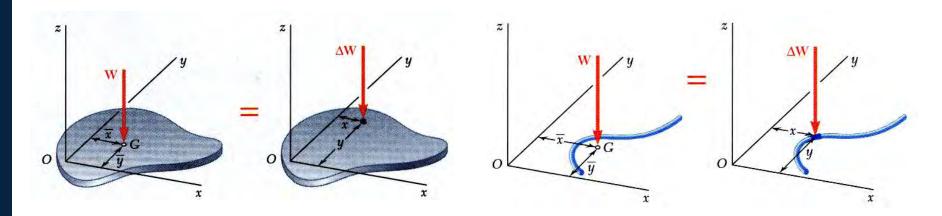
STATICS

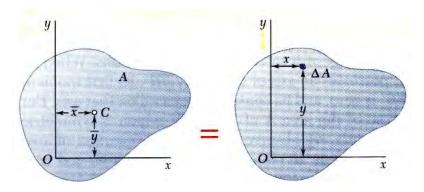
Distributed Forces: Centroids and Centers of Gravity

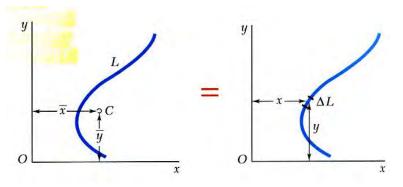

Introduction

- The earth exerts a gravitational force on each of the particles forming a body. These forces can be replace by a single equivalent force equal to the weight of the body and applied at the *center of gravity* for the body.
- The *centroid of an area* is analogous to the center of gravity of a body. The concept of the *first moment of an area* is used to locate the centroid.
- Determination of the area of a *surface of revolution* and the volume of a *body of revolution* are accomplished with the *Theorems of Pappus-Guldinus*.

Center of Gravity of a 2D Body

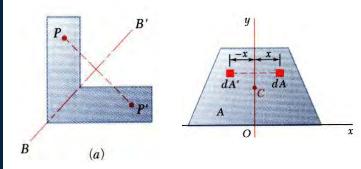
• Center of gravity of a plate

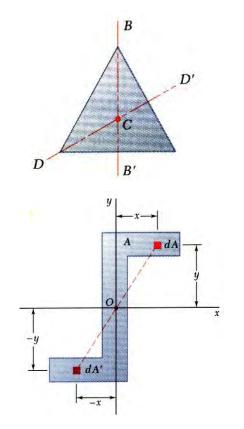

• Center of gravity of a wire


$$\sum M_{y} \quad \overline{x}W = \sum x\Delta W$$
$$= \int x \, dW$$
$$\sum M_{y} \quad \overline{y}W = \sum y\Delta W$$
$$= \int y \, dW$$

Centroids and First Moments of Areas and Lines

• Centroid of an area


• Centroid of a line

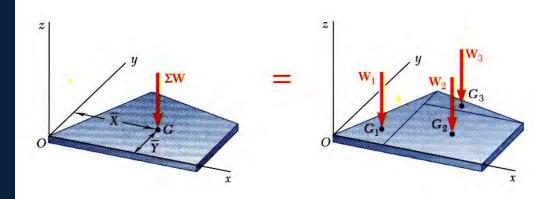


 $\overline{x}W = \int x \, dW$ $\overline{x}(\gamma A t) = \int x (\gamma t) dA$ $\overline{x}A = \int x \, dA = Q_y$ = first moment with respect to y $\overline{y}A = \int y \, dA = Q_x$ = first moment with respect to x

$$\overline{x}W = \int x \, dW$$
$$\overline{x}(\gamma La) = \int x (\gamma a) dL$$
$$\overline{x}L = \int x \, dL$$
$$\overline{y}L = \int y \, dL$$

First Moments of Areas and Lines

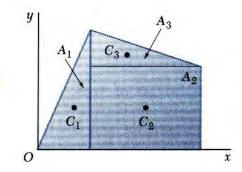
- An area is symmetric with respect to an axis *BB*' if for every point *P* there exists a point *P*' such that *PP*' is perpendicular to *BB*' and is divided into two equal parts by *BB*'.
- The first moment of an area with respect to a line of symmetry is zero.
- If an area possesses a line of symmetry, its centroid lies on that axis
- If an area possesses two lines of symmetry, its centroid lies at their intersection.
- An area is symmetric with respect to a center *O* if for every element *dA* at (*x*,*y*) there exists an area *dA*' of equal area at (-*x*,-*y*).
- The centroid of the area coincides with the center of symmetry.

