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Abstract—Modeling wind speed time series (WSTS) is an essen-
tial part of network planning studies in order to generate syn-
thetic wind power time series (WPTS). Hence, this paper proposes
a methodology to equip planners with accurate simulation of wind
speed and power variations as well as complete temporal depen-
dence structure based on the copula theory. Unlike traditional au-
toregressive and Markov chain methods, the suggested technique
is well-prepared to deal with “nonlinear long-memory temporal
dependence” and “non-Gaussian empirical probability distribu-
tions” of the WSTS. Meanwhile, the proposed statistical modeling
framework is compatible with the scenario-based analysis of ac-
tive networks as well. Furthermore, a case study for optimal sizing
of an autonomous wind/photovoltaic/battery system is presented.
The purpose of the presented study is to fully examine the accuracy
and effectiveness of the copula-based model of wind generation for
planning nonmemoryless power systems. Among a list of commer-
cially available system devices, the optimal number and type of
units are calculated ensuring both a minimum 20-year round total
system cost and a perfect reliability. The genetic algorithm is used
in four wind generation scenarios consisting of real and simulated
WPTS. Then, considering the corresponding optimal solutions, the
autoregressive moving average (ARMA), nonparametric Markov
and proposed copula-based simulations are compared against real
data.

Index Terms—Copula, temporal dependence, time series, wind
power.

I. INTRODUCTION

T HE intermittency of wind generation seldom creates prob-
lems when used to supply up to 20% of total electricity

demand, but as the proportion increases, problems arise such
as a need to use storage or a lowered ability to replace con-
ventional generation. Given the significant growth and penetra-
tion of wind energy and other forms of stochastic generation,
more active network strategies will have to be tailored to meet
the needs of aggregated system balancing. Power networks will
need to be designed specifically to deal with such high wind
penetrations both to manage the frequency deviation and mini-
mize curtailment of wind [1]–[5].
Before wind generation can be integrated into a power

network, it is necessary to obtain good estimates of its potential
contribution to that network. Hence, capturing the variability of
the wind power time series (WPTS) would be required for the
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assumed geographic diversity [5]–[12]. Then, the wind varia-
tion in combination with load variations should be examined
coupled with actual historic data and simulations [13]–[16].
These two procedures are to be used in planning simulations
and modeling system characteristics and response. Because
the length of historical data records are limited (obtained from
the site under study), a conventional approach to long-term
planning of combined wind and storage systems is to use
parameterized time-series models [15], [12]. Subsequently, the
models are simulated to produce alternative versions of the time
series, representing what might happen over any arbitrary time
periods in the future. This potentially provides many years of
synthetic wind data that presumably resemble what a long-term
dataset would look like. This is different from the forecasting
process that describes the likely outcomes of the time series in
the immediate future by performing on knowledge of the most
recent outcomes.

A. Wind Modeling and Simulation

There are various techniques for modeling either distribu-
tional or temporal variations of the wind speed time series
(WSTS) as well as the WPTS. Among them, Markov chain
[9]–[12] and autoregressive moving average (ARMA) models
and their generalizations [5]–[8] are recognized for modeling
temporal dependence structure of wind speed; whereas, some
multivariate probability distribution functions have been used
for modeling spatial distributional dependence of wind speed
variations [14], [16].
The WPTS usually obtained from modeling the recorded

WSTS by using a turbine power curve. Some literature, how-
ever, recommend modeling the WPTS either directly from field
records [8] or indirectly from converted WSTS measurements
[12]. The first approach, i.e., transforming the modeled WSTS
to WPTS by applying a suitable wind turbine power curve, is
preferred by most of the literature mainly because wind speed
data are usually easier to get for any given region [5].
The approach proposed here focuses on developing a statis-

tical model of univariate WSTS, and then performing a wind-
speed-to-power conversion. The proposal is intended to appro-
priately model the complete profiles of temporal wind power
variations including seasonal, diurnal, nonstationary, and long-
term fluctuations.

B. Motivation: Long-Memory Dependence and Nonlinear
Transformation of Wind Power

Simulation of time series is the generation of synthetic time
series with the same persistence properties (or temporal de-
pendence) as the observed series. The term temporal depen-
dence refers to the nonlinear dependence among WSTS values
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at different time periods, i.e., the data cannot be assumed to
be independent and identically distributed (i.i.d.). Both strong
time-dependent behavior and instantaneous power balance of
active power systems generations losses demands neces-
sitates having an accurate model of temporal dependence for the
WSTS; this will further make it possible to plan a higher wind
penetration. Hence, a good practical wind time series model
should take into account the following features.
1) A wind model should be valid statistically. Incorrect
assumptions such as simple random sampling, linearity,
or normality and even more complex fully parametric
assumptions are among various causes for concern.

2) Wind time series exhibit strong signs of long-term or
long-memory dependence. For long-memory processes,
the variances of the sample mean and autocorrelations are
not of asymptotic order (which is the usual rate for
short-memory processes).

3) Wind time series exhibit seasonal variations. It should be
noted that the seasonal variation is different from both the
long-memory and nonstationary characteristics. Capturing
nonstationary behavior should also be an objective.

