calculate ∂s/∂x, we must write s, t as functions of x, y at first. so by
adding two equations we get x+y = 2s so s = (x+y)/2 . By taking partial derivative,
we get ∂s/∂x = 1

2
.

6. Let θ = θ(x, y) and r = r(x, y) be defined implicitly by

x = r cos θ, y = r sin θ.

(a) Differentiate these equations with respect to x.

(b) Solve the resulting two equations for ∂r/∂x and ∂θ/∂x in terms of r, cos θ
and sin θ.

(c) Using part (b) find ∂r/∂x and ∂θ/∂x in terms of x and y.

(d) Repeat steps (a-c) with y instead of x.
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(e) Compare your answers with the answers you got for Problem 6 of section 7.

7. Do Problem 7 of section 7 using the method of Problem 6.

8. The equation G(x, y, z) = 0 implicity defines three functions f , g, and h of
two variables by the formulas

G(x, y, f(x, y)) = 0, G(x, g(x, z), z) = 0, G(h(y, z), y, z) = 0.

Given a function F = F (x, y, z) define two new functions P = P (x, y) and
Q = Q(x, z) by

P (x, y) = F (x, y, f(x, y)), Q(x, z) = F (x, g(x, z), z).

Assume (a, b, c) is a point on the surface G(x, y, z) = 0, i.e. G(a, b, c) = 0. Find
formulas for Px(a, b) and Qx(a, c) in terms of the six quantities

Fx(a, b, c), Fy(a, b, c), Fz(a, b, c), Gx(a, b, c), Gy(a, b, c), Gz(a, b, c).

Answer: Since G(x, y, f(x, y)) is identically zero, the function f(x, y) satisfies

∂

∂x
G(x, y, f(x, y)) = Gx(x, y, f(x, y)) + Gz(x, y, f(x, y))fx(x, y) = 0.

Since G(a, b, c) = 0 we have c = f(a, b) so Fx(a, b, c) + Fz(a, b, c)fx(a, b) = 0, i.e.

fx(a, b) = −Gx(a, b, c)

Gz(a, b, c)
.

By the chain rule (again)

Px(a, b) =
∂

∂x
F (x, y, f(x, y))

����
(x,y)=(a,b)

= Fx(a, b, c) + Fz(a, b, c)fx(a, b)

so

Px(a, b) = Fx(a, b, c)− Fz(a, b, c)
Gx(a, b, c)

Gz(a, b, c)
.

Similarly

Qx(a, c) = Fx(a, b, c)− Fy(a, b, c)
Gx(a, b, c)

Gy(a, b, c)
.

Remark 9. In a commonly used notation called thermodynamic notation
the two derivatives in Problem 8 are written

(
∂F

∂x

)

y

= Px and
(

∂F

∂x

)

z

= Qx.

The subscript indicates which variable is held constant. In evaluating the deriva-
tive on the left y is held constant and z is implicitly defined as a function of x
and y via the equation G(x, y, z) = 0 whereas in evaluating the derivative on
the left z is held constant and y is implicitly defined as a function of x and z by
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this same equation. In the former case x and y are the independent variables
while in the latter case x and z are.

10. Suppose that

w = x2 − y2 + 4z, and 3x + y + 4z = 25.

Show that the equations

∂w

∂x
= 2x− 3

∂w

∂x
= 2x + 6

each give ∂w/∂x depending on which variables are chosen to be dependent and
which are chosen to be independent. Identify (using thermodynamic notation)
the independent variables in each case.

Answer: First assume that the given equations define w and z as functions of x and
y. Computing the partial derivative with respect to x and holding y constant gives�

∂w

∂x

�
y

= 2x + 4

�
∂z

∂x

�
y

, and 3 + 4

�
∂z

∂x

�
y

= 0.

Substituting the second equation in the first gives�
∂w

∂x

�
y

= 2x− 3.

Now assume that the given equations define w and y as functions of x and z. Com-
puting the partial derivative with respect to x and holding z constant gives�

∂w

∂x

�
z

= 2x− 2

�
∂y

∂x

�
z

, and 3 +

�
∂y

∂x

�
z

= 0.

Substituting the second equation in the first gives�
∂w

∂x

�
z

= 2x + 6.

11. The function w = w(x, y) is defined implicitly by the equations

4x + 5y + 6z = 32 + w and 7x2 + 8y2 + 9z2 = w + 120ew.

Find
∂w

∂y
at (w, x, y, z) = (0, 1, 2, 3).

12. (a) The equations

w = x2y2 + yz − z3, x2 + y2 + z2 = 6,
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define w = W1(x, y) and z = Z(x, y) implicitly as functions of x and y. Find

the value of the partial derivative
(

∂w

∂y

)

x

of the function w = W1(x, y) at the

point (w, x, y, z) = (4, 2, 1,−1).

(b) These same equations also define w = W2(z, y) and x = X(z, y) implicitly

as functions of z and y. Find the value of the partial derivative
(

∂w

∂y

)

z

of the

function w = W2(z, y) at the point (w, x, y, z) = (4, 2, 1,−1).

12 Approximation

1. (a) Let f(x, y) = 2 + 3x + 5y + 7x2 + 11xy + 13y2. Find f(0, 0), fx(0, 0),
fy(0, 0), fxx(0, 0), fxy(0, 0), fyy(0, 0).

(b) Find the quadratic polynomial f(x, y) such that f(0, 0) = 2, fx(0, 0) = 3,
fy(0, 0) = 5, fxx(0, 0) = 22, fxy(0, 0) = 11, and fyy(0, 0) = 26.

(c) Let f(x, y) be a general quadratic polynomial, i.e. f(x, y) has the form

f(x, y) = F + Dx + Ey + Ax2 + Bxy + Cy2.

Find f(0, 0), fx(0, 0), fy(0, 0), fxx(0, 0), fxy(0, 0), fyy(0, 0).

(d) Find the quadratic polynomial f(x, y) such that f(0, 0) = F , fx(0, 0) = D,
fy(0, 0) = E, fxx(0, 0) = 2A, fxy(0, 0) = B, and fyy(0, 0) = 2C.

2. (a) Let f(x, y) = 2+3(x−1)+5(y−4)+7(x−1)2+11(x−1)(y−4)+13(y−4)2.
Find f(1, 4), fx(1, 4), fy(1, 4), fxx(1, 4), fxy(1, 4), fyy(1, 4).

(b) Find the quadratic polynomial f(x, y) such that f(1, 4) = 2, fx(1, 4) = 3,
fy(1, 4) = 5, fxx(1, 4) = 22, fxy(1, 4) = 11, and fyy(1, 4) = 26.

(c) Let f(x, y) be a quadratic polynomial in the form

f(x, y) = F + D(x− x0) + E(y − y0)+
A(x− x0)2 + B(x− x0)(y − y0) + C(y − y0)2

where x0 and y0 are constants. Find f(x0, y0), fx(x0, y0), fy(x0, y0), fxx(x0, y0),
fxy(x0, y0), fyy(x0, y0).

(d) Find the quadratic polynomial f(x, y) such that f(x0, y0) = F , fx(x0, y0) =
D, fy(x0, y0) = E, fxx(x0, y0) = 2A, fxy(x0, y0) = B, and fyy(x0, y0) = 2C.

(e) Do part (a) for the function f(x, y) = 238− 55x− 110y +7x2 +11xy +13y2.

(f) What is the relation between the functions of part (a) and part (b)?

3. Find an equation for the plane that is tangent to the surface z = x2−xy−y2

at the point P0 = (1, 1,−1).
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Answer: The equation for the surface has form z = f(x, y) so the answer is given
by the linear approximation

z = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0),

i.e.
z = −1 + (x− 1)− 3(y − 1).

Alternatively the surface has equation F (x, y, z) = 0 where F (x, y, z) = z−x2+xy+y2

so the equation for the tangent plane is

0 = ∇F (x0, y0, z0) · −−→P0P = −(x− 1) + 3(y − 1) + (z + 1).

(This is Problem 3 on page 583 of [TF].)

4. Find the linear polynomial L(x, y) which best approximates the function

f(x, y) =
1

1 + x− y

near the point (2, 1).

Answer: This is the linear approximation

L(x, y) = f(2, 1) + fx(2, 1)(x− 2) + fy(2, 1)(y − 1),

i.e.

L(x, y) =
1

2
− x− 2

4
+

y − 1

4
.

(This is Example 3 on page 589 of [TF].)

5. Find the linear polynomial which best approximates the function f(x, y) =√
x2 + y2 near (a) (1, 0); (b) (0, 1); (c) (1, 1).

6. Find the linear polynomial which best approximates the function f(x, y) =
(sinx)/y near (a) (π/2, 1); (b) (0, 1).

7. Find the linear polynomial which best approximates the function f(x, y) =
ex cos y near (a) (0, 0); (b) (0, π/2).

8. Define the quadratic approximation to a function f(x, y) of two variables.

Answer: The quadratic approximation to the function f(x, y) at the point (x0, y0)
is the quadratic polynomial

Q(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)+

+ 1
2
fxx(x0, y0)(x− x0)

2 + fxy(x0, y0)(x− x0)(y − y0) + 1
2
fyy(x0, y0)(y − y0)

2.

It is the unique quadratic polynomial having the same value, first derivatives, and
second derivatives as f at the point (x0, y0),
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9. Find the quadratic polynomial Q(x, y) which best approximates the function

f(x, y) =
1

1 + x− y

near the point (2, 1).

Answer: This is the quadratic approximation

Q(x, y) = L(x, y) +
fxx(2, 1)(x− 2)2 + 2fxy(2, 1)(x− 2)(y − 1) + fyy(2, 1)(y − 1)2

2
,

i.e.

Q(x, y) =
1

2
− x− 2

4
+

y − 1

4
+

(x− 2)2

8
− (x− 2)(y − 1)

4
+

(y − 1)2

8
.

(This was explained in the lecture and in section 16-11.)

10. Find the quadratic polynomial Q(x, y) which best approximates the func-
tion f(x, y) = x2y3 near the point (x0, y0) = (1,−1).