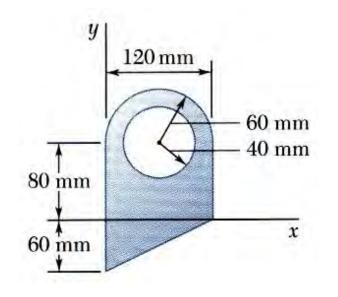

Centroids of Common Shapes of Areas

Shape		Ŧ	ÿ	Area
Triangular area	$\frac{1}{1+\frac{b}{2}+\frac{b}{$		<u>h</u> 3	<u>bh</u> 2
Quarter-circular area		$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Semicircular area		0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$
Quarter-elliptical area	C C b	$\frac{4a}{3\pi}$	$\frac{4b}{3\pi}$	$\frac{\pi ab}{4}$
Semielliptical area	0	$\frac{4b}{3\pi}$	$\frac{\pi ab}{2}$	
Semiparabolic area		$\frac{3a}{8}$	$\frac{3h}{5}$	$\frac{2ah}{3}$
area O \overline{y} \overline{y} \overline{h} Parabolic area O \overline{x} \overline{y} \overline{o} \overline{a}	0	$\frac{3h}{5}$	$\frac{4ah}{3}$	
Parabolic spandre!	$O \xrightarrow{x} \overline{x} \xrightarrow{x} \overline{x}$	<u>3a</u> 4	3 <u>h</u> 10	<u>ah</u> 3
General spandrel	a $y = kx^{n}$ h h h h h h	$\frac{n+1}{n+2}a$	$\frac{n+1}{4n+2}h$	$\frac{ah}{n+1}$
Circular sector		$\frac{2r\sin\alpha}{3\alpha}$.	0	ar ²

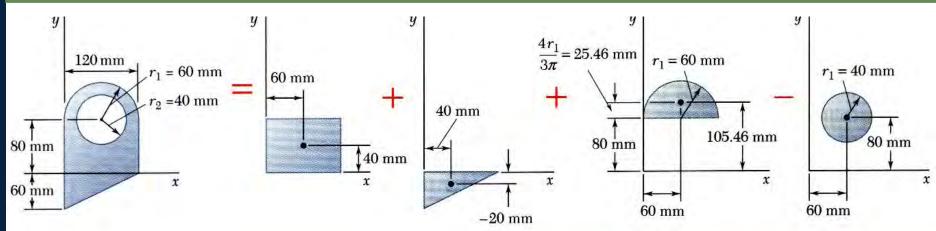
Centroids of Common Shapes of Lines

Shape		x	\overline{y}	Length
Quarter-circular arc		$\frac{2r}{\pi}$	$\frac{2r}{\pi}$	$\frac{\pi r}{2}$
Semicircular arc	$o \frac{\overline{y}}{\overline{x}} \frac{\overline{y}}{\overline{y}} - \frac{c}{o} \frac{r}{\overline{x}} - \frac{c}{\overline{x}} \frac{r}{\overline{x}} \frac{c}{\overline{x}} \frac{c}{\overline{x}} \frac{r}{\overline{x}} \frac{c}{\overline{x}} \frac{c}{\overline{x}$	0	$\frac{2r}{\pi}$	πr
Arc of circle	r r r r r r r r r r	$\frac{r\sin\alpha}{\alpha}$	0	2ar


Composite Plates and Areas


• Composite plates

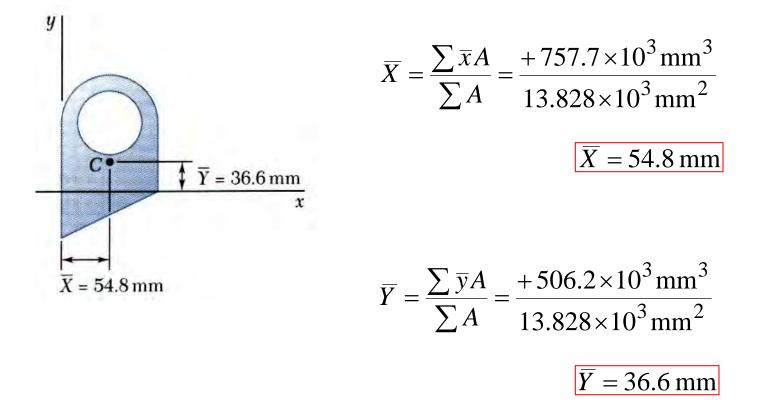
$$\overline{X} \sum W = \sum \overline{x} W$$
$$\overline{Y} \sum W = \sum \overline{y} W$$


