STATICS

Distributed Forces: Centroids and Centers of Gravity

Introduction

- The earth exerts a gravitational force on each of the particles forming a body. These forces can be replace by a single equivalent force equal to the weight of the body and applied at the center of gravity for the body.
- The centroid of an area is analogous to the center of gravity of a body. The concept of the first moment of an area is used to locate the centroid.
- Determination of the area of a surface of revolution and the volume of a body of revolution are accomplished with the Theorems of Pappus-Guldinus.

Center of Gravity of a 2D Body

- Center of gravity of a plate

$\sum M_{y} \bar{x} W=\sum x \Delta W$

$$
=\int x d W
$$

$$
\sum M_{y} \quad \bar{y} W=\sum y \Delta W
$$

$$
=\int y d W
$$

- Center of gravity of a wire

Centroids and First Moments of Areas and Lines

- Centroid of an area

$\bar{x} W=\int x d W$
$\bar{x}(\gamma A t)=\int x(\gamma t) d A$

$$
\bar{x} A=\int x d A=Q_{y}
$$

$=$ first moment with respect to y

$$
\bar{y} A=\int y d A=Q_{x}
$$

$=$ first moment with respect to x

- Centroid of a line

$$
\begin{aligned}
\bar{x} W & =\int x d W \\
\bar{x}(\gamma L a) & =\int x(\gamma a) d L \\
\bar{x} L & =\int x d L \\
\bar{y} L & =\int y d L
\end{aligned}
$$

First Moments of Areas and Lines

- An area is symmetric with respect to an axis $B B^{\prime}$ if for every point P there exists a point P^{\prime} such that $P P^{\prime}$ is perpendicular to $B B^{\prime}$ and is divided into two equal parts by $B B^{\prime}$.
- The first moment of an area with respect to a line of symmetry is zero.
- If an area possesses a line of symmetry, its centroid lies on that axis
- If an area possesses two lines of symmetry, its centroid lies at their intersection.
- An area is symmetric with respect to a center O if for every element $d A$ at (x, y) there exists an area $d A^{\prime}$ of equal area at $(-x,-y)$.
- The centroid of the area coincides with the center of symmetry.

Centroids of Common Shapes of Areas

Shape		\bar{x}	\bar{y}	Area
Triangular area			$\frac{h}{3}$	$\frac{b h}{2}$
Quarter-circular area		$\frac{4 r}{3 \pi}$	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{4}$
Semicircular area		0	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{2}$
Quarter-elliptical area		$\frac{4 a}{3 \pi}$	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{4}$
Semielliptical area	$\rightarrow \bar{x}+\quad O_{+} a \rightarrow+$	0	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{2}$
Semiparabolic area		$\frac{3 a}{8}$	$\frac{3 h}{5}$	$\frac{2 a h}{3}$
Parabolic area		0	$\frac{3 h}{5}$	$\frac{4 a h}{3}$
Parabolic spandrel		$\frac{3 a}{4}$.	$\frac{3 h}{10}$	$\frac{a h}{3}$
General spandrel		$\frac{n+1}{n+2} a$	$\frac{n+1}{4 n+2} h$	$\frac{a h}{n+1}$
Circular sector		$\frac{2 r \sin \alpha}{3 \alpha}$	0	αr^{2}

Centroids of Common Shapes of Lines

Shape		\bar{x}	\bar{y}	Length
Quarter-circular arc				
Semicircular are				

Composite Plates and Areas

- Composite plates

$$
\begin{aligned}
& \bar{X} \sum W=\sum \bar{x} W \\
& \bar{Y} \sum W=\sum \bar{y} W
\end{aligned}
$$

- Composite area

$$
\begin{aligned}
& \bar{X} \sum A=\sum \bar{x} A \\
& \bar{Y} \sum A=\sum \bar{y} A
\end{aligned}
$$

Sample Problem 5.1

For the plane area shown, determine the first moments with respect to the x and y axes and the location of the centroid.

