Low voltage CMOS Schmitt trigger circuits

C. Zhang, A. Srivastava and P.K. Ajmera

Two new low voltage Schmitt trigger circuits are presented which use dynamic body-bias technique. The first circuit is designed for operation at 1 V. The second circuit, derived from the first circuit, is designed for operation at 0.4 V. Experimental results for the new Schmitt trigger circuits are presented.

Introduction: Schmitt trigger circuits are widely used for waveform shaping under noisy conditions in electronic circuits [1, 2]. In VLSI circuits, they are often used at the chip input side and as single-ended receivers in DRAMs [3, 4]. The hysteresis in a Schmitt trigger offers better noise margin and noise stable operation. With proliferation of portable devices, low power circuits are extremely desirable. In a recent work [5], a low power Schmitt trigger circuit design is reported for 3 V operation. The cascade architecture used in this design limits lowering the operating voltage. In this Letter, we report novel Schmitt trigger circuit designs in CMOS for operation at 1 V and below using a dynamic body-bias method [6].

Fig. 1 1 V CMOS Schmitt trigger circuit

CMOS Schmitt trigger circuit design and prototyping: Fig. 1 shows the proposed 1 V Schmitt trigger circuit. In this design, a dynamic body-bias is applied to a simple CMOS inverter circuit, whereby the threshold voltages of the two MOSFETs can be changed, thus changing the switching voltage. The operation of the circuit of Fig. 1 can be described as follows. First, the values of bias voltages $V_{bias,p}$ and $V_{bias,n}$ are, respectively, set externally to values $(-|V_{thp3}|+0.1)$ V and $(V_{thn3}-0.1)$ V. This ensures that the drain voltage magnitudes of the MOSFETs M_{p3} and M_{n3} (body voltage magnitudes of the MOSFETs M_{p1} and M_{n1}) will have a value of +0.1 V minimum, and -0.1 V maximum, respectively, when the transistor is conducting. This will limit forward body-bias in transistors M_{n1} and M_{p1} to 0.4 V. A forward bias greater than 0.4 V may trigger latch-up in a CMOS circuit [7]. When a low value signal is applied to V_{in} , V_{out2} goes low. V_{out2} provides zero forward body-bias to the transistors of M_{n1} through M_{n3} operating in linear region and a forward bias of 0.4 V to M_{p1} through M_{p3} operating in saturation region. The substrate of transistor M_{n1} is biased at -0.5 V and its threshold voltage now corresponds to the value at zero substrate bias, $V_{tho,n1}$, while the substrate of transistor M_{p1} is biased at +0.1 V with its threshold voltage corresponding to +0.4 V forward-bias value, $V_{th,p1}$.

Transistor M_{p1} remains on and M_{n1} remains off until V_{in} increases to a certain voltage V_{h1} , at which output, V_{out1} switches from a high to a low value and V_{out2} switches from a low to a high value. Since M_{n1} substrate is zero body-bias, its threshold voltage $V_{tho,n1}$ is higher than the value for forward body-bias. Hence, a higher voltage is needed to turn M_{n1} on. For a ramp input, this results in a time delay t_1 , as V_{out1} goes to a low value and V_{out2} goes to a high value of V_{DD} . This provides a 0.4 V forward body bias to M_{n1} through the transistor M_{n3} operating in saturation at the end of the switching transient period. A zero bodybias is now provided to M_{p1} through the transistor M_{p3} operating in the linear region at the end of the switching transient. Transistor M_{p1} is now off and M_{n1} remains on until V_{in} decreases to a certain voltage V_{1h} , at which output, V_{out1} switches from low to high and V_{out2} switches from high to low. Since M_{n1} has forward substrate body-bias, a lower voltage is now needed to turn it off. This results in a time delay t_2 for a ramp input. The different switching voltage or switching time causes the hystersis. V_{out1} is buffered by an M_{p2} - M_{n2} inverter, which provides high fan-out capability. Thus, output is taken at the V_{out2} terminal.

Fig. 2 0.4 V CMOS Schmitt trigger circuit derived from Fig. 1

Fig. 3 Measured hysterisis characteristics of 1 V CMOS Schmitt trigger circuit (Fig. 1), and measured input–output waveform characteristics a Measured hysterisis characteristics (V_{out2} against V_{in}) of 1 V CMOS Schmitt trigger circuit in Fig. 1

b Measured input-output ($V_{in}-V_{out2}$) waveform characteristics x-axis = 0.2 V/div., y-axis = 0.2 V/div., $V_{in} = -0.5$ to +0.5 V

The switching voltage V_{hl} can be calculated using the following equations:

$$\frac{\beta_n}{2}(V_{hl} - V_{tho,n})^2 = \frac{\beta_p}{2}(V_{DD} - V_{hl} - |V_{th,p}|)^2 \tag{1}$$

and,

$$V_{hl} = \frac{V_{DD} - |V_{th,p}| + R \times V_{tho,n}}{R+1}$$
(2)

where, $\sqrt{(\beta_n/\beta_p)} = R$, β_n and β_p are transconductance parameters of *n*- and *p*-MOSFETs, respectively. $V_{tho,n}$ is the zero substrate body-bias

ELECTRONICS LETTERS 27th November 2003 Vol. 39 No. 24

threshold voltage of the *n*-MOSFET, $V_{th,p}$ is forward substrate bodybias threshold voltage of the *p*-MOSFET, V_{DD} is the supply voltage.