- Composite area
 - $\overline{X} \sum A = \sum \overline{x}A$ $\overline{Y} \sum A = \sum \overline{y}A$

For the plane area shown, determine the first moments with respect to the *x* and *y* axes and the location of the centroid.

SOLUTION:

- Divide the area into a triangle, rectangle, and semicircle with a circular cutout.
- Calculate the first moments of each area with respect to the axes.
- Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout.
- Compute the coordinates of the area centroid by dividing the first moments by the total area.

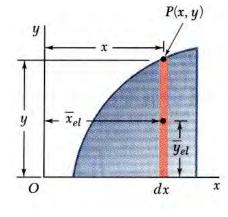


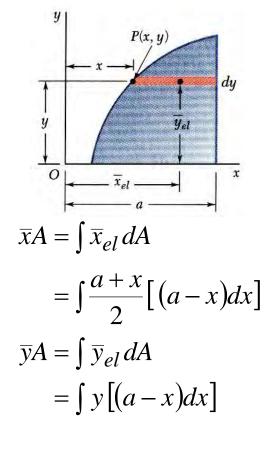
Component	A, mm ²	x, mm	ӯ, mm	⊼A, mm³	ӯA, mm³
Rectangle Triangle Semicircle Circle	$\begin{array}{l} (120)(80) = 9.6 \times 10^3 \\ \frac{1}{2}(120)(60) = 3.6 \times 10^3 \\ \frac{1}{2}\pi(60)^2 = 5.655 \times 10^3 \\ -\pi(40)^2 = -5.027 \times 10^3 \end{array}$	60 40 60 60	$40 \\ -20 \\ 105.46 \\ 80$	$\begin{array}{r} +576 \times 10^{3} \\ +144 \times 10^{3} \\ +339.3 \times 10^{3} \\ -301.6 \times 10^{3} \end{array}$	$\begin{array}{r} +384 \times 10^{3} \\ -72 \times 10^{3} \\ +596.4 \times 10^{3} \\ -402.2 \times 10^{3} \end{array}$
	$\Sigma A = 13.828 \times 10^3$			$\Sigma \bar{x}A = +757.7 \times 10^3$	$\Sigma \overline{y}A = +506.2 \times 10^3$

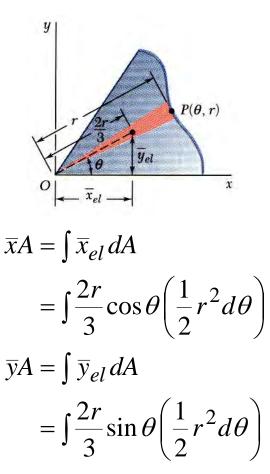
• Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout.

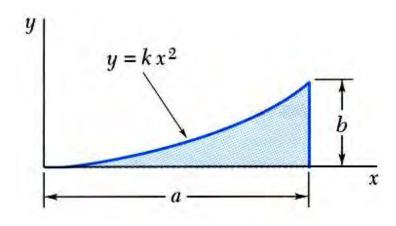
$$Q_x = +506.2 \times 10^3 \,\mathrm{mm}^3$$

 $Q_y = +757.7 \times 10^3 \,\mathrm{mm}^3$

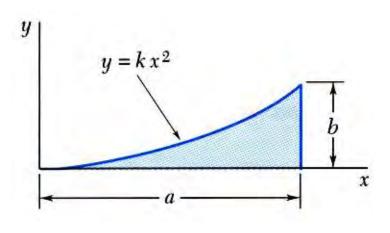

• Compute the coordinates of the area centroid by dividing the first moments by the total area.


Determination of Centroids by Integration


$$\overline{x}A = \int x dA = \iint x dx dy = \int \overline{x}_{el} dA$$
$$\overline{y}A = \int y dA = \iint y dx dy = \int \overline{y}_{el} dA$$


• Double integration to find the first moment may be avoided by defining *dA* as a thin rectangle or strip.