Answer:
f(x, y) = x2y3 f(1,−1) = −1

fx(x, y) = 2xy3 fx(1,−1) = −2

fy(x, y) = 3x2y2 fy(1,−1) = 3

fxx(x, y) = 2y3 fxx(1,−1) = −2

fxy(x, y) = 6xy2 fy(1,−1) = 6

fyy(x, y) = 6x2y fyy(1,−1) = −6

so the quadratic approximation is

Q(x, y) = −1− 2(x− 1) + 3(y + 1)− (x− 1)2 + 6(x− 1)(y + 1)− 3(y + 1)2.

11. Find the quadratic polynomial which best approximates the function f(x, y) =
x3 + x2y + y3 near the point (1, 2).

12. In what sense is the linear approximation the linear polynomial which best
approximates f(x, y) near (x0, y0)?

Answer: It is the only linear polynomial L(x, y) such that

lim
(x,y)→(x0,y0)

f(x, y)− L(x, y))p
(x− x0)2 + (y − y0)2

= 0.

13. In what sense is the quadratic approximation the quadratic polynomial
which best approximates f(x, y) near (x0, y0)?

Answer: It is the only quadratic polynomial Q(x, y) such that

lim
(x,y)→(x0,y0)

f(x, y)−Q(x, y))

(x− x0)2 + (y − y0)2
= 0.
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13 Max and min

1. True or False?2 If gradient of f(x, y, z) at (x0, y0, z0) is zero , then f(x, y, z)
has a local maximum or minimum at (x0, y0, z0).

Answer: The condition ∇f = 0 is a necessary condition for an interior local max-
imum or local minimum, but it can happen that ∇f(P0) = 0 even though f doesn’t
have a local maximum or minimum at P0. For example , f = x2 − y2 has ∇f = 0 at
(0, 0) but f(x, 0) = x2 which is positive,f(0, y) = −y2 which is negative. so f(0, 0) = 0
isn’t a minimum or a maximum.

2. Prove that if f(x, y) has a local extremum3 at an interior point (x0, y0) of
its domain, then ∇f(x0, y0) = 0.

Answer: The function g(x) = f(x, y0) is a function of one variable having an interior
extremum at x = x0 so by Calculus 221, 0 = g′(x0) = fx(x0, y0). Similarly, the
function h(y) = f(x0, y) has an interior extremum at y = y0 so by calculus 221,
0 = g′(x0) = fx(x0, y0). Hence ∇f(x0, y0) = fx(x0, y0)i+fy(x0, y0)j = 0i+0j = 0.

3. For the function h(x, y) = x3 + y3 − 9xy:

(i) Find all points P = (x, y) where the gradient ∇h is zero.

(ii) For each point in part (i) say whether it is a local minimum, a local maxi-
mum, or a saddle.

Answer: hx = 3x2 − 9y, hy = 3y2 − 9x, so hx = hy = 0 when x2 = 3y and y2 = 3x.
So x4 = 9y2 = 27x so x = 0 (and y = 0) or x = 3 (and y = 3). At (x, y) = (0, 0)
we have hxxhyy − h2

xy = −81 < 0 so we have a saddle. At (x, y) = (3, 3) we have
hxxhyy−h2

xy = (6x)(6y)− (−9)2 = 182−92 > 0 and hxx = 18 > 0 so we have a (local)
minimum.

4. (a) Find the unique critical point of the function

f(x, y) = x2 + 3xy + 2y2 − 8x− 11y + 30.

(b) Is this critical point a minimum, maximum, or saddle? (c) Does the function
f(x, y) take negative values? (I.e. is there a point (x, y) where f(x, y) < 0?).

5. Find the quadratic polynomial which best approximates

f(x, y) = sin(xy)

near (x, y) = (1, π).

2In the context of a true-false question, true means always true and false means sometimes
false.

3i.e. a maximum or minimum.
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6. Consider the function f(x, y) = x2 + 3xy + 2y2. True or false?

(a) The level curves of f are ellipses.

(b) The level curves of f are hyperbolas.

(c) The function f takes on only values which are greater than or equal to zero,
i.e. f(x, y) ≥ 0 for all (x, y).

(d) The function f takes on all values, i.e. for every real number z there is a
point (x, y) such that z = f(x, y).

(e) The function has a minimum at the origin.

(e) The function has a maximum at the origin.

7. Find the absolute maximum and the absolute minimum of

f(x, y) = (x− 1)(y − 2)

in the closed triangle 0 ≤ x, 0 ≤ y, x+ y ≤ 7 bounded by the x-axis, the y-axis,
and the line x + y = 7.

8. Let f(x, y) = 2x2 + 2xy + y2 − 8x− 6y.

(a) What is the smallest value f(x, y) can take?

(b) What is the largest value f(x, y) can take?

9. Minimize the function f(x, y) = x2 − 5xy + y2 on the square −1 ≤ x ≤ 1,
−1 ≤ y ≤ 1.

10. (a) Find the unique critical point of the quadratic polynomial

f(x, y) = 2035− 107 x− 321 y + 3 x2 + 7 xy + 13 y2

(b) Find the unique critical point of the quadratic polynomial

f(x, y) = 2 + 3(x− 5)2 + 7(x− 5)(y − 11) + 13(y − 11)2.

(c) Assume that B2− 4AC 6= 0. Find the unique critical point of the quadratic
polynomial

f(x, y) = f(x0, y0) + A(x− x0)2 + B(x− x0)(y − y0) + C(y − y0)2.

(d) Assume that B2 − 4AC 6= 0 and let f(x, y) be the quadratic polynomial

f(x, y) = Ax2 + Bxy + Cy2 + Dx + Ey + F.

Explain how to find (x0, y0) so that

f(x, y) = f(x0, y0) + A(x− x0)2 + B(x− x0)(y − y0) + C(y − y0)2.
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(e) Write the quadratic polynomial

f(x, y) = x2 + 2xy + 3y2 + 4x + 5y

in the form

f(x, y) = f(x0, y0) + A(x− x0)2 + B(x− x0)(y − y0) + C(y − y0)2.

14 Lagrange multipliers

1. Find the maximum and minimum values of x2 + y2 subject to the constraint
x2 − 2x + y2 − 4y = 0.

Answer: The equations fx = λgx and fy = λgy are

2x = λ(2x− 2), 2y = λ(2y − 4).

Dividing gives
x

y
=

2x− 2

2y − 4
or 2xy − 4x = 2xy − 2y

so y = 2x. Substitute into the constraint:

0 = x2 − 2x + 4x2 − 8x = 5x(x− 2)

so x = y = 0 or x = 2 and y = 4. Thus f(0, 0) = 0 is the minimum and f(2, 4) = 20
is the maximum.

2. Find the extreme values of the function f(x, y) = x2 + 3y2 + 2y on the unit
disk x2 + y2 ≤ 1. Hint: On the boundary x2 = 1− y2.

Answer: The critical points are given by

0 =
∂f

∂x
= 2x, 0 =

∂f

∂y
= 6y + 2,

so x = 0 and y = −1/3. The point (x, y) = (0,−1/3) lies in the region x2 + y2 ≤ 1
so (by the first derivative test) this is a candidate for an extremum. At this point the
discriminant is

fxxfyy − f2
xy = 1 > 0

and fxx and fyy are both positive so the point is a local minimum by the second
derivative test. The value at the critical point is f(0,−1/3) = 0+1/3−2/3 = −1/3 < 0.
The maximum occurs on the boundary. We can find the maximum using Lagrange
multipliers (Maximize x2 + 3y2 + 2y subject to x2 + y2 = 1), or by maximizing (using
Calc 221)

f(cos θ, sin θ) = cos2 θ + 3 sin2 θ + 2 sin θ,

or by using the hint.

Here is how to finish the problem using the hint. On the boundary x2 = y2 − 1,
−1 ≤ y ≤ 1, and f = (1− y2) + 3y2 + 2y = 2y2 + 2y + 1 = F (y). We must maximize
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F (y) on the interval −1 ≤ y ≤ 1. This is a calculus 221 problem. The critical point
occurs at F ′(y) = 4y + 2 = 0 so y = −1/2 and F (−1/2) = 1/2− 1 + 1 = 1/2. At the
endpoints F (−1) = 1 and F (1) = 5.

In summary: the minimum value f(0,−1/3) = −1/3 occurs at at the interior point
(x, y) = (0,−1/3), and the maximum value f(0, 1) = F (1) = 5 occurs at the boundary
point (x, y) = (0, 1).

3. Find the point on the ellipse 2x2 + 3y2 = 11 where the function f(x, y) =
8x− 6y achieves its maximum.

Answer: We can do this problem in either of two ways: we can either (a) use the
method of Lagrange multipliers. or else (b) parameterize the ellipse as in Math 222
and then use Math 221, Method (a) is easier.

(a) We are maximizing f(x, y) = 8x − 6y subject to the constraint g(x, y) = 2x2 +
3y2 − 11 = 0. The maximum occurs at a point where

g(x, y) = 0, ∇f = λ∇g,

which say that we seek points on the ellipse g(x, y) = 0 where the gradient is parallel
to ∇f . These equations are

g(x, y) = 0, fx(x, y) = λgx(x, y), fy(x, y) = λgy(x, y)

or
2x2 + 3y2 − 11 = 0, 4x = 8λ, 6y = −6λ.

Divide the last two equations to eliminate λ:

x = −2y.

Plug in to the equation g(x, y) = 0:

2(−2y)2 + 3y2 − 11 = 0 =⇒ y = ±1, x = ∓2.

In the second quadrant f(x, y) is negative, in the fourth it is positive, so the maximum
occurs at

x = 2, y = −1.

(b) Now here’s the hard way. The ellipse is given parametrically by

x =

√
11 cos θ√

2
, y =

√
11 sin θ√

3
,

and in terms of θ the function is

f = 8

√
11 cos θ√

2
− 6

√
11 sin θ√

3
.

The derivative is
df

dθ
= −8

√
11 sin θ√

2
− 6

√
11 cos θ√

3
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which vanishes when

tan θ = −6
√

2

8
√

3
.

There are two such values in the range 0 ≤ θ ≤ 2π:

θ1 = tan−1

�
−6

√
2

8
√

3

�
, θ2 = θ1 + π.

The corresponding points (x1, y1) and (x2, y2) lie in the fourth quadrant (x > 0 > y)
and the second quadrant (x < 0 < y) respectively. In the fourth quadrant the function
f(x, y) is positive and in the second quadrant it is negative. Hence the maximum occurs
at (x1, y1).

