STATICS

Distributed Forces:
Centroids and Centers
of Gravity




Introduction

» The earth exerts a gravitational force on each of the particles
forming a body. These forces can be replace by a single
equivalent force equal to the weight of the body and applied
at the center of gravity for the body.

» The centroid of an area is analogous to the center of
gravity of a body. The concept of the first moment of an
area is used to locate the centroid.

« Determination of the area of a surface of revolution and
the volume of a body of revolution are accomplished
with the Theorems of Pappus-Guldinus.



Center of Gravity of a 2D Body

» Center of gravity of a plate » Center of gravity of a wire

SM,  XW =3 xAW
= [xdwW
>My YW =3 yAW
=[ydw



Centroids and First Moments of Areas and Lines

« Centroid of an area « Centroid of a line
XW = [ xdwW XW = [ xdW
X(7At) = [ x (t)dA X(yLa)=[x(ya)dL
XA=[xdA=Q, XL = [ xdL

= first moment with respect to y yL=[ydL
yA=[ydA=Qy

= first moment with respect to x



First Moments of Areas and Lines

« An area Is symmetric with respect to an axis BB’
If for every point P there exists a point P’ such
that PP’ is perpendicular to BB’ and is divided
Into two equal parts by BB’.

 The first moment of an area with respect to a
line of symmetry is zero.

o If an area possesses a line of symmetry, its
centroid lies on that axis

o If an area possesses two lines of symmetry, its
centroid lies at their intersection.

« An area Is symmetric with respect to a center O
If for every element dA at (x,y) there exists an
area dA’ of equal area at (-x,-Y).

» The centroid of the area coincides with the
center of symmetry.



Centroids of Common Shapes of Areas




Centroids of Common Shapes of Lines




Composite Plates and Areas

« Composite plates
XYW =>xW
YYW=>yW

e Composite area
XY A=> XA
YY A=> VA



Sample Problem 5.1

For the plane area shown, determine
the first moments with respect to the
x and y axes and the location of the
centroid.

SOLUTION:

* Divide the area into a triangle, rectangle,
and semicircle with a circular cutout.

e Calculate the first moments of each area
with respect to the axes.

* Find the total area and first moments of
the triangle, rectangle, and semicircle.
Subtract the area and first moment of the
circular cutout.

» Compute the coordinates of the area
centroid by dividing the first moments by
the total area.



Sample Problem 5.1

* Find the total area and first moments of the
triangle, rectangle, and semicircle. Subtract the
area and first moment of the circular cutout.

Q, = +506.2x10°mm’
Qy =+757.7x10°mm?




Sample Problem 5.1

» Compute the coordinates of the area
centroid by dividing the first moments by
the total area.

o« _ LXA_+757.7x10°mm’
> A 13.828x10°mm?

X =54.8 mm

¢ _ ZYA_+506.2x10°mm’
> A 13.828x10°mm?

Y =36.6 mm




Determination of Centroids by Integration

TA = jdi — ﬂxdxdy — erl dA  * Double integration to find the first moment

may be avoided by defining dA as a thin
yA=[ydA= [[ydxdy = | y dA rectangle or strip.

XA = [ Xg dA XA = [ Xg dA XA = [ Xg dA
=..x(ydx) :.'¥[(a—x)dx] :.'%cose(%rzdé?)
YA=_ Vel dA . )
Y (i YA =] Ve dA YA = [ Ve dA
= |- (yax = [y[(a—x)dx



Sample Problem 5.4

SOLUTION:

e Determine the constant k.

e Evaluate the total area.

 Using either vertical or horizontal
strips, perform a single integration to
find the first moments.
Determine by direct integration the
location of the centroid of a parabolic
spandrel.

» Evaluate the centroid coordinates.



Sample Problem 5.4

SOLUTION:

e Determine the constant k.
y =k X2

e Evaluate the total area.

A=[dA
a 374
= 'ydx=jbzx2dx={zx}
oad a 0

ab



Sample Problem 5.4

 Using vertical strips, perform a single integration
to find the first moments.

a
Qy = [ X dA = [ xydx = jx(%szdx
o \a



Sample Problem 5.4

 Or, using horizontal strips, perform a single
Integration to find the first moments.

b2 2
=jxe|dA:j?(a—x)dy=ja X

.2
10 2 a’ a’b
== 2 yidy=2"
2({("" by]y 4
=Jye|dA=Iy(a—X)dy=Jy(a—bwy”2j y

b 2
B a 32 _ab
=l ay——— dy = ——

j(y b]/Zy )y 10

dy



Sample Problem 5.4

» Evaluate the centroid coordinates.

XA=Q,

ab a’b 3
X3 = 1 X=—a
yA:Qx

yab_abz =3
3 10 10




Distributed Loads on Beams

L
W = [wdx =[dA=A
0

(OPW = [ xdW

L
(OP)A = [ xdA = xA
0

» Adistributed load is represented by plotting the load
per unit length, w (N/m) . The total load is equal to
the area under the load curve.

« A distributed load can be replace by a concentrated
load with a magnitude equal to the area under the

load curve and a line of action passing through the
area centroid.



Sample Problem 5.9

A beam supports a distributed load as
shown. Determine the equivalent
concentrated load and the reactions at
the supports.

SOLUTION:

» The magnitude of the concentrated load
IS equal to the total load or the area under
the curve.

* The line of action of the concentrated

load passes through the centroid of the
area under the curve.

» Determine the support reactions by

summing moments about the beam
ends.



Sample Problem 5.9

SOLUTION:

» The magnitude of the concentrated load is equal to
the total load or the area under the curve.

F =18.0kN

» The line of action of the concentrated load passes
through the centroid of the area under the curve.

s 63KN-m X =35m

18 kN




Sample Problem 5.9

« Determine the support reactions by summing
moments about the beam ends.

>Ma=0: By(6m)-(18kN)3.5m)=0

By =10.5kN

>Mg=0: —Ay(6m)+(18kN)6m-3.5m)=0

Ay =7.5kN




Center of Gravity of a 3D Body: Centroid of a Volume

» Center of gravity G » Results are independent of body orientation,

“Wi=3(-AW]) XW = [xdW yW =[ydW zW =[zdW
( WI) Z[ (_ AW I)] e For homogeneous bodies,
( I)= (3 FAW )x ( J) W =V and dW = ydV
W o W raw XV =[xdV yV=[ydV zV=[zdV
= W =



Centroids of Common 3D Shapes



Composite 3D Bodies

 Moment of the total weight concentrated at the
center of gravity G is equal to the sum of the
moments of the weights of the component parts.

XSW=YxW YSW=SyW ZSW=YzW

» For homogeneous bodies,

XSV=YxV YSV=SyW Z¥V=2zv



Sample Problem 5.12

SOLUTION:

e Form the machine element from a
rectangular parallelepiped and a
quarter cylinder and then subtracting
two 1-in. diameter cylinders.

Locate the center of gravity of the
steel machine element. The diameter
of each hole is 1 in.



Sample Problem 5.12




Sample Problem 5.12

X =Y xV/YV =(3.08in*)/(5.286in3)
X = 0.577in.

Y=Y yW/3V =(-5047in*)/(5.286in3)
Y =0577in.

Z=Y2v/3V =(1618in")/[5.286in3)
Z =0577in.
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