Coastal and Ocean Wave Hydrodynamics K.N.T. University of Technology Assignment 1

1-1.

Using the vector analysis show $rot(grad \phi) = 0$ $div(rot \vec{u}) = 0$

1-2.

Water flows down along a slope as shown in figure below. The flow is laminar and steady.

- (1) Show momentum conservation equation neglecting unnecessary terms from Navier-Stokes Equation.
- (2) Show boundary conditions.
- (3) Use above equations and get results for velocity distribution (u) in y direction.

1-3. Consider the following transition section:

- (a) The flow from *left* to *right* is constant at $Q = 12\pi$ m³/s. What is the total acceleration of a water particle in the x direction at x = 5 m? Assume that the water is incompressible and that the x component of velocity is uniform across each cross section.
- (b) The flow of water from right to left is given by

$$Q = \pi t^2$$

Calculate the total acceleration at x = 5 m for t = 2.0 s. Make the same assumptions as in part (a).

1-4.

The water (assumed inviscid) in the U-tube is displaced from its equilibrium position and released to oscillate about this position with its natural period.

- (a) Assuming that the total length of water column is L, what is the natural period of oscillation (T)?
- (b) If the amplitude A is 10 cm and the natural period T is 8

s, i.e.
$$\eta(t) = 10\cos(\frac{2\pi}{8}t)$$
, what will be the pressure at a

distance 20 cm below the instantaneous water surface for η = +10 cm, and -10 cm? Assume that g = 980 cm/s² and $\rho = 1$ g/cm³.