4. Find the point on the curve xy2 = 54, (y > 0) which is nearest the origin.

5. Let T = f(x, y) be the temperature at the point (x, y) on the circle

x = cos θ, y = sin θ,

and suppose that
∂T

∂x
= 2x− y,

∂T

∂y
= 2y − x.

Find where the maximum temperature on the circle occurs.

Answer: By the chain rule

dT

dθ
=

∂T

∂x

dx

dθ
+

∂T

∂y

dy

dθ
.

In terms of θ we have

∂T

∂x
= 2x− y = 2 cos θ − sin θ,

∂T

∂y
= 2y − x = 2 sin θ − cos θ,

and dx/dθ = − sin θ, dy/dθ = cos θ so

dT

dθ
= sin2 θ − cos2 θ = − cos(2θ). (♠)

The critical points are at θ = ±π/4, π ± π/4. Integrating (♠) gives

T (θ) =
− sin(2θ)

2
+ C

so T (θ) < C when sin(2θ) > 0 (i.e. in the first and third quadrants) and T (θ) > C
when sin(2θ) < 0 (i.e. in the second and fourth quadrants). The maximum C + 1/2
occurs at both points θ = −π/4 and θ = π − pi/4.

6. Let f(x, y) = x(y − 4).

(a) Find the point (or points) on the circle x2+y2 = 36 where f(x, y) is smallest.

(b) Find the point (or points) on the disk x2 +y2 ≤ 36 where f(x, y) is smallest.
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7. Consider the function f(x, y) = (x − 3)2 + (x − 3)(y − 2) + (y − 2)2 on the
square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

(a) At what point in the square is the function smallest?

(b) At what point in the boundary of the square is the function smallest?

8. Find the minimum distance from the origin to the plane 2x + y − z = 5.
(This is Example 1 on page 618 of [TF].)

9. Find the minimum distance from the origin to the plane 2x− 3y + 5z = 19.
(This is Example 3 on page 620 of [TF].)

10. Find the closest point to the origin on the plane x + 3y − 2z = 4.

11. Find the minimum distance from the origin to surface x2 − z2 = 1. (This
is Example 2 on page 618 of [TF].)

12. The cone z2 = x2 + y2 is cut by the plane z = 1 + x + y in an ellipse C.
Find the points on C that are nearest to and farthest from the origin. (This is
Example 4 on page 624 of [TF].)

13. Find the extreme values of the function f(x, y) = xy on the ellipse x2/8 +
y2/2− 1 = 0. (This is Example 5 on page 625 of [TF].)

14. Find the points closest to and farthest from the origin on the ellipse x2 +
2xy + 3y2 = 9.

15. Find the points on the unit sphere x2 + y2 + z2 = 1 where the function
f(x, y, z) = x + 2y + 3z is smallest and largest.

16. Find the points on the unit sphere x2 + y2 + z2 = 1 where the function
f(x, y, z) = ax + by + cz is smallest and largest.

17. What is the greatest area that a rectangle can have if the length of its
diagonal is 2? (This is Example 1 on page 678 of [VPR].)

18. Find the maximum and minimum values of y2−x2 on the ellipse x2/4+y2 =
1. (This is Example 2 on page 678 of [VPR].)

19. Find the minimum of f(x, y, z) = 3x + 2y + z + 5 subject to the constraint
g(x, y, z) = 9x2 + 4y2 − z = 0. (This is Example 3 on page 679 of [VPR].)

20. Find the maximum and minimum values of f(x, y, z) = x + 2y + 3z on the
ellipse that is the intersection of the cylinder x2+y2 = 2 and the plane y+z = 1.
(This is Example 4 on page 680 of [VPR].)
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Part II

Multiple Integrals

15 Double integrals and iterated integrals

1. Write the definition of a Riemann sum S for a function f(x, y) defined on a

region A in the xy-plane. Then write the definition of the integral
∫∫

A

f(x, y) dA.

Answer: A rectangular approximation to a plane region A is a finite collection
A1, . . . , An of rectangles such that

(1) every point of A lies in some rectangle of the approximation,

(2) each rectangle intersects A (this includes the case where the rectangle lies com-
pletely inside A),

(3) any two of these rectangles overlap only in their common boundary (if at all).

The norm of the rectangular approximation A1, . . . , An is the maximum of the lengths
of the diagonals of the rectangles A1, . . . , An . A Riemann sum for a function f
defined on a plane region A is a finite sum of form

S =

nX
k=1

f(xk, yk)∆Ak

where A1, . . . , An is a rectangular approximation to the region A, ∆Ak is the area
of the rectangle Ak, and (xk, yk) is a point in this rectangle. The double integral is
defined as the limit ZZ

A

f(x, y) dA = lim
norm→0

S

where the notation on the right means that the Riemann sum S is close to the double
integral when the norm of the rectangular approximation used to define S is sufficiently
small. There are functions for which the limit on the right does not exist; when the
limit exists we say that the function f is integrable on the region A.

2. Evaluate the integral ∫ 2

0

∫ 4

x2
(x + y) dy dx

in three steps:

(a) Sketch the region A over which the integration extends.

(b) Write an equivalent double integral with the order of integration reversed.

(c) Evaluate both integrals. (You should get the same answer.)

34



Answer: (a) The area over which we are integrating is bounded above by the line
y = 4 and below by the curve y = x2, for x-values between 0 and 2.

(b) When we switch the order of integration, the same region is bounded from the left
by x = 0 and bounded on the right by the curve x =

√
y, for y-values between 0 and

4. Thus the new integral is Z 4

0

Z √
y

0

(x + y) dx dy

(c) The given iterated integral isZ 2

0

Z 4

x2
(x + y) dy dx =

Z 2

0

�
xy +

y2

2

�����4
y=x2

dy =

Z 2

0

�
4x + 8− x3 − x4

2

�
dy =

= 2x2 + 8x− x4

4
− x5

10

����2
0

== 8 + 16− 4− 16

5
=

100− 16

5
=

84

5
.

The iterated integral in part (b) isZ 4

0

Z √
y

0

(x + y) dx dy =

Z 4

0

�
x2

2
+ xy

�����x=
√

y

x=0

dy =Z 4

0

��y

2
+ y3/2

�
− 0
�

dy =
y2

4
+

2

5
y5/2

����4
0

= 4 +
64

5
=

84

5

3. Evaluate the iterated integral
∫ 5

3

∫ x2

−x

(4x + 10y) dy dx.

Answer: See [VPR] page 697.

4. Evaluate the iterated integral
∫ 1

0

∫ y2

0

2yex dx dy.

Answer: See [VPR] page 697.

5. Find the volume of the solid in the first octant (x ≥ 0, y ≥ 0, z ≥ 0)
bounded by the circular paraboloid z = x2 + y2, the cylinder x2 + y2 = 4, and
the coordinate planes.

Answer: See [VPR] page 698.

6. Evaluate the integral
∫ 1

0

∫ 1

y

sin x

x
dx dy by reversing the order of integration.

7. Evaluate the integral
∫ 4

0

∫ 2

x/2

ey2
dy dx by reversing the order of integration.
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Answer: See [VPR] page 698.

8. Evaluate the integral
∫∫

A

sin x

x
dx dy where A is the triangle in the xy plane

bounded by the line y = 0, the line y = x, and the line x = 1.

9. Find the area bounded by the parabola y = x2 and the line y = x + 2.

Answer: See [TF] page 653,

10. Find the volume of the solid whose base is in the xy-plane and is the triangle
bounded by the line y = 0, the line y = x, and the line x = 1, while the top of
the solid is the plane z = 3− x− y. (The solid has five faces: the base, the top,
and three other vertical faces.)

Answer: See [TF] page 650.

16 Integrals over nonrectangular regions

1. Let the domain D be defined by the inequalities

0 ≤ x, 5− y2 ≤ x ≤ 11− y2

and let f(x, y) be a function defined on D.

(a) Draw D.

(b) Express the integral of f over D as a sum of iterated integrals of form
∫ a2

y=a1

{∫ b2(y)

x=b1(y)

f(x, y) dx

}
dy

(c) Express the integral of f over D as a sum of iterated integrals of form
∫ c2

x=c1

{∫ d2(x)

y=d1(x)

f(x, y) dy

}
dx

Answer: (a)

(0,−√11)

(0,−√5)

(0,
√

5)

(0,
√

11)

(5, 0) (11, 0)
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(b) ZZ
D

f(x, y) dx dy =

Z −√5

y=−√11

(Z 11−y2

x=0

f(x, y) dx

)
dy

+

Z √
5

y=−√5

(Z 11−y2

x=5−y2
f(x, y) dx

)
dy

+

Z √
11

y=
√

5

(Z 11−y2

x=0

f(x, y) dx

)
dy

(c) ZZ
D

f(x, y) dx dy =

Z 5

x=0

(Z −√5−x

y=−√11−x

f(x, y) dy

)
dx

+

Z 5

x=0

(Z √
11−x

y=
√

5−x

f(x, y) dy

)
dx

+

Z 11

x=5

(Z √
11−x

y=−√11−x

f(x, y) dy

)
dx

2. Find the volume of the tetrahedron bounded by the coordinate planes and
the plane 3x + 6y + 4z = 12.

Answer: See [VPR] page 697.

3. Let f(x, y) = (x2 − y2)/(x2 + y2)2. Find the limit of f(x, y) as (x, y) ap-
proaches (0, 0) along the line y = mx. Find the iterated integrals

∫ 1

0

{∫ 1

0

f(x, y) dx

}
dy and

∫ 1

0

{∫ 1

0

f(x, y) dy

}
dx,

4. Evaluate the integral
∫∫

R

x dx dy where R is the triangle with vertices (1, 2),

(3, 3), (4, 5).

17 Polar coordinates

1. Write the integral
∫ ∞

0

∫ ∞

0

e−(x2+y2) dx dy in polar coordinates and then

evaluate it.
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Answer: Converting to polar coordinates givesZ ∞

0

Z ∞

0

e−(x2+y2) dx dy =

Z π/2

0

Z ∞

0

e−r2
rdr dθ =

1

2

Z π/2

0

Z ∞

0

e−u du dθ

where we used the change of variables u = r2, so d u = 2r dr, r = 0 when u = 0 and
r = ∞ when u = ∞. The integral is

1

2

Z π/2

0

−e−u
���∞
0

dθ =
1

2

Z π/2

0

1 dθ = π/4.