 $\overline{x}A = \int \overline{x}_{el} dA$ $= \int x (ydx)$ $\overline{y}A = \int \overline{y}_{el} dA$ $= \int \frac{y}{2} (ydx)$



Determine by direct integration the location of the centroid of a parabolic spandrel.

SOLUTION:

- Determine the constant k.
- Evaluate the total area.
- Using either vertical or horizontal strips, perform a single integration to find the first moments.
- Evaluate the centroid coordinates.

dA = ydx

 $\overline{y}_{el} = \frac{y}{2}$

 $\overline{x}_{el} = x$

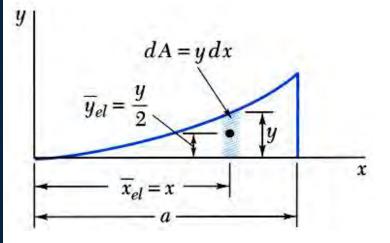
y

SOLUTION:

• Determine the constant k.

$$y = k x^{2}$$
$$b = k a^{2} \implies k = \frac{b}{a^{2}}$$
$$b = 2 \qquad a$$

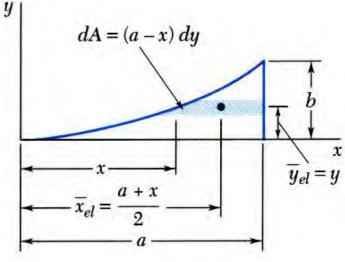
$$y = \frac{b}{a^2} x^2$$
 or $x = \frac{a}{b^{1/2}} y^{1/2}$

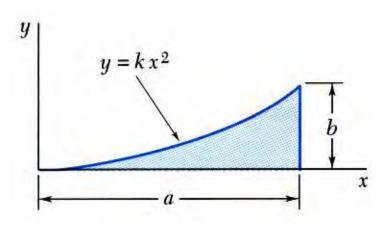

• Evaluate the total area. $A = \int dA$

$$= \int y \, dx = \int_{0}^{a} \frac{b}{a^2} x^2 \, dx = \left[\frac{b}{a^2} \frac{x^3}{3}\right]_{0}^{a}$$

$$=\frac{ab}{3}$$

x

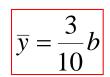

• Using vertical strips, perform a single integration to find the first moments.



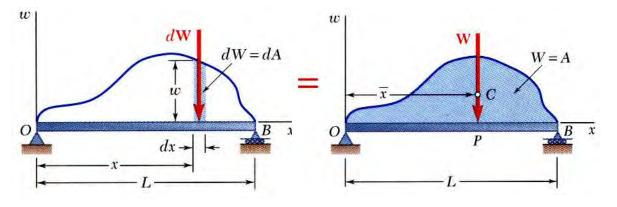
$$Q_{y} = \int \overline{x}_{el} dA = \int xy dx = \int_{0}^{a} x \left(\frac{b}{a^{2}} x^{2}\right) dx$$
$$= \left[\frac{b}{a^{2}} \frac{x^{4}}{4}\right]_{0}^{a} = \frac{a^{2}b}{4}$$
$$Q_{x} = \int \overline{y}_{el} dA = \int \frac{y}{2} y dx = \int_{0}^{a} \frac{1}{2} \left(\frac{b}{a^{2}} x^{2}\right)^{2} dx$$
$$= \left[\frac{b^{2}}{2a^{4}} \frac{x^{5}}{5}\right]_{0}^{a} = \frac{ab^{2}}{10}$$

• Or, using horizontal strips, perform a single integration to find the first moments.

$$Q_{y} = \int \overline{x}_{el} dA = \int \frac{a+x}{2} (a-x) dy = \int_{0}^{b} \frac{a^{2} - x^{2}}{2} dy$$
$$= \frac{1}{2} \int_{0}^{b} \left(a^{2} - \frac{a^{2}}{b} y \right) dy = \frac{a^{2}b}{4}$$
$$Q_{x} = \int \overline{y}_{el} dA = \int y(a-x) dy = \int y \left(a - \frac{a}{b^{1/2}} y^{1/2} \right) dy$$
$$= \int_{0}^{b} \left(ay - \frac{a}{b^{1/2}} y^{3/2} \right) dy = \frac{ab^{2}}{10}$$


• Evaluate the centroid coordinates.

