
STATICS

Distributed Forces:  
Centroids and Centers 
of Gravity



Introduction

• The earth exerts a gravitational force on each of the particles 
forming a body.  These forces can be replace by a single 
equivalent force equal to the weight of the body and applied 
at the center of gravity for the body.

• The centroid of an area is analogous to the center of 
gravity of a body.  The concept of the first moment of an 
area is used to locate the centroid.

• Determination of the area of a surface of revolution and 
the volume of a body of revolution are accomplished 
with the Theorems of Pappus-Guldinus.



Center of Gravity of a 2D Body

• Center of gravity of a plate
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• Center of gravity of a wire



Centroids and First Moments of Areas and Lines
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• Centroid of an area
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• Centroid of a line



First Moments of Areas and Lines
• An area is symmetric with respect to an axis BB’

if for every point P there exists a point P’ such 
that PP’ is perpendicular to BB’ and is divided 
into two equal parts by BB’.

• The first moment of an area with respect to a 
line of symmetry is zero.

• If an area possesses a line of symmetry, its 
centroid lies on that axis

• If an area possesses two lines of symmetry, its 
centroid lies at their intersection.

• An area is symmetric with respect to a center O
if for every element dA at (x,y) there exists an 
area dA’ of equal area at (-x,-y).  

• The centroid of the area coincides with the 
center of symmetry.



Centroids of Common Shapes of Areas



Centroids of Common Shapes of Lines



Composite Plates and Areas

• Composite plates
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Sample Problem 5.1

For the plane area shown, determine 
the first moments with respect to the 
x and y axes and the location of the 
centroid.

SOLUTION:

• Divide the area into a triangle, rectangle, 
and semicircle with a circular cutout.

• Compute the coordinates of the area 
centroid by dividing the first moments by 
the total area.

• Find the total area and first moments of 
the triangle, rectangle, and semicircle.  
Subtract the area and first moment of the 
circular cutout.

• Calculate the first moments of each area 
with respect to the axes.



Sample Problem 5.1
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triangle, rectangle, and semicircle.  Subtract the 
area and first moment of the circular cutout.



Sample Problem 5.1
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• Compute the coordinates of the area 
centroid by dividing the first moments by 
the total area.



Determination of Centroids by Integration
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may be avoided by defining dA as a thin 
rectangle or strip.



Sample Problem 5.4

Determine by direct integration the 
location of the centroid of a parabolic 
spandrel.

SOLUTION:

• Determine the constant k.

• Evaluate the total area.

• Using either vertical or horizontal 
strips, perform a single integration to 
find the first moments.

• Evaluate the centroid coordinates.



Sample Problem 5.4
SOLUTION:

• Determine the constant k.
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Sample Problem 5.4
• Using vertical strips, perform a single integration 

to find the first moments.
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Sample Problem 5.4
• Or, using horizontal strips, perform a single 

integration to find the first moments.
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Sample Problem 5.4
• Evaluate the centroid coordinates.
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Distributed Loads on Beams

• A distributed load is represented by plotting the load 
per unit length, w (N/m) .  The total load is equal to 
the area under the load curve.
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• A distributed load can be replace by a concentrated 
load with a magnitude equal to the area under the 
load curve and a line of action passing through the 
area centroid.



Sample Problem 5.9

A beam supports a distributed load as 
shown.  Determine the equivalent 
concentrated load and the reactions at 
the supports.

SOLUTION:

• The magnitude of the concentrated load 
is equal to the total load or the area under 
the curve.

• The line of action of the concentrated 
load passes through the centroid of the 
area under the curve.

• Determine the support reactions by 
summing moments about the beam 
ends.



Sample Problem 5.9
SOLUTION:

• The magnitude of the concentrated load is equal to 
the total load or the area under the curve.

kN 0.18=F

• The line of action of the concentrated load passes 
through the centroid of the area under the curve.

kN 18
mkN 63 ⋅

=X m5.3=X



Sample Problem 5.9
• Determine the support reactions by summing 

moments about the beam ends.
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Center of Gravity of a 3D Body: Centroid of a Volume

• Center of gravity G
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• Results are independent of body orientation,

∫∫∫ === zdWWzydWWyxdWWx

∫∫∫ === zdVVzydVVyxdVVx

dVdWVW γγ ==   and  

• For homogeneous bodies,



Centroids of Common 3D Shapes



Composite 3D Bodies
• Moment of the total weight concentrated at the 

center of gravity G is equal to the sum of the 
moments of the weights of the component parts.
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Sample Problem 5.12

Locate the center of gravity of the 
steel machine element.  The diameter 
of each hole is 1 in.

SOLUTION:

• Form the machine element from a 
rectangular parallelepiped and a 
quarter cylinder and then subtracting 
two 1-in. diameter cylinders.



Sample Problem 5.12



Sample Problem 5.12
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