Change each of the following double integrals to an equivalent double integral
in polar coordinates. Sketch the region of integration in both (r, θ)-space and
(x, y)-space. (The transformation x = r cos θ, y = r sin θ should map the former
region one-one onto the latter.) Evaluate both integrals. (You should get the
same answer.)

2.
∫ a

−a

∫ √
a2−x2

−√a2−x2
dy dx 3.

∫ a/
√

2

0

∫ √
a2−y2

y

x dx dy

4.
∫ 2

0

∫ x

0

y dy dx 5.
∫ a

0

∫ √
a2−x2

0

(x2 + y2) dy dx

6. Find the area that lies inside the cardioid r = a(1 + cos θ) and outside the
circle r = a.

7. Find the area enclosed by the lemniscate r2 = 2a2 cos 2θ.

8. The population density of a city is ρ = 50000e−r2
people per square mile

where r is the distance in miles to the center of the city. How many people live
within 2 miles of the center?

Answer: dN = ρ dA so

N =

Z Z
r≤2

ρ dA =

Z 2π

θ=0

Z 2

r=0

50000e−r2
r dr dθ = 50000π

�
e0 − e−4�

9. (a) Express the distance from the point x = r cos θ, y = r sin θ to the line
x = y in terms of r and θ.

(b) The moment of a plane figure D of mass density 1 about a line L is defined to
be

∫ ∫
D

h(x, y) dx dy where h(x, y) is the signed distance4 from the point (x, y)
to L. Use the result of part (a) to find the moment of the semicircle x2+y2 ≤ b2,
x ≥ 0 about the line x = y.

4The phrase signed distance means that h(x, y) is positive on one side of the line and
negative on the other. Thus the answer to this problem is determined only up to a sign.

38



Answer: (a) The line has polar equation θ = π/4. The distance h(x, y) is obtained
by trigonometry as h(x, y) = r sin(θ − π/4).

(b) Z Z
D

h(x, y) dx dy =

Z b

r=0

Z π/2

θ=−π/2

r sin(θ − π/4) r dθ dr =

=
b3

3

�
cos(π/2− π/4)− cos(−π/2− π/4)

�

18 Triple integrals

1. Evaluate
∫ 1

x=0

∫ 1

y=2x

∫ x2+2y

z=x3+y

y dz dy dx.

Answer:Z 1

x=0

Z 1

y=2x

Z x2+2y

z=x3+y

y dz dy dx =

Z 1

x=0

Z 1

y=2x

y(x2 + 2y)− y(x3 + y) dy dx

=

Z 1

x=0

Z 1

y=2x

(y2 + yx2 − yx3) dy dx

=

Z 1

x=0

�
y3

3
+

y2x2 − y2x3

2

�����1
y=2x

dx

=

Z 1

x=0

�
1

3
+

x2 − x3

2
− 8x3

3
− 4x4 − 4x5

2

�
dx

=
1

3
+

1

6
− 1

8
− 8

12
− 2

5
+

2

6
.

2. Find the volume of the solid in the first octant bounded below by the xy
plane, above by the plane z = y, and laterally by the cylinder y2 = x and the
plane x = 1.

Answer: There are six ways of ordering the variables (x, y, z) and hence six ways of
doing the integral. We do it two of these six ways. The first octant is defined by the
inequalities 0 ≤ x, 0 ≤ y, 0 ≤ z and the solid is defined by the additional inequalities
z ≤ y and y2 ≤ x ≤ 1. The volume isZ 1

y=0

Z 1

x=y2

Z y

z=0

dz dx dy =

Z 1

x=0

Z √
x

y=0

Z y

z=0

dz dy dx

3. Evaluate
∫ 1

−1

∫ √
1−x2

0

∫ √
1−x2−y2

0

dz dy dx. (Hint: what is the region of inte-

gration?)
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Answer: The integral represents the volume of a quarter of the unit sphere, that is,
1/4(4π/3).

4. Evaluate the iterated integral

∫ 1

x=0

∫ √
1−x2

y=0

∫ √
1−x2−y2

z=0

dz dy dx =
π

6
.

5. Find the volume below the plane z = 3 and above the paraboloid 2z = x2+y2.

6. Find the volume of the solid region R bounded by the planes

x = 1, x = y, z = x + y, z = x + 2.

Answer: Four planes bound a tetrahedron. Each three of the four planes determine
a vertex as follows:

three planes vertex

x = 1, x = y, z = x + 2 (1, 1, 3)
x = 1, x = y, z = x + y (1, 1, 2)
x = 1, z = x + y, z = x + 2 (1, 2, 3)
x = y, z = x + y, z = x + 2 (2, 2, 4)

On the tetrahedron x takes values between 1 and 2, x = 1 is one of the faces of the
tetrahedron, and each plane x = x0 cuts the tetrahedron in the triangle

x0 ≤ y ≤ 2, x0 + y ≤ z ≤ x0 + 2.

Hence the volume is

V =

Z 2

x=1

Z 2

y=x

Z x+2

z=x+y

dz dy dx.

The value of this integral is

V =

Z 2

x=1

Z 2

y=x

(2− y) dy dx =

Z 2

1

��
2(2)− 22

2

�
−
�

2x− x2

2

��
dx =

1

6
.

19 Center of mass

1. Define the terms center of mass, center of gravity, and centroid.

Answer: The center of mass of a mass distribution δ is the point whose coordi-
nates are the average values of the coordinate functions with respect to that mass
distribution. In one dimension the center of mass is the point x̄ given by

x̄ =

Z
x dmZ
dm

, dm = δ(x) dx.
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In two dimensions the center of mass is the point (x̄, ȳ) given by

x̄ =

ZZ
x dmZZ
dm

, ȳ =

ZZ
y dmZZ
dm

, dm = δ(x, y) dx dy.

In three dimensions the center of mass is the point (x̄, ȳ, z̄) given by

x̄ =

ZZZ
x dmZZZ
dm

, ȳ =

ZZZ
y dmZZZ
dm

, z̄ =

ZZZ
z dmZZZ
dm

, dm = δ(x, y, z) dx dy dz.

The centroid of a body is the center of mass of a uniform mass distribution on the
body, i.e. δ is a constant. (The centroid is independent of the value of this constant
as it cancels.) The centroid is also called the center of gravity.

2. Find the centroid of the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

3. Find the center of mass of the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 where the mass
density is δ(x, y) = xy2.

4. Find the centroid of the region x2 + y2 ≤ 1, x, y ≥ 0.

5. Find the centroid of the quarter circle defined in polar coordinates by the
inequalities 0 ≤ r ≤ 1, 0 ≤ θ ≤ π/4.

6. Find the center of mass of the first quadrant of the circle x2 + y2 ≤ 1 where
the mass density is δ(x, y) = r2, r =

√
x2 + y2.

7. A region A is defined in polar coordinates by inequalities 0 ≤ r ≤ f(θ) where
f(θ) > 0 and f(θ + 2π) = f(θ).

(1) True or false? The area is
∫ 2π

0

∫ f(θ)

0

dA where dA = r dr dθ.

(2) True or false? The centroid is given in polar coordinates by

θ̄ =

∫ 2π

0

∫ f(θ)

0

θ dA

∫ 2π

0

∫ f(θ)

0

dA

, r̄ =

∫ 2π

0

∫ f(θ)

0

r dA

∫ 2π

0

∫ f(θ)

0

dA

,

where dA = r dr dθ.
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8. Find the centroid of the triangle with vertices (0, 0), (a, 0), (0, b).

9. Find the centroid of the triangle with vertices (0, 0), (1, 0), (3, 2).

10. Find the centroid of the triangle with vertices (0, 0), (1, 0), (a, b).

11. Show that the centroid of a triangle is the intersection of its medians. (A
median of a triangle is the line joining a vertex to the midpoint of the opposite
side. It is a theorem of high school geometry that the thee medians intersect in
a common point.)

12. Find the mass in the tetrahedron bounded by the planes x = 0, y = 0, z = 0,
x + y + 2z = 2 if the mass density at the point (x, y, z) is δ(x, y, z) = 1− z.

Answer: The mass dm in a tiny volume dV = dx dy dz at the point (x, y, z) is

dm = δ(x, y, z) dV = (1− z) dx dy dz.

The total mass m is thus

m =

ZZZ
dm =

Z 1

0

Z 2−2z

0

Z 2−2z−y

0

(1− z) dx dy dz.

13. Find the volume and centroid of the hemisphere

x2 + y2 + z2 ≤ 1, z ≥ 0.

Answer: The volume is V = 2π/3, half the volume of the sphere. using cylindrical
coordinates x = r cos θ, y = r sin θ, z = z we get

x̄ =
1

V

ZZZ
x dV =

1

V

Z 1

r=0

Z √1−r2

z=0

Z 2π

θ=0

r2 cos θ dθ dz dr = 0

since
R 2π

0
cos θ dθ = 0. Similarly ȳ = 0. Now

z̄ =
1

V

ZZZ
z dV =

1

V

Z 1

r=0

Z √1−r2

z=0

Z 2π

θ=0

rz dθ dz dr =
2π

V

Z 1

r=0

1− r2

2
r dr

so

z̄ =
2π

V

�
r2

4
− r4

8

�����1
r=0

=
π

4V
=

3

8
.

14. Calculate the centroid (x̄, ȳ, z̄) of the body B defined by

B : x2 + y2 + z2 ≤ 1, 0 ≤ x, 0 ≤ y, 0 ≤ z.
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Answer: Since we are asked to find the centroid we are to assume a uniform (con-
stant) mass density c = δ(x, y, z) and since the constant c will cancel, we may as well
assume that c = 1; i.e. that the mass dm in a tiny cube is the same as the volume dV
of that cube. We must evaluate the ratios

x̄ =

ZZZ
B

x dVZZZ
B

dV

, ȳ =

ZZZ
B

y dVZZZ
B

dV

, z̄ =

ZZZ
B

z dVZZZ
B

dV

.

