
STATICS

Distributed Forces:
Moments of Inertia



Introduction
• Previously considered distributed forces which were proportional to the 

area or volume over which they act.  
- The resultant was obtained by summing or integrating over the 

areas or volumes.
- The moment of the resultant about any axis was determined by 

computing the first moments of the areas or volumes about that 
axis.

• Will now consider forces which are proportional to the area or volume 
over which they act but also vary linearly with distance from a given axis.

- It will be shown that the magnitude of the resultant depends on the 
first moment of the force distribution with respect to the axis.

- The point of application of the resultant depends on the second 
moment of the distribution with respect to the axis.

• Current chapter will present methods for computing the moments and 
products of inertia for areas and masses.



Moment of Inertia of an Area
• Consider distributed forces whose magnitudes are 

proportional to the elemental areas on which they 
act and also vary linearly with the distance of 
from a given axis.
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• Example:  Consider a beam subjected to pure bending.  
Internal forces vary linearly with distance from the 
neutral axis which passes through the section centroid. 
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• Example:  Consider the net hydrostatic force on a 
submerged circular gate.
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Moment of Inertia of an Area by Integration
• Second moments or moments of inertia of 

an area with respect to the x and y axes,
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• Evaluation of the integrals is simplified by 
choosing dΑ to be a thin strip parallel to 
one of the coordinate axes.

• For a rectangular area,
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• The formula for rectangular areas may also 
be applied to strips parallel to the axes,
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Polar Moment of Inertia

• The polar moment of inertia is an important 
parameter in problems involving torsion of 
cylindrical shafts and rotations of slabs.
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• The polar moment of inertia is related to the 
rectangular moments of inertia,

( )
xy II

dAydAxdAyxdArJ
+=

+=+== ∫∫∫∫ 22222
0



Radius of Gyration of an Area
• Consider area A with moment of inertia 

Ix.  Imagine that the area is 
concentrated in a thin strip parallel to 
the x axis with equivalent Ix.

A
IkAkI x

xxx == 2

kx = radius of gyration with respect 
to the x axis

• Similarly,
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Sample Problem 9.1

Determine the moment of 
inertia of a triangle with respect 
to its base.

SOLUTION:

• A differential strip parallel to the x axis is chosen for 
dA.
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• For similar triangles,
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• Integrating dIx from y = 0 to y = h,
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Parallel Axis Theorem

• Consider moment of inertia I of an area A
with respect to the axis AA’
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• The axis BB’ passes through the area centroid 
and is called a centroidal axis.
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Parallel Axis Theorem
• Moment of inertia IT of a circular area with 

respect to a tangent to the circle,
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• Moment of inertia of a triangle with respect to a 
centroidal axis,
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Moments of Inertia of Composite Areas
• The moment of inertia of a composite area A about a given axis is 

obtained by adding the moments of inertia of  the component areas 
A1, A2, A3, ... , with respect to the same axis.



Moments of Inertia of Composite Areas



Sample Problem 9.4

The strength of a W14x38 rolled steel 
beam is increased by attaching a plate 
to its upper flange.  

Determine the moment of inertia and 
radius of gyration with respect to an 
axis which is parallel to the plate and 
passes through the centroid of the 
section.

SOLUTION:

• Determine location of the centroid of 
composite section with respect to a 
coordinate system with origin at the 
centroid of the beam section.

• Apply the parallel axis theorem to 
determine moments of inertia of beam 
section and plate with respect to 
composite section centroidal axis.

• Calculate the radius of gyration from the 
moment of inertia of the composite 
section.



Sample Problem 9.4
SOLUTION:

• Determine location of the centroid of composite section 
with respect to a coordinate system with origin at the 
centroid of the beam section.
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Sample Problem 9.4
• Apply the parallel axis theorem to determine moments of 

inertia of beam section and plate with respect to composite 
section centroidal axis.
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• Calculate the radius of gyration from the moment of inertia 
of the composite section.
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Sample Problem 9.5

Determine the moment of inertia 
of the shaded area with respect to 
the x axis.

SOLUTION:

• Compute the moments of inertia of the 
bounding rectangle and half-circle with 
respect to the x axis.

• The moment of inertia of the shaded area is 
obtained by subtracting the moment of 
inertia of the half-circle from the moment 
of inertia of the rectangle.



Sample Problem 9.5
SOLUTION:
• Compute the moments of inertia of the bounding 

rectangle and half-circle with respect to the x axis.

Rectangle:
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Sample Problem 9.5
• The moment of inertia of the shaded area is obtained by 

subtracting the moment of inertia of the half-circle from 
the moment of inertia of the rectangle.
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Product of Inertia
• Product of Inertia:
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• When the x axis, the y axis, or both are an 
axis of symmetry, the product of inertia is 
zero.

• Parallel axis theorem for products of inertia:
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Principal Axes and Principal Moments of Inertia

Given
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we wish to determine moments 
and product of inertia with 
respect to new axes x’ and y’.
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• The change of axes yields

• The equations for Ix’ and Ix’y’ are the 
parametric equations for a circle,
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Sample Problem 9.6

Determine the product of inertia of 
the right triangle (a) with respect 
to the x and y axes and 
(b) with respect to centroidal axes 
parallel to the x and y axes.

SOLUTION:

• Determine the product of inertia using 
direct integration with the parallel axis 
theorem on vertical differential area strips

• Apply the parallel axis theorem to 
evaluate the product of inertia with respect 
to the centroidal axes.



Sample Problem 9.6
SOLUTION:

• Determine the product of inertia using direct integration 
with the parallel axis theorem on vertical differential 
area strips
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Sample Problem 9.6
• Apply the parallel axis theorem to evaluate the 

product of inertia with respect to the centroidal axes.
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Sample Problem 9.7

For the section shown, the moments of 
inertia with respect to the x and y axes 
are Ix = 10.38 in4 and Iy = 6.97 in4.

Determine (a) the orientation of the 
principal axes of the section about O,
and (b) the values of the principal 
moments of inertia about O.

SOLUTION:

• Compute the product of inertia with 
respect to the xy axes by dividing the 
section into three rectangles and applying 
the parallel axis theorem to each.

• Determine the orientation of the 
principal axes (Eq. 9.25) and the 
principal moments of inertia (Eq. 9. 27). 



Sample Problem 9.7
SOLUTION:
• Compute the product of inertia with respect to the xy axes 

by dividing the section into three rectangles.
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Note that the product of inertia with respect to centroidal 
axes parallel to the xy axes is zero for each rectangle.
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Sample Problem 9.7
• Determine the orientation of the principal axes (Eq. 9.25) 

and the principal moments of inertia (Eq. 9. 27). 
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