SOLUTION:

- Divide the area into a triangle, rectangle, and semicircle with a circular cutout.
- Calculate the first moments of each area with respect to the axes.
- Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout.
- Compute the coordinates of the area centroid by dividing the first moments by the total area.

Sample Problem 5.1

Component	$A, \mathrm{~mm}^{2}$	$\bar{x}, \mathrm{~mm}$	$\bar{y}, \mathrm{~mm}$	$\bar{x} A, \mathrm{~mm}^{3}$	$\bar{y} A, \mathrm{~mm}^{3}$
Rectangle	$(120)(80)=9.6 \times 10^{3}$	60	40	$+576 \times 10^{3}$	$+384 \times 10^{3}$
Triangle	$\frac{1}{2}(120)(60)=3.6 \times 10^{3}$	40	-20	$+144 \times 10^{3}$	-72×10^{3}
Semicircle	$\frac{1}{2} \pi(60)^{2}=5.655 \times 10^{3}$	60	105.46	$+339.3 \times 10^{3}$	$+596.4 \times 10^{3}$
Circle	$-\pi(40)^{2}=-5.027 \times 10^{3}$	60	80	-301.6×10^{3}	-402.2×10^{3}
	$\Sigma A=13.828 \times 10^{3}$			$\Sigma \bar{x} A=+757.7 \times 10^{3}$	$\Sigma \bar{y} A=+506.2 \times 10^{3}$

- Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout.

$$
\begin{aligned}
& Q_{x}=+506.2 \times 10^{3} \mathrm{~mm}^{3} \\
& Q_{y}=+757.7 \times 10^{3} \mathrm{~mm}^{3}
\end{aligned}
$$

Sample Problem 5.1

- Compute the coordinates of the area centroid by dividing the first moments by the total area.

$$
\begin{array}{r}
\bar{X}=\frac{\sum \bar{x} A}{\sum A}=\frac{+757.7 \times 10^{3} \mathrm{~mm}^{3}}{13.828 \times 10^{3} \mathrm{~mm}^{2}} \\
\overline{\bar{X}=54.8 \mathrm{~mm}} \\
\bar{Y}=\frac{\sum \bar{y} A}{\sum A}=\frac{+506.2 \times 10^{3} \mathrm{~mm}^{3}}{13.828 \times 10^{3} \mathrm{~mm}^{2}}
\end{array}
$$

$$
\bar{Y}=36.6 \mathrm{~mm}
$$

Determination of Centroids by Integration

$\bar{x} A=\int x d A=\iint x d x d y=\int \bar{x}_{e l} d A$

- Double integration to find the first moment may be avoided by defining $d A$ as a thin rectangle or strip.

Sample Problem 5.4

Determine by direct integration the location of the centroid of a parabolic spandrel.

SOLUTION:

- Determine the constant k.
- Evaluate the total area.
- Using either vertical or horizontal strips, perform a single integration to find the first moments.
- Evaluate the centroid coordinates.

Sample Problem 5.4

SOLUTION:

- Determine the constant k .

$$
\begin{aligned}
& y=k x^{2} \\
& b=k a^{2} \Rightarrow k=\frac{b}{a^{2}}
\end{aligned}
$$

$$
y=\frac{b}{a^{2}} x^{2} \quad \text { or } \quad x=\frac{a}{b^{1 / 2}} y^{1 / 2}
$$

- Evaluate the total area.

$$
\begin{aligned}
A & =\int d A \\
& =\int y d x=\int_{0}^{a} \frac{b}{a^{2}} x^{2} d x=\left[\frac{b}{a^{2}} \frac{x^{3}}{3}\right]_{0}^{a} \\
& =\frac{a b}{3}
\end{aligned}
$$

Sample Problem 5.4

- Using vertical strips, perform a single integration to find the first moments.