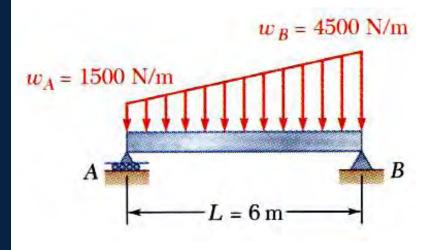
$$\overline{x}A = Q_y$$


$$\overline{x}\frac{ab}{3} = \frac{a^2b}{4}$$

$$\overline{x} = \frac{3}{4}a$$

$$\overline{y}A = Q_x$$
$$\overline{y}\frac{ab}{3} = \frac{ab^2}{10}$$

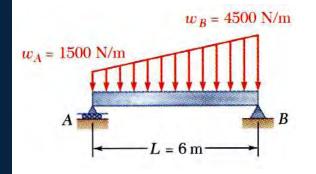
Distributed Loads on Beams



$$W = \int_{0}^{L} w dx = \int dA = A$$

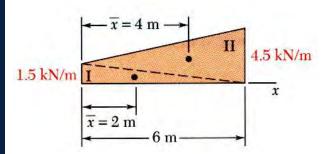
• A distributed load is represented by plotting the load per unit length, *w* (N/m). The total load is equal to the area under the load curve.

$$(OP)W = \int x dW$$
$$(OP)A = \int_{0}^{L} x dA = \overline{x}A$$

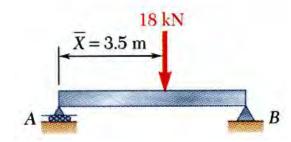

• A distributed load can be replace by a concentrated load with a magnitude equal to the area under the load curve and a line of action passing through the area centroid.

A beam supports a distributed load as shown. Determine the equivalent concentrated load and the reactions at the supports.

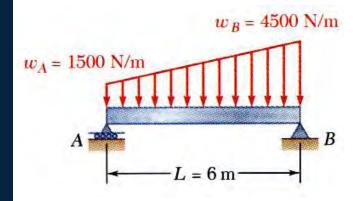
SOLUTION:


- The magnitude of the concentrated load is equal to the total load or the area under the curve.
- The line of action of the concentrated load passes through the centroid of the area under the curve.
- Determine the support reactions by summing moments about the beam ends.

SOLUTION:

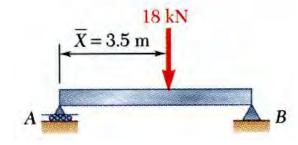

• The magnitude of the concentrated load is equal to the total load or the area under the curve.

 $F = 18.0 \, \text{kN}$

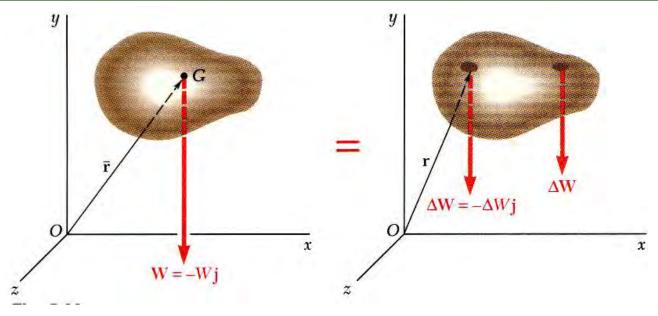


• The line of action of the concentrated load passes through the centroid of the area under the curve.

$$\overline{X} = \frac{63 \,\mathrm{kN} \cdot \mathrm{m}}{18 \,\mathrm{kN}} \qquad \qquad \overline{X} = 3.5 \,\mathrm{m}$$



Component	A, kN	x , m	⊼A, kN · m
Triangle I Triangle II	4.5 13.5	2 4	9 54
	$\Sigma A = 18.0$		$\Sigma \bar{x}A = 63$


• Determine the support reactions by summing moments about the beam ends.