Now it is obvious that ZZZ
x2+y2+z2≤1
0≤x, 0≤y, 0≤z

x dx dy dz =

ZZZ
x2+y2+z2≤1
0≤x, 0≤y, 0≤z

y dx dy dz

because dx dy dz = dy dz dx and we can replace (x, y, z) by (y, z, x) (this replaces x
by y) to transform the left side to the right. Similar remarks apply for the integral
involving z. Thus

x̄ = ȳ = z̄

and we need only do two integrals.
The denominator in the formula for x̄ is the volume of the body B. The body B

is intersection of a ball with the positive octant so its volume is one eighth the volume
of a ball: ZZZ

B

dV =
1

8
· 4π

3
=

π

6
.

We can write the numerator of x̄ as an iterated integral in six different ways
corresponding to the six permutations of x, y, z. Any of these six will give the correct
answer, but which order will make the integral easiest to evaluate? My impulse is
to make the x-integral innermost. That way we will get x2/2 which we will have to
evaluate at 0 and

p
1− y2 − z2 and we will avoid a

√
in the integrand of the middle

integral. (Another order might be easier but the only way to find out would be to try
it.) ZZZ

B

x dV =

Z 1

y=0

Z √1−y2

z=0

Z √1−y2−z2

x=0

x dx dz dy.

Evaluate the x-integral:Z 1

y=0

Z √1−y2

z=0

Z √1−y2−z2

x=0

x dx dz dy =

Z 1

y=0

Z √1−y2

z=0

x2

2

����√1−y2−z2

x=0

dz dy

=

Z 1

y=0

Z √1−y2

z=0

1− y2 − z2

2
dz dy

Evaluate the z-integral:
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Z 1

y=0

Z √1−y2

z=0

1− y2 − z2

2
dz dy =

Z 1

y=0

3(1− y2)z − z3

6

����√1−y2

z=0

dy

=

Z 1

y=0

3(1− y2)
p

1− y2 −
�p

1− y2
�3

6
dy =

1

3

Z 1

y=0

�p
1− y2

�3

dy

For the y integral use the substitutions

y = sin θ, dy = cos θ dθ, θ = 0 ⇒ y = 0, θ =
π

2
⇒ y = 1.

1

3

Z 1

y=0

�p
1− y2

�3

dy =
1

3

Z π/2

θ=0

�p
1− sin2 θ

�3

cos θ dθ =
1

3

Z π/2

θ=0

cos4 θ dθ.

To do the even power of the cosine we use the half angle formulas since cos 2θ =
cos2 θ − sin2 θ and 1 = cos2 θ + sin2 θ we add and get 1 + cos 2θ = 2 cos2 θ so

cos4 θ =

�
1 + cos 2θ

2

�2

=
1 + 2 cos 2θ + cos2 2θ

4
.

Now read 2θ for θ so

cos2 2θ =
1 + cos 4θ

2
.

Substitute to get

cos4 θ =
3 + 4 cos 2θ + cos 4θ

8
.

But Z π/2

0

cos nθ dθ =
sin nθ

n

����π/2

0

and this is zero if n is even. HenceZZZ
B

x dV =
1

3

Z π/2

θ=0

cos4 θ dθ =
1

3

Z π/2

θ=0

3

8
dθ =

π

16
.

Our final answer is

x̄ = ȳ = z̄ =
π/16

π/6
=

3

8
.

15. A plane region is bounded by the polar curve r = f(θ) where f(θ + 2π) =
f(θ). Give a formula for the centroid and use it to find the centroid of the
cardioid r = 1 + cos θ.

20 Surface area and change of variables

1. Derive the formula for the surface area of a surface given by the parametric
equations

x = x(u, v), y = y(u, v), z = z(u, v).
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Answer: The tiny rectangle with vertices (u, v), (u + du, v), (u, v + dv) is mapped
approximately to the parallelogram with vertices

(x, y, z), (x + xu du, y + yu du, z + zu du), (x + xv dv, y + yv dv, z + zv dv).

(The fourth vertex of a parallelogram is determined by the other three.) The edge
vectors of this parallelogram are

Ru du = (xui + yuj + zuk) du

and
Rv dv = (xvi + yvj + zvk) dv.

The area of this infinitessimal parallelogram is

dA = |Ru ×Rv| du dv

so the area of the surface isZZ
dA =

ZZ
|Ru ×Rv| du dv

where the integral is over a region in uv space chosen so that the parameterization is
one to one and onto the surface.

2. Derive the formula for the surface area of the graph z = f(x, y).

Answer: This is a special case of the problem 1 with

x = u, y = v, z = f(u, v) = f(x, y).

Thus
Rx dx = (i + fxk) dx, Ry dy = (j + fyk) dy

so

dA =
q

1 + f2
x + f2

y dx dy

and the area is ZZ
dA =

ZZ q
1 + f2

x + f2
y dx dy

where the integral is over the region in the xy-plane beneath the graph.

3. A transformation

x = x(u, v), y = y(u, v)

transforms the region G in the uv-plane one to one onto the region R in the xy
plane. Derive the formula for the area of R as an integral over the region G.
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Answer: This is a special case of the problem 1 with z = 0. Thus

Ru = xui + yuj, Rv = xvi + yvj

so
Ru ×Rv = (xuyv − xvyu)k

and hence
dA = |xuyv − xvyu| du dv

so ZZ
R

dA =

ZZ
G

|xuyv − xvyu| du dv.

4. Derive the formula for the area element in polar coordinates from problem 3.

Answer: From x = r cos θ and y = r sin θ we get

Rr = cos θi + sin θj, Rθ = −r sin θi + r cos θ j

so
dA = |Rr ×Rθ| dr fθ = r dr dθ.

5. Derive the formula for the surface area element on the unit sphere using
problem 1 and spherical coordinates.

Answer: The parametric equations are

x = sin φ cos θ, y = sin φ sin θ, z = cos φ

and (except for the north and south pole) every point of the sphere is covered exactly
once in the range 0 < φ < π, 0 ≤ θ < 2π. Now

Rφ = cos φ cos θ i + cos φ sin θ j− sin φk, Rθ = − sin φ sin θ i + sin φ cos θj

so
Rφ ×Rθ = sin2 φ cos θ i + sin2 φ sin θ j + cos φ sin φk,

so

dA = |Rφ ×Rθ| dφ dθ =

q
sin4 φ + sin2 φ cos2 φ dφ dθ = sin φ dφ dθ.

6. Find the area cut from the plane x + y + z = 1 by the cylinder x2 + y2 = 1.

Answer: We are finding the surface area of the plane z = f(x, y) = −x− y + 1 over
the unit disk x2 + y2 = 1. So using the formula

S =

ZZ p
(fx)2 + (fy)2 + 1dx dy

where fx = −1, fy = −1 gives

S =

ZZ
x2+y2≤1

√
1 + 1 + 1 dy dx =

Z 2π

0

Z 1

0

√
3r dr dθ =

√
3π.
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7. Let h(x, y, z) = x+y + z and let S be the portion of the surface z = x3 +yx,

for which 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1. Express
∫∫

S

h dA as a double integral in

terms of x and y. You need not evaluate the integral.

Answer: The surface is described in the form z = f(x, y) so the area element is
given by

dA =
q

1 + f2
x + f2

y dx dy =
p

1 + (3x2 + y)2 + (x)2 dx dy

At a point (x, y, z) = (x, y, f(x, y)) on the surface the value of the function h is
h(x, y) = x + y + (x3 + yx). ThusZZ

S

h dA =

Z 1

0

Z 2

0

(x + y + (x3 + yx))
p

1 + (3x2 + y)2 + (x)2 dx dy.

8. Redo Problems 11 and 12 from section 3 Part I. (These problems deal with
finding the arclength of a parameterized curve; you should compare the reason-
ing there with the reasoning used in doing problems 9 and 10 which follow.)

9. Use the parameterization

x = cos u sin v, y = sin u sin v, z = cos v

from Problem 9 in Part I to find the area of that portion S of the unit sphere
in the first octant. The main problem here is to choose the limits of integration
in uv-space so that S is covered exactly once. (The answer should come out to
4π/8.)

10. Use the parameterization

x = v cos u− sin u, y = v sin u + cos u, z = v

from Problem 10 in Part I to set up an integral for the area of that portion S
of hyperboloid x2 + y2 = z2 + 1 between the planes z = 0 and z = 1. The
main problem here is to choose the limits of integration in uv-space so that S
is covered exactly once.

11. Consider the function

f(x, y) =
194 x2

169
+

120 xy

169
+

313 y2

169
− 628 x

169
− 1372 y

169
+

1686
169

and the transformation (x, y) = T (u, v) defined by

x =
5 u

13
− 12 v

13
+ 1, y =

12 u

13
+

5 v

13
+ 2.
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Let g = f ◦ T be the composition, i.e.

g(u, v) = f

(
5 u

13
− 12 v

13
+ 1,

12 u

13
+

5 v

13
+ 2

)
.

(a) Simplify the expression for g.

(b) Draw the lines u = 0 and v = 0 in the (x, y) plane. Where do they intersect?
What is the angle between them? Draw the curve g(u, v) = 4 in the (u, v) plane
and the curve f(x, y) = 4 in the (x, y) plane.

(c) Minimize g(u, v). What is the discriminant guugvv − g2
uv?

(d) Minimize f(x, y). What is the discriminant fxxfyy − f2
xy?

(e) What is the Jacobian of the transformation T?

(f) Find the area of the ellipse f(x, y) ≤ 4.

(g) The point of this problem is that the transformation T converts a messy
problem in (x, y) into a simple problem in (u, v). Had you not been given the
formula for T , how would you find it?

12. Find the area of the surface y2 + z2 = 2x cut off by the plane x = 1.

13. The triangle 0 ≤ u ≤ v ≤ 1 in the uv-plane is transformed one-to-one onto
the region R in the xy-plane by the equations

x = v, y = u + v2.

(a) Sketch the region R and find equations for its boundary curves.

(b) Evaluate the integral
∫∫

R

x dx dy.

14. The transformation (x, y) = T (u, v) is given by

x = 1 + 2v + u2, y =
u

3
.

It transforms the triangle

G : 0 ≤ u ≤ v ≤ 1

in (u, v) space to a region R in (x, y) space. The region R is bounded by three
curves.

(a) Find parametric equations for each of the boundary curves.