$$
\begin{aligned}
Q_{y} & =\int \bar{x}_{e l} d A=\int x y d x=\int_{0}^{a} x\left(\frac{b}{a^{2}} x^{2}\right) d x \\
& =\left[\frac{b}{a^{2}} \frac{x^{4}}{4}\right]_{0}^{a}=\frac{a^{2} b}{4} \\
Q_{x} & =\int \bar{y}_{e l} d A=\int \frac{y}{2} y d x=\int_{0}^{a} \frac{1}{2}\left(\frac{b}{a^{2}} x^{2}\right)^{2} d x \\
& =\left[\frac{b^{2}}{2 a^{4}} \frac{x^{5}}{5}\right]_{0}^{a}=\frac{a b^{2}}{10}
\end{aligned}
$$

Sample Problem 5.4

- Or, using horizontal strips, perform a single integration to find the first moments.

$$
\begin{aligned}
Q_{y} & =\int \bar{x}_{e l} d A=\int \frac{a+x}{2}(a-x) d y=\int_{0}^{b} \frac{a^{2}-x^{2}}{2} d y \\
& =\frac{1}{2} \int_{0}^{b}\left(a^{2}-\frac{a^{2}}{b} y\right) d y=\frac{a^{2} b}{4} \\
Q_{x} & =\int \bar{y}_{e l} d A=\int y(a-x) d y=\int y\left(a-\frac{a}{b^{1 / 2}} y^{1 / 2}\right) d y \\
& =\int_{0}^{b}\left(a y-\frac{a}{b^{1 / 2}} y^{3 / 2}\right) d y=\frac{a b^{2}}{10}
\end{aligned}
$$

Sample Problem 5.4

- Evaluate the centroid coordinates.

$$
\begin{aligned}
\bar{x} A & =Q_{y} & \\
\bar{x} \frac{a b}{3} & =\frac{a^{2} b}{4} & \bar{x}=\frac{3}{4} a \\
\bar{y} A & =Q_{x} & \\
\bar{y} \frac{a b}{3} & =\frac{a b^{2}}{10} & \bar{y}=\frac{3}{10} b
\end{aligned}
$$

Distributed Loads on Beams

$W=\int_{0}^{L} w d x=\int d A=A$
$(O P) W=\int x d W$
$(O P) A=\int_{0}^{L} x d A=\bar{x} A$

- A distributed load is represented by plotting the load per unit length, $w(\mathrm{~N} / \mathrm{m})$. The total load is equal to the area under the load curve.
- A distributed load can be replace by a concentrated load with a magnitude equal to the area under the load curve and a line of action passing through the area centroid.

Sample Problem 5.9

$$
w_{B}=4500 \mathrm{~N} / \mathrm{m}
$$

A beam supports a distributed load as shown. Determine the equivalent concentrated load and the reactions at the supports.

SOLUTION:

- The magnitude of the concentrated load is equal to the total load or the area under the curve.
- The line of action of the concentrated load passes through the centroid of the area under the curve.
- Determine the support reactions by summing moments about the beam ends.

Sample Problem 5.9

$w_{B}=4500 \mathrm{~N} / \mathrm{m}$

SOLUTION:

- The magnitude of the concentrated load is equal to the total load or the area under the curve.

$$
F=18.0 \mathrm{kN}
$$

- The line of action of the concentrated load passes through the centroid of the area under the curve.

$$
\bar{X}=\frac{63 \mathrm{kN} \cdot \mathrm{~m}}{18 \mathrm{kN}}
$$

$$
\bar{X}=3.5 \mathrm{~m}
$$

Component	A, kN	$\bar{x}, \mathrm{~m}$	$\bar{x} A, \mathrm{kN} \cdot \mathrm{m}$
Triangle I	4.5	2	9
Triangle II	13.5	4	54
	$\Sigma A=18.0$		$\Sigma \bar{x} A=63$

Sample Problem 5.9

- Determine the support reactions by summing moments about the beam ends.