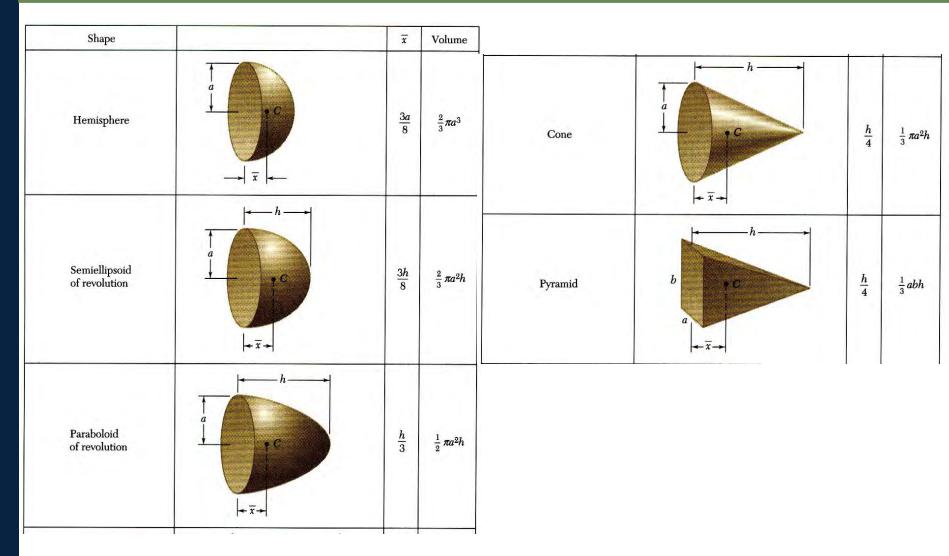
$$\sum M_A = 0$$
: $B_y (6 \text{ m}) - (18 \text{ kN})(3.5 \text{ m}) = 0$
 $B_y = 10.5 \text{ kN}$

$$\sum M_B = 0: -A_y(6 \text{ m}) + (18 \text{ kN})(6 \text{ m} - 3.5 \text{ m}) = 0$$

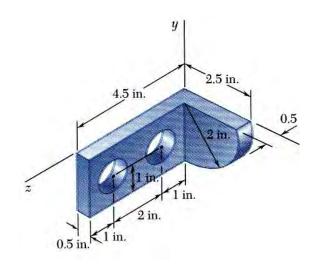
 $A_y = 7.5 \text{ kN}$

Center of Gravity of a 3D Body: Centroid of a Volume

• Center of gravity *G*

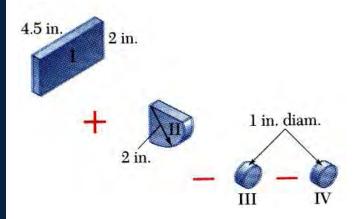

 $-W\,\vec{j} = \sum \left(-\,\Delta W\,\vec{j}\,\right)$

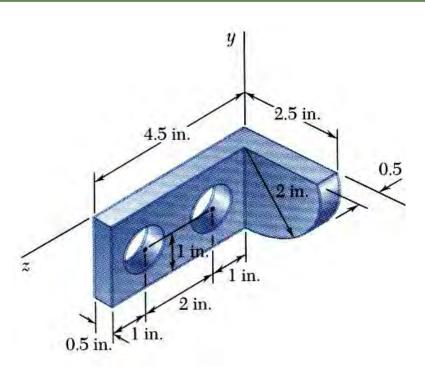
 $\vec{r}_G \times \left(-W\,\vec{j}\right) = \sum \left[\vec{r} \times \left(-\Delta W\,\vec{j}\right)\right]$ $\vec{r}_G W \times \left(-\vec{j}\right) = \left(\sum \vec{r} \Delta W\right) \times \left(-\vec{j}\right)$


$$W = \int dW \qquad \vec{r}_G W = \int \vec{r} dW$$

- Results are independent of body orientation, $\overline{x}W = \int x dW \quad \overline{y}W = \int y dW \quad \overline{z}W = \int z dW$
- For homogeneous bodies, $W = \gamma V$ and $dW = \gamma dV$ $\overline{x}V = \int x dV$ $\overline{y}V = \int y dV$ $\overline{z}V = \int z dV$