(b) Find equations in (x, y) for each of the boundary curves.
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(c) Sketch the region R. Indicate clearly which points of the boundary of R
correspond to the vertices (0, 0), (0, 1), (1, 1) of the triangle G and boundary
curve of R corresponds to which equation in part (b).

6

v

- u¡
¡

¡

G

- x

6

y

-
T

(d) Evaluate
∫∫

R

(x+y2) dx dy by using the change of variables formula to convert

it into and integral over the triangle G.

15. The transformation (x, y) = T (u, v) is defined by

x = e2u + ev, y = eu + ev

carries the unit square 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 in the (u, v) plane to a region R in
the (x, y) plane shown in the diagram.

(a) Complete the table to give the coordinates of the vertices of R.

•

••

•

A

B

C

D
P (x, y)
A
B
C
D

(b) Which of the four sides of R are straight line segments?

(c) Find the area of R.

16. Problems 14 and 15 illustrate the change of variables formula from prob-
lem 3. This formula says that if the equations

x = x(u, v), y = y(u, v),
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transform a region G in the uv plane one to one onto a region R in the xy plane
then ∫∫

R

f(x, y) dx dy =
∫∫

G

f(x(u, v), y(u, v))
∣∣∣∣
∂(x, y)
∂(u, v)

∣∣∣∣ du dv.

Note that the integrand contains the absolute value of the determinant

∂(x, y)
∂(u, v)

=
∣∣∣∣

xu xv

yu yv

∣∣∣∣ = xuyv − yuxv.

There is an analogous formula for equations

x = x(u, v, w), y = y(u, v, w), z = z(u, v, w)

which transform a region H in uvw-space onto a region B in xyz-space. It is
∫∫∫

B

f(x, y, z) dx d dz

=
∫∫∫

H

f(x(u, v, w), y(u, v, w), z(u, v, w))
∣∣∣∣
∂(x, y, z)
∂(u, v, w)

∣∣∣∣ du dv dw.

where the factor on the right is the determinant

∂(x, y, z)
∂(u, v, w)

=

∣∣∣∣∣∣

xu xv xw

yu yv yw

zu zv zw

∣∣∣∣∣∣
.

The proofs are analogous: for the two dimensional formula we use the fact that
the length of the cross product is the area of the corresponding parallelogram;
for the three dimensional formula we use the fact that the triple product is the
volume of the corresponding parallelopiped. Use the three dimensional formula
to find the appropriate factors in the formulas

∫∫∫

x2+y2≤a2
b≤z≤c

f(x, y, z) dx dy dz =
∫ c

b

∫ a

0

∫ 2π

0

f(r cos θ, r sin θ, z)
∣∣∣∣
∂(x, y, z)
∂(r, θ, z)

∣∣∣∣ dθ dr dz

and ∫∫∫

x2+y2+z2≤a2

f(x, y, z) dx dy dz

=
∫ a

0

∫ π

0

∫ 2π

0

f(ρ sin φ cos θ, ρ sin φ sin θ, ρ cosφ)
∣∣∣∣
∂(x, y, z)
∂(ρ, φ, θ)

∣∣∣∣ dθ dφ dρ.

17. Show that the area of the portion of the sphere x2 + y2 + z2 = a2 between
the planes z = h1 and z = h2 is the same as the area of the portion of the
cylinder x2 + y2 = a2 between these two planes.5

5Cicero said he saw this fact inscribed on Archimedes’ tomb in 75 B.C.; Archimedes died
137 years earlier.
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Answer: See [VPR] page 713.

18. Find the center of mass of the sphere x2 + y2 + z2 = a2 between the plane
z = h1 and z = h2.

Answer: See [VPR] problem 15 page 715.

19. Sketch the polar cap of the sphere ρ = a defined by the inequalities 0 ≤
φ ≤ φ0 in spherical coordinates. Then show that its area is 2πa2(1− cosφ0).

Answer: See [VPR] problem 16 page 715.

20. The circle z2 + (y − 5)2 = 1, x = 0 in the (y, z) plane is revolved about the
z-axis. Find the volume of the torus (donut shaped figure) which is swept out.

Answer: In cylindrical coordinates the torus has equation z2 + (r − 5)2 = 1. Hence
the volume is

V =

Z
dV =

Z 6

r=4

Z √1−(r−5)2

z=−
√

1−(r−5)2

Z 2π

θ=0

r dθ dz dr

The inner integrals are constant so

V = 4π

Z 6

4

p
1− (r − 5)2 r dr

Rewrite as

V = 4π

Z 6

4

p
1− (r − 5)2 (r − 5) dr + 4π

Z 6

4

p
1− (r − 5)2 5 dr

In the first integral take u = 1− (r − 5)2 so (r − 5)r dr = −du
2

and u = 0 when r = 4
or r = 6 so this integral is zero. In the second integral take v = (r − 5) so dv = dr
and v = −1 when r = 4 and v = 1 when r = 6. The integral is

V = 20π

Z 1

v=−1

p
1− v2 dv = 10π2.

21. (Pappus’s Theorem for regions) A region R in the rz plane is rotated
about the z axis to obtain a body B. Show that the resulting volume is

∫∫∫

B

dV = 2πr̄

∫∫

R

dA, r̄ =

∫∫

R

r dA

∫∫

R

dA

,
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i.e. it is equal to the area of R multiplied by the circumference of the circle swept
out by the center of gravity of the region R. Hint: Use cylindrical coordinates.

22. (Pappus’s Theorem for curves) A curve C in the rz plane is rotated
about the z axis to obtain a surface S. Show that the resulting area is

∫∫

S

dA = 2πr̄

∫

C

ds, r̄ =

∫

C

r ds
∫

C

ds

,

i.e. it is equal to the length of C multiplied by the circumference of the cir-
cle swept out by the center of gravity of the curve C. Hint: Use cylindrical
coordinates.

23. The volume above the cone z =
√

x2 + y2 is removed from the sphere
x2 + y2 + z2 = 1. Find the volume that remains.

24. Spherical coordinates (ρ, φ, θ) are related to cartesian coordinates via the
equation

x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cosφ.

Find the remaining volume of the sphere ρ = 2 if we take out the cone φ = π
3 .

(Hint: the part you remove resembles a filled ice cream cone.)

Answer: In spherical coordinates, the volume is given by

V =

Z 2π

0

Z π

π/3

Z 2

0

ρ2 sin φ dρ dφ dθ

Note that range of φ is between π/3 to π . So

V =

Z 2π

0

Z π

π
3

�
23

3
− 0

�
sin φ dφ dθ =

Z 2π

0

8

3
·
�
− cos π −

�
− cos

π

3

��
dθ = 4 ·2π = 8π.

25. The integral

W (z0) =
1
4π

∫ ∫

x2+y2+z2=1

dA√
x2 + y2 + (z − z0)2

gives the gravitational field at the point (0, 0, z0) due a uniform mass distribution
of total mass one on the unit sphere x2 + y2 + z2 = 1. Evaluate this integral for
0 < z0 < 1 and then for 1 < z0. Graph U(z0) as a function of z0. Hint: The
quantity

√
x2 + y2 + (z − z0)2 is the distance from (x, y, z) to (0, 0, z0). Use

spherical coordinates and the law of cosines.
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26. The gravitational potential at the point (0, 0, z0) due to a uniform mass
distribution in the region

R : a ≤
√

x2 + y2 + z2 ≤ b

is given by the triple integral
∫∫∫

R

dx dy dz

f(x, y, z)

where f(x, y, z) is the distance from the point (x, y, z) to the point (0, 0, z0).

(a) Show that f(x, y, z) =
√

ρ2 + z2
0 − 2ρz0 cos φ.

(b) Evaluate the potential as a function of z0. Hint: dV = ρ2 sin φdρ dφ dθ.

(c) Evaluate the integral in (b) when z0 > b

(d) Evaluate the integral in (b) when 0 < z0 < a.
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Part III

Vector Analysis

21 Vector fields

1. Define the gradient of the function U = U(x, y, z) and the divergence and
curl of the vector field

F = M(x, y, z) i + N(x, y, z) j + P (x, y, z)k.

Answer:
grad U = ∇U = Ux i + Uy j + Uz k,

divF = ∇ · F = Mx + Ny + Pz,

curlF = ∇× F = (Py −Nz) i + (Mz − Px) j + (Nx −My)k,

Remark 2. Here is a trick for remembering these formulas. Write the expres-
sion

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k

and compute with it using the usual formulas for scalar multiplication, dot
product, and cross product. Whenever you see a partial derivative symbol next
to a function do the differentiation.

3. Is the vector field

F = yi + (x + z3)j + (2yz2 + 1)k

a gradient? If so find a function V with F = ∇V ; if not, prove that no such V
exists.

Answer: The gradient of V is

∇V = Vxi + Vyj + Vzk.

The vector equation F = ∇V takes the form

Vx = y, Vy = x + z3, Vz = 2yz2 + 1.

But
Vy = x + z3 =⇒ Vyz = 3z2

and
Vz = 2yz2 =⇒ Vzy = 2z2.

There is no solution since Vyz = Vzy but 3z2 6= 2z2.
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22 Line integrals

1. Let C be the line segment from (0, 0) to (1, 1) and w = x + y2 and ds be the
infinitesimal arclength.

(a) Evaluate the line integral
∫

C

w ds for the parameterization

x = t, y = t, 0 ≤ t ≤ 1.

(b) Evaluate the line integral
∫

C

w ds for the parameterization

x = sin t, y = sin t, 0 ≤ t ≤ π/2.

(See [TF] page 691 Example 1.)

2. Find the work done by the force F = 2yi+3xj+zk, as the point of application
moves from (1,1,3) to (3,9,1) along the curve

x = t, y = t2, z = 4− t.

Answer: By definition the work is

W =

Z
C

F · dR.

Along the curve C we have

F = 2y i + 3x j + z k = 2t2 i + 3t j + (4− t)k

and dx = dt, dy = 2t dt, dz = −dt so

dR = (i + 2tj− k) dt.

Hence

W =

Z t=3

t=1

F · dR =

Z 3

1

�
(2t2)(1) + (3t)(2t) + (4− t)(−1)

�
dt =

=

Z 3

1

(8t2 + t− 4) dt =
8

3
t3 +

1

2
t2 − 4t

����3
1

=

=

�
72 +

9

2
− 12

�
−
�

8

3
+

1

2
− 4

�
=

196

3
.