A similar analysis can be used to calculate V_{lh} :

$$V_{lh} = \frac{V_{DD} + R \times V_{th,n} - |V_{tho,p}|}{R+1}$$
(3)

where, $V_{th,n}$ is the forward substrate body-bias threshold voltage of the *n*-MOSFET, $|V_{tho,p}|$ is the zero substrate body bias threshold voltage of the *p*-MOSFET. Hysteresis width V_{hw} is calculated as follows:

$$V_{hw} = V_{hl} - V_{lh} = \frac{(|V_{tho,p}| - |V_{th,p}|) + R \times (V_{tho,n} - V_{th,n})}{R+1}$$
(4)

Fig. 2 shows a CMOS Schmitt trigger circuit design for operation at an extreme low voltage value of 0.4 V. The configuration of Fig. 2 does not allow the forward body-bias to exceed 0.4 V. Thus, the transistors M_{p3} and M_{n3} shown in the circuit of Fig. 1 are not required in the circuit of Fig. 2. The configuration of M_{p2} and M_{n2} is called dynamic threshold MOS (DTMOS) [6] inverter that ensures the inverter operation at ultralow voltage of 0.4 V.

Fig. 4 Measured hysterisis characteristics of 0.4 V CMOS Schmitt trigger circuit (Fig. 2), and measured input–output waveform characteristics a Measured hysterisis characteristic of 0.4 V CMOS Schmitt trigger circuit in Fig. 2

b Measured input–output ($V_{in}-V_{out2}$) waveform characteristics x-axis = 0.1 V/div., y-axis = 0.1 V/div., $V_{in} = -0.2$ to +0.2 V

Figs. 3*a* and *b* show the measured hysterisis and input–output characteristics of a CMOS Schmitt trigger implemented in standard 1.5 μ m CMOS process corresponding to the circuit of Fig. 1. Figs. 4*a* and *b* show similar characteristics for the circuit of Fig. 2. The measured hysterisis width, V_{hw} , is close 0.15 V and agrees with the corresponding calculated value of 0.15 V from (4), for 0.4 V forward body-bias and R = 1.

Conclusion: CMOS Schmitt trigger circuits have been implemented in standard 1.5 μ m CMOS process for operation at 1 and 0.4 V using the dynamic threshold technique. This method exploits lowering of the threshold voltage of a MOSFET under forward substrate body-bias. Measured hysterisis widths agree closely with the corresponding calculated value of 0.15 V. The proposed CMOS Schmitt trigger circuit is extremely useful in low-ultra-low voltage circuit applications.

Acknowledgment: The authors acknowledge partial support of this work through NSF EPSCoR grant 0092001.

© IEE 2003 2 October 2003 Electronics Letters Online No: 20031131 DOI: 10.1049/el:20031131

C. Zhang, A. Srivastava and P.K. Ajmera (Electronic Materials and Device Laboratory, Integrated Microsystems Group, Department of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA)

References

- MILLMAN, J., and GRABEL, A.: 'Microelectronics' (McGraw-Hill, 1987), pp. 679–683
- 2 SRIVASTAVA, A.: 'Performance characteristics of CMOS Schmitt trigger at liquid nitrogen temperature', *Cryogenics*, 1992, **32**, (7), pp. 671–674
- 3 GLASSER, L.A., and DOBBERPUHL, D.W.: 'The design and analysis of VLSI circuits' (Addison-Wesley, 1985), pp. 281–283
- 4 WANG, N.: 'Digital MOS integrated circuits' (Prentice Hall, 1989), pp. 149–155
- 5 AL-SARAWI, S.F.: 'Low power Schmitt trigger circuit', *Electron. Lett.*, 2002, **38**, (18), pp. 1009–1010
- 6 ASSADERAGHI, F., et al.: 'A dynamic threshold voltage MOSFET (DTMOS) for ultra-low voltage operation', *IEDM Tech. Dig.*, 1994, p. 809
- 7 SRIVASTAVA, A., and GOVINDARAJAN, D.: 'A fast ALU design in CMOS for low voltage operation', J. VLSI Design, 2002, 14, (4), pp. 315–327