Centroids of Common 3D Shapes

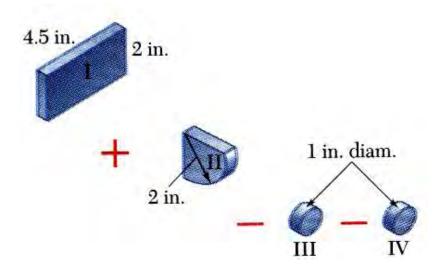

Composite 3D Bodies

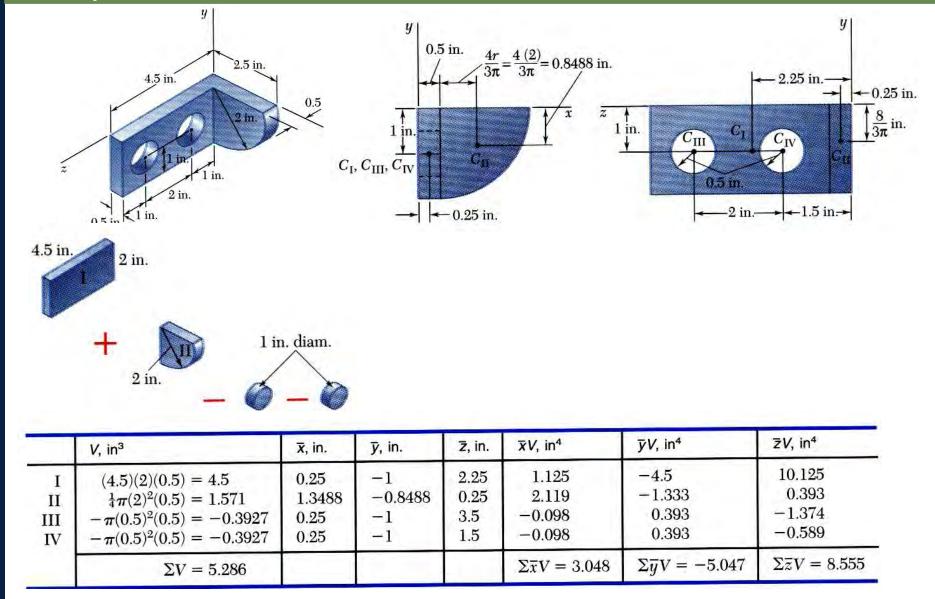


• Moment of the total weight concentrated at the center of gravity G is equal to the sum of the moments of the weights of the component parts.

 $\overline{X}\sum W = \sum \overline{x}W \quad \overline{Y}\sum W = \sum \overline{y}W \quad \overline{Z}\sum W = \sum \overline{z}W$

• For homogeneous bodies, $\overline{X}\sum V = \sum \overline{x}V \quad \overline{Y}\sum V = \sum \overline{y}V \quad \overline{Z}\sum V = \sum \overline{z}V$





Locate the center of gravity of the steel machine element. The diameter of each hole is 1 in.

SOLUTION:

• Form the machine element from a rectangular parallelepiped and a quarter cylinder and then subtracting two 1-in. diameter cylinders.

	V, in ³	x, in.	<i>y</i> , in.	Z, in.	$\overline{x}V$, in ⁴	<i>ӯV</i> , in⁴	īzV, in⁴
I II III IV	$\begin{array}{l} (4.5)(2)(0.5) = 4.5\\ \frac{1}{4}\pi(2)^2(0.5) = 1.571\\ -\pi(0.5)^2(0.5) = -0.3927\\ -\pi(0.5)^2(0.5) = -0.3927 \end{array}$	$\begin{array}{c} 0.25 \\ 1.3488 \\ 0.25 \\ 0.25 \end{array}$	-1 -0.8488 -1 -1	$2.25 \\ 0.25 \\ 3.5 \\ 1.5$	1.125 2.119 -0.098 -0.098	-4.5 -1.333 0.393 0.393	$10.125 \\ 0.393 \\ -1.374 \\ -0.589$
	$\Sigma V = 5.286$				$\Sigma \bar{x} V = 3.048$	$\Sigma \overline{y}V = -5.047$	$\Sigma \overline{z} V = 8.555$

$$\overline{X} = \sum \overline{x}V / \sum V = (3.08 \text{ in}^4) / (5.286 \text{ in}^3)$$
$$\overline{\overline{X}} = 0.577 \text{ in.}$$
$$\overline{Y} = \sum \overline{y}V / \sum V = (-5.047 \text{ in}^4) / (5.286 \text{ in}^3)$$
$$\overline{\overline{Y}} = 0.577 \text{ in.}$$

$$\overline{Z} = \sum \overline{z}V / \sum V = (1.618 \text{ in}^4) / (5.286 \text{ in}^3)$$

 $\overline{Z} = 0.577 \text{ in.}$