3. The force at the point (x, y) is

F(x, y) = x2y i + 2xy2 j.

Find the work
W =

∫

C

F ·T ds

done in moving a particle from (0, 0) to (2, 4) along the curve y = x2. (Here T
is the unit tangent vector and ds is the infinitesimal arc length.)
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Answer: The answer is independent of how we parameterize the curve so we take
the simplest parameterization: x = t and y = t2. Then the velocity vector is

v =
dx

dt
i +

dy

dt
j = (i + 2tj)

so the unit tangent vector satisfies

T ds = v dt = (i + 2tj) dt,

and along the curve the force is given by

F(t, t2) = t4i + 2t5j,

so
F ·T ds = (t4 + 4t6) dt,

and

W =

Z t=2

t=0

(t4 + 4t6) dt =
25

5
+

4 · 27

7
.

4. A particle moves from the origin to the point (2, 4, 8) along the curve given
parametrically by the equations

x = t, y = t2, z = t3.

Find the work done by the force field

F = yzi + xzj + xyk.

5. Let F = 2x i + 2y j + 2z k. Find the work done by F along a curve C lying
on a sphere centered at the origin. Hint: What is special about F and C?

23 Independence of the path

In problems 1 to 6 find the the work done by the force F as the particle move
from the point P = (0, 0, 0) to the point Q = (1, 1, 1)

(a) along the straight line x = y = z;

(b) along the curve x = t, y = t2, z = t4;

(c) along a straight line from (0, 0, 0) to (1, 0, 0) then along a straight line to
(1, 1, 0), then along a straight line to (1, 1, 1).

1. F = 2x i + 3y j + 4z k 2. F = (y + z) i + (z + x) j + (x + y)k
3. F = y i + z j + xk 4. F = yz2 i + zx2 j + xy2 k
5. F = ey+2z (i + x j + 2xk ) 6. F = y sin z i + x sin z j + xy cos z k
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7. In problems 1 to 6 find the the work done by the force F as the particle move
from the point P = (0, 0, 0) to the point Q = (x0, y0, z0) along the straight line

x = tx0, y = ty0, z = tz0, 0 ≤ t ≤ 1.

8. In problems 1 to 6 find a function U(x, y, z) such that F = ∇U or prove that
no such function exists.

9. Find a function w = f(x, y) whose first partial derivatives are

∂w

∂x
= 1 + ex cos y,

∂w

∂y
= 2y − ex sin y

or prove that there is no such function.

10. Let M = 3x2y + 2xy2 and N = x3 + 2x2y + 3y2.

(a) Is there a function f(x, y) satisfying

∂f

∂x
= M and

∂f

∂y
= N?

(If so, find it; if not, say why.)

(b) Evaluate
∫

C

M dx + N dy where C is the curve given by the parameteric

equations

x = e2t sin(3t), y = e2t cos(3t), (0 ≤ t ≤ π).

11. A force is given by F = (x2 − y) i + (y2 − z) j + (z2 − x)k.

(a) Find the work done by the force as the particle moves from (0, 0, 0) to
(1, 1, 1) along a straight line.

(b) Find the work done by the force as the particle moves from (0, 0, 0) to
(1, 1, 1) along the curve

x = t, y = t2, z = t3, 0 ≤ t ≤ 1.

(c) Is F a gradient? (See [TF] page 694 Example 2.)

12. A force is given by F = i + z j + (y + 3z2)k.

(a) Find the work done by the force as the particle moves from (0, 0, 0) to
(1, 1, 1) along a straight line.

(b) Find the work done by the force as the particle moves from (0, 0, 0) to
(1, 1, 1) along the curve

x = t, y = t2, z = t3, 0 ≤ t ≤ 1.
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(c) Is F a gradient?

13. State the theorem which says when a line integral depends only on the
endpoints and not on the curve connecting the endpoints.

Answer: A continuously differentiable vector field F is a gradient vector field if and

only if the integral

Z Q

P

F · dR :=

Z
C

F · dR is independent of the path C joining the

point P to the point Q. When F = ∇U the value if this integral isZ Q

P

F · dR = U(Q)− U(P ).

14. State the theorem which says when a line integral around every closed curve
is zero.

Answer: A continuously differentiable vector field F is a gradient vector field if and
only if I

C

F · dR = 0

for every closed curve in the domain of F.

Answer: A continuously differentiable vector field F is a gradient vector field if and

only if the integral

Z B

A

F · dR is independent of the path joining the point A to the

point B.

15. (a) Find the gradient of the function U(x, y) = tan−1(x/y).

(b) Find the line integral
∮

C

F · dR where C is the curve

x = cos t, y = sin t, 0 ≤ t ≤ 2π

and the vector field F is defined by

F =
y

x2 + y2
i− x

x2 + y2
j.

(c) Why does this not contradict the answer to problem 13?

16. LetP and Q be points in three dimensional space. Prove that
∫ Q

P

z2 dx + 2y dy + 2xz dz

is independent of the path integration. What is the value of this integral if
P = (a1, b1, c1) and Q = (a2, b2, c2)?

17. (a) True or false? The line integral
∫

C
F · dR is independent of the param-

eterization.

(b) True or false? The line integral
∫

C
F · dR depends only on the endpoints of

the curve C.
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24 Surface Integrals

1. A curve is given parametrically by equations

x = x(t), y = y(t), z = z(t).

Write the formula for the infinitesimal arc length element ds at the point with
parameter value t.

Answer: ds =

����dRdt

���� dt where R = x(t) i + y(t) j + z(t)k. Thus

ds =
p

ẋ2 + ẏ2 + ż2 dt.

2. Write infinitesimal arc length element ds for a curve of form y = f(x).

3. A surface is given parametrically by equations

x = x(u, v), y = y(u, v), z = z(u, v).

Write the formula for the infinitesimal area element dσ at the point with pa-
rameter value (u, v).

Answer: dσ = |Ru ×Rv| du dv where R = x(u, v) i + y(u, v) j + z(u, v)k and

Ru = xu i + yu j + zu k, Rv = xv i + yv j + zv k.

Thus
dσ =

p
(yuzv − yvzu)2 + (zuxv − zvxu)2 + (xuyv − xvyu)2 du dv.

4. Write infinitesimal arc area element dσ for a surface of form z = f(x, y).

5. Evaluate
∫∫

S

(xy + z) dσ where S is the portion of the plane

2x− y + z = 3

above the triangle with vertices (0, 0), (1, 0), and (0, 1) in the (x, y)-plane.
(See [VPR] Example 1 on page 755.)

6. The cylinder x2+y2 = 2x cuts a portion of a surface G from the upper nappe
of the cone x2 + y2 = z2. Compute the value of the surface integral

∫∫

G

(x4 − y4 + y2z2 − z2x2 + 1) dσ

where dσ is the infinitesimal area element.
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7. A square hole of side 2
√

2 is cut symmetrically through a sphere of radius
2. Show that the area of the surface removed is 16π(

√
2− 1). (See problem 55

page 678 of [TF].)

8. Find the area above the xy-plane cut from the cone x2 + y2 = z2 by the
cylinder x2 + y2 = 2ax. (See problem 50 page 678 of [TF].)

9. Find the area of the surface y2 + z2 = 2x cut off by the plane x = 1. (See
problem 48 page 678 of [TF].)

10. Find the surface area of the sphere r2 + z2 = a2 that is inside the cylinder
r = a sin θ. (See problem 51 page 678 of [TF].)

11. A torus surface is generated by moving a sphere of unit radius whose center
travels around a closed plane circle of radius 2. Find the area of this surface.
(See problem 56 page 678 of [TF].)

12. Calculate the area of the surface (x2 +y2 +z2)2 = x2−y2. (See problem 57
page 678 of [TF].)

25 Green’s Theorem

1. State Green’s Theorem for a plane region.

Answer: Let R be a plane region whose boundary is a simple closed curve C and
M(x, y) and N(x, y) be continuously differentiable functions defined on R. ThenI

C

M dx + N dy =

ZZ
R

�
∂N

∂x
− ∂M

∂y

�
dx dy

where the boundary curve is traversed in the counter clockwise direction.

2. Let R be a plane region whose boundary is a simple closed curve C. Show
that the area of R is

Area (R) = 1
2

∮

C

(x dy − y dx).

(See [TF] page 712 or Example 5 page 752 of [VPR].)

3. (a) Evaluate the line integral
∮

C
(y2 dx + x2 dy) where C is the triangle

bounded by the three lines x = 0, y = 0, x + y = 1, by writing it as the
sum of three line integrals. (Use the counter clockwise orientation.)

(b) Evaluate this integral using Green’s Theorem.
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4. (a) Evaluate the line integral
∮

C
(3y dx + 2x dy) where C is the boundary of

the region 0 ≤ x ≤ π and 0 ≤ y ≤ sin x by writing it as the sum of two line
integrals. (Use the counter clockwise orientation.)

(b) Evaluate this integral using Green’s Theorem.

5. (a) Evaluate the line integral
∮

C
y dx where C is the boundary of the region

a ≤ x ≤ b and 0 ≤ y ≤ f(x) by writing it as the sum of four line integrals. (Use
the counter clockwise orientation; assume that f(x) > 0 for all x.)

(b) Evaluate this integral using Green’s Theorem.

6. Let R be a plane region whose boundary is a simple closed curve C and F
be a continuously differentiable force field defined on R. A particle moves once
around the curve C in the counter clockwise direction. Prove that the work
done by F is

W =
∫∫

R

(∇× F) · dA

where dA = dAk.

Answer: Suppose the force field is F = M i + N j, and that R is the position vector
of a point on the curve. Then

dW = F · dR =
�
M i + N j

� · �dx i + dy j
�

= M dx + N dy

is the work done in moving the particle from (x, y) to (x + dx, y + dy). By Green’s
Theorem the total work isI

C

dW =

I
M dx + N dy

ZZ
R

�
∂N

∂x
− ∂M

∂y

�
dA.

But since Mz = Nz = 0 we have that

∇× F =

�
∂N

∂x
− ∂M

∂y

�
k

and hence that I
C

dW =

ZZ
R

(∇× F) · k dA =

ZZ
R

(∇× F) · dA

as claimed.