$$
\sum M_{A}=0: \quad B_{y}(6 \mathrm{~m})-(18 \mathrm{kN})(3.5 \mathrm{~m})=0
$$

$$
B_{y}=10.5 \mathrm{kN}
$$

$$
\sum M_{B}=0:-A_{y}(6 \mathrm{~m})+(18 \mathrm{kN})(6 \mathrm{~m}-3.5 \mathrm{~m})=0
$$

$$
A_{y}=7.5 \mathrm{kN}
$$

Center of Gravity of a 3D Body: Centroid of a Volume

- Center of gravity G

$$
-W \vec{j}=\sum(-\Delta W \vec{j})
$$

$\vec{r}_{G} \times(-W \bar{j})=\sum[\vec{r} \times(-\Delta W \bar{j})]$
$\vec{r}_{G} W \times(-\vec{j})=\left(\sum \vec{r} \Delta W\right) \times(-\vec{j})$
$W=\int d W \quad \vec{r}_{G} W=\int \vec{r} d W$

- Results are independent of body orientation,

$$
\bar{x} W=\int x d W \quad \bar{y} W=\int y d W \quad z W=\int z d W
$$

- For homogeneous bodies,

$$
\begin{aligned}
& W=\gamma V \text { and } d W=\gamma d V \\
& \bar{x} V=\int x d V \quad \bar{y} V=\int y d V \quad \bar{z} V=\int z d V
\end{aligned}
$$

Centroids of Common 3D Shapes

| Shape |
| :---: | :---: |
| Hemisphere |
| Semiellipsoid |
| of revolution |
| Paraboloid |
| of revolution |

Composite 3D Bodies

- Moment of the total weight concentrated at the center of gravity G is equal to the sum of the moments of the weights of the component parts.

$$
\bar{X} \sum W=\sum \bar{x} W \quad \bar{Y} \sum W=\sum \bar{y} W \quad \bar{Z} \sum W=\sum z W
$$

- For homogeneous bodies,

$$
\bar{X} \sum V=\sum \bar{x} V \quad \bar{Y} \sum V=\sum \bar{y} V \quad \bar{Z} \sum V=\sum \bar{z} V
$$

4.5 in.

2 in.

Sample Problem 5.12

Locate the center of gravity of the steel machine element. The diameter of each hole is 1 in .

SOLUTION:

- Form the machine element from a rectangular parallelepiped and a quarter cylinder and then subtracting two 1 -in. diameter cylinders.

Sample Problem 5.12

Sample Problem 5.12

	V, in 3	\bar{x}, in.	\bar{y}, in.	\bar{z}, in.	$\bar{x} V$, in 4	$\bar{y} V$, in 4	$\bar{z} V$, in 4
I	$(4.5)(2)(0.5)=4.5$	0.25	-1	2.25	1.125	-4.5	10.125
II	$\frac{1}{4} \pi(2)^{2}(0.5)=1.571$	1.3488	-0.8488	0.25	2.119	-1.333	0.393
III	$-\pi(0.5)^{2}(0.5)=-0.3927$	0.25	-1	3.5	-0.098	0.393	-1.374
IV	$-\pi(0.5)^{2}(0.5)=-0.3927$	0.25	-1	1.5	-0.098	0.393	-0.589
	$\Sigma \Sigma V=5.286$				$\Sigma \bar{x} V=3.048$	$\Sigma \bar{y} V=-5.047$	$\Sigma \bar{z} V=8.555$

$$
\stackrel{0.5}{\gtrless}
$$

$$
\begin{gathered}
\bar{X}=\sum \bar{X} V / \sum V=\left(3.08 \mathrm{in}^{4}\right) /\left(5.286 \mathrm{in}^{3}\right) \\
\bar{X}=0.577 \mathrm{in} . \\
\bar{Y}=\sum \bar{y} V / \sum V=\left(-5.047 \mathrm{in}^{4}\right) /\left(5.286 \mathrm{in}^{3}\right) \\
\bar{Y}=0.577 \mathrm{in} . \\
\bar{Z}=\sum \bar{z} V / \sum V=\left(1.618 \mathrm{in}^{4}\right) /\left(5.286 \mathrm{in}^{3}\right) \\
\bar{Z}=0.577 \mathrm{in} .
\end{gathered}
$$