7. Let R be a plane region whose boundary is a simple closed curve C and F
be a continuously differentiable flow field defined on R. The flow field represents
the flow of a fluid in the plane. The flux across the boundary is the rate at
which fluid flows across the boundary. Define the flux across C as an integral
over C and show that it is the integral of the divergence of F over R.
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Answer: The amount of fluid which flows across an infinitesimal piece dR of the
boundary in an infinitesimal time dt the signed area ±|F dt× dR| of the infinitesimal
parallelogram with edge vectors F dt and dR; the flux (rate of flow) across this piece
is thus ±|F×dR|. The sign in the signed area is positive if the fluid is flowing out and
negative if the fluid is flowing in, and the outward unit normal vector N is obtained
by rotating the unit tangent T clockwise through ninety degrees. Hence in either case
the infinitesimal flux is

±|F× dR| = ±|F× dT| ds = F ·N ds.

The total flux across the boundary is thus defined to be

fluxC(F) =

Z
C

F ·N ds.

Now suppose that F = P (x, y) i + Q(x, y)j. Since

T ds = dR = dx i + dy j

we have
N ds = dy i− dx j

so
F ·N ds = −Q dx + P dy

and by Green’s Theorem (with M = −Q and N = P ) we have

fluxC(F) =

Z
C

−Q dx + P dy =

ZZ
R

�
∂P

∂x
+

∂Q

∂y

�
dx dy =

ZZ
R

(∇ · F) dA

as claimed.

Remark 8. The formula in problem 6 can be written
∮

C

F ·T ds =
∫∫

R

(∇× F) · dA.

The formula in problem 7 is
∮

C

F ·N ds =
∫∫

R

(∇ · F) dA.

9. Let C be the triangle with vertices (1, 2), (3, 2), (2, 5). Evaluate the line
integrals

∮
C

x dx − y dy and
∮

C
y dx − x dy. Both integrals are to be traversed

in the counterclockwise direction.

10. Use Green’s Theorem to evaluate the integral
∮

∂D

2xy2 dx + 3x2y3 dy

(taken in the counter clockwise direction) where D is the plane region given by

x3 ≤ y ≤ x.
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Answer:I
∂D

2xy2 dx + 3x2y3 dy =

Z Z
D

(6xy3 − 4xy) dx dy

=

Z 1

x=0

Z x

y=x3
(6xy3 − 4xy) dy dx

=

Z 1

x=0

�
2xy4

3
− 2xy2

�x

y=x3
dx

=

Z 1

x=0

�
2x5

3
− 2x3 − 2x13

3
+ 2x7

�
dx

11. (a) Give parametric equations for the circle C with equation (x−3)2 +(y−
4)2 = 25.

(b) Express the line integral
∮

C

(6y + x) dx + (y + 2x) dy

in terms of the parameterization given in part (a) and evaluate it. (The integral
is taken in the counter clockwise direction.)

12. Let C be the semicircle comprised of the graph y =
√

1− x2 and the line
segment y = 0, −1 < x < 1. Let F be the vector field given by

F = x2i + xyj.

Evaluate the integral
∮

C

F ·T ds. In the integral, the semicircle C is traversed

in the counterclockwise direction, ds denotes arclength, and T denotes the unit
tangent vector.

13. Let F be the force field given by

F(x, y) = 3y i + 2x j.

Calculate the work done when moving a particle clockwise once around the
boundary of the region 0 ≤ x ≤ π, 0 ≤ y ≤ sin x. Find the flux of the field
F = 2x i− 3y j outward across the ellipse with parametric equations

x = cos t, y = 4 sin t, 0 ≤ t ≤ 2π.

14. (See Example 3 page 708 of [TF].)
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15. Suppose that C is the boundary of a region R in the plane and that T and
n are respectively the unit tangent and normal vectors to C so oriented that n
points out and (n,T) is a positively oriented frame. Suppose that

F = M i + N j, G = −N i + M j

are two vector fields.

(a) Show that
∫

C

F · n ds =
∫

C

G ·T ds.

(b) Which integral represents work? Which represents flux?

(c) Using Green’s theorem, express the integral in part (a) as an integral over
R.

16. Use Green’s Theorem to find the area enclosed by the ellipse given para-
metrically by

x = a cos t, y = b sin t, 0 ≤ t ≤ 2π.

(See Example 2 page 711 in [TF].)

17. Let C be the cardioid with polar equation

r = 1− cos θ, 0 ≤ θ ≤ 2π.

(a) Evaluate the integral ∮

C

x dy

using the definition of line integral. You may leave your answer in the form of
a single definite integral.

(b) Evaluate the integral using Green’s Theorem. A numerical answer is required
here.

18.

26 The Gauss Divergence Theorem

1. State the the two dimensional Gauss Divergence Theorem.

Answer: See problem 7 of section 25.

2. State the three dimensional Gauss Divergence Theorem.
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Answer: Let B be a bounded region in three dimensional space whose boundary ∂B
is a smooth surface. Let n be the unit outward normal vector field on ∂B and F be a
continuously differentiable vector field defined ob B. ThenZZ

∂B

(F · n) dσ =

ZZZ
B

(∇ · F) dV

where dσ denotes the area element of the boundary ∂B and dV denotes the volume
element of the region B.

3. (a) Find the outward unit normal vector n to the ellipse C with equation
9x2 + y2 = 1.

(b) Find the line integral ∮

C

F · n ds

(taken with the counter clockwise orientation) where the vector field F is given
by

F = i + 2xyj.

(As usual, the ds is the integral indicates arclength.)

Answer: (a) Let f(x, y) = 9x2 + y2 so that the ellipse C is a level curve f(x, y) = 1
of f . The gradient

∇f = 18xi + 2yj

is normal to the ellipse at the point (x, y) and points out so we find n by normalizing:

n =
9xp

81x2 + y2
i +

yp
81x2 + y2

.

(b) By the Divergence TheoremI
C

F · n ds =

ZZ
R

�
∂M

∂x
+

∂N

∂y

�
dx dy

when ∂R = C and F = M i + Nj. Since M = 1 and N = 2xy we get

∂M

∂x
+

∂N

∂y
= 0 + 2x = 2x

and the inside of the ellipse is given by 9x2 + 2y2 ≤ 1 or

−1 ≤ y ≤ 1, −a(y) ≤ x ≤ a(y)

where a(y) =
p

1− y2/3 so the integral over R, the inside of the ellipse, isZZ
R

�
∂M

∂x
+

∂N

∂y

�
dx dy =

Z 1

y=−1

Z a(y)

x=−a(y)

2x dx dy =

Z 1

y=−1

x2

����a(y)

x=−a(y)

dy = 0.

65



Remark 4. One can prove directly that the answer is zero by symmetry as
follows:

F · n =
9x + 2xy2

√
9x2 + y2

This shows that ∮

C

F · n ds =
∮

C

g(x, y) ds

where g(−x, y) = −g(x, y). Now the ellipse is symmetric about the y-axis,
so each element g(x, y) ds in the integral is cancelled by an equal and opposite
element g(−x, y) ds. Be careful when making an argument like this; for example,
the symmetry g(x,−y) = g(x, y) and symmetry of the ellipse about x-axis are
irrelevant.

5. The semicircular region R in the xy-plane lies inside the circle x2 + y2 = 1
and above the line y = x. Find the outward flux across the boundary of R
produced by the vector field

F = xyi + yj.

27 Stokes Theorem

1. State the special case of Stokes’ Theorem for plane regions.

Answer: See problem 6 of section 25.

2. State Stokes’ Theorem.

Answer: Let S be a smooth surface with boundary ∂S. Let n be a unit normal
vector field on S and F be a continuously differentiable vector field defined on S.
Then I

∂S

(F ·T) ds =

ZZ
S

(∇× F) · n dσ

where T is the unit tangent vector to the boundary ∂S, ds is the arclength element
on the boundary, dσ is the area element on the surface, and the direction in the line
integral on the left is such that at any point on the boundary, the inward pointing
vector, the unit tangent T, and the unit normal n (in that order) form a right hand
frame.

3. Let S be the portion of the paraboloid z = 4 − x2 − y2 that lies above the
plane z = 0 and

F = (z − y) i + (z + x) j− (x + y)k.

Calculate ∮

∂S

F · dR and
∫∫

S

(∇× F) · n dσ.
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(See Example 2 page 731 of [TF].)

4. Let W = ρ−1 where ρ =
√

x2 + y2 + z2 and let F = ∇W be the gradient of
W .

(a) Calculate the gradient F and the divergence of the gradient ∇ · F.

(b) Calculate the outward flux
∫∫

S

F · n dσ

over the sphere ρ = h of radius h. Here dσ denotes the area element on the
sphere and n denotes the outward unit normal to the sphere.

(c) Calculate the outward flux
∫∫

S

F · n dσ

over the ellipsoid S defined by

x2

a2
+

y2

b2
+

z2

c2
= 1.

Here dσ denotes the area element on the ellipsoid and n denotes the outward
unit normal to the ellipsoid.

5. Prove that if ∇× F = 0 throughout a simply connected region D, then

∫ Q

P

F · v dt, v =
dx

dt
i +

dy

dt
j +

dz

dt
k

has the same value for every curve (x(t), y(t), z(t) in D with endpoints P and
Q. Hint: The term simply connected means that given two curves from P to Q
there is a surface in D whose boundary is the union of these curves.

6. True or false? Suppose that S is a portion of a level surface of the function
f(x, y, z) and that n is a unit normal to S. Then

∫∫

S

∇f · n dσ = ±
∫∫

S

|∇f | dσ.

7. True or false? Let F = M(x, y) i + N(x, y) j be a vector field defined for

(x, y) 6= (0, 0) and such that
∂M

∂y
=

∂N

∂x
. Then F is the gradient of a scalar

function.
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8. True or false? For any vector field F = M(x, y) i + N(x, y) j defined in the
whole plane and any curve C the integral

∫

C

F · v dt, v =
dx

dt
i +

dy

dt
j

is independent of the choice of the parameterization (x(t), y(t)) of the curve C.

9. Calculate
∫

C

F · dR where and C is the unit circle

x = cos t, y = sin t, 0 ≤ t ≤ 2π

and

(a) F = x i + y j (b) F = −y i + x j (c) F = (x− y) i + (x + y) j.
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