4) Model of the WSTS dependence structure, which is non-
linear itself, should be robust against the nonlinear trans-
formation to the WPTS output by applying a wind tur-
bine power curve. In other words, the WSTS dependence
structure should be transformed to a correct WPTS depen-
dence structure. Nonetheless, the linear dependence mea-
sures neither completely characterize nor robustly preserve
the variation patterns of the WSTS especially over long-
term.

These mentioned features have to be taken into account in
order to avoid disastrous effects on statistical inference in wind
power integration planning. Available models for the WSTS (to
date) ignore some of these features while retaining practical ap-
plicability. The main shortcomings are as follows:
• The ARMA model and its generalizations consider a few
basic assumptions, assigning a linear temporal dependence
and identically distributed random variables.

• The ARMA models do not necessarily retain the proba-
bility distribution of the original data. The majority of the
existing literature assumes the i.i.d. data which is unreal-
istic.

• The real wind inherently is correlated over a longer period
of time, needs long-memory modeling in a practical imple-
mentation [17]–[20]. Hence, for example, even well-fitted
conventional Markov models, in particular under a short
time-step, underestimate the amount of energy storage nec-
essary [21].

• The seasonal variations should be removed by a filter
for successful application of existing approaches; also,
transforming to normality is sometimes necessary. How-
ever, common filtering techniques or transforming to
Gaussian distributions usually lead to rejection of the i.i.d.
hypothesis due to model misidentification. The immediate
problem arising from the empirical observations is how
to deal with seasonal variations of the data with respect
to the observed volatile structure [5], [6]. However, the
study by [22] indicates that removing seasonal patterns,

by any means, has a strong impact on the analysis of dis-
tributional dependence and on the interpretational power
of common dependence measures. This is the case even if
the autocorrelation functions (ACFs) of the residual time
series are approximated to a white noise [5].

• Transforming modeled WSTS through a wind turbine
power curve (a nonlinear transformation) would destroy
the original dependence structure. This appears as an
example in the WPTS if ARMA or conventional Markov
models are used.

Some papers propose using the fractional ARMA approach
(e.g., [17] for a comprehensive WSTS modeling) to deal with
the long-memory effects and using some transforms to remove
seasonal variations; however, the above-mentioned issues re-
main because of the inherent characteristics of the ARMA or
conventional Markov models.
This paper investigates the temporal dependence measures

with respect to various models, utilizing a real recorded data set.
The main focus, however, will be on a copula-based method to
retain the real temporal and distributional characteristics of the
WSTS with regard to the above-mentioned issues. A detailed
examination of a micro-grid shows that unlike the copula-based
method, the available methods inherit the danger of wrong con-
clusions from inappropriate dependence measures. Then, var-
ious models are analytically compared in terms of the stated
dependence and distributional structure. The well-known non-
parametric Kruskal–Wallis test (KWt) was also carried out to
examine various models and verify the proposed method. The
ACF of the WSTS based on scale-invariant (copula-based) de-
pendence measures is used to provide new insights into the in-
terplay between distributional and temporal dependence of the
WSTS as well as the WPTS. This could be made possible be-
cause each multivariate distribution function can be split up into
its univariate marginal distribution functions and a copula func-
tion. In other words, copulas enable us to study the distributional
and temporal dependence structure of random vectors irrespec-
tive of their marginal distributions.

II. CONCEPTUAL MODELING OF WIND CHARACTERISTICS

A. Wind Speed Multivariate Temporal Structure

The WSTS, like other stochastic processes, could be gener-
ally treated as a family of random variables defined on a given
probability space. It is indexed by the time variable , where
varies over an index set . An illustration of this definition is
presented in Fig. 1(a), assuming an hourly time index over a
24-h period. Random variables could be completely different at
various times.
Although the random values of a stochastic process may

be independent random variables at different times, in most
commonly considered situations they exhibit complicated sta-
tistical dependences. Such a dependence structure is illustrated
in Fig. 1(b) for the observed hourly wind speed data over one
year. In planning context, it should be useful to simulate the
wind speed resembling these general characteristics. Indeed,
this is a standard format to express any other stochastic process
as well.
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Fig. 1. (a) Hourly empirical probability distributions of wind speed values
based on the recorded data of Manjil site over one year. (b) Temporal corre-
lation structure of a typical WSTS with h.

B. Modeling Methodology

Copulas provide a way to create distributions that model cor-
related multivariate data, in particular, when there are various
general types of dependence structures, effectively more than
three correlated variables, or variables with different or empir-
ical distribution functions [23]. Copula methods are popular in
many different areas where many different correlated factors
must be modeled jointly. The application of copulas in power
system problems is relatively new [24]–[30]. Copulas often help
to perform large-scale multivariate simulations of random vec-
tors that would be difficult to perform using other multivariate
fitting and simulation methods.
The multivariate temporal structure of Fig. 1(a) demonstrates

typical empirical distributions of wind speed in order to be cor-
related using a copula. In other words, the main goal is to rep-
resent the stochastic process of Fig. 1(a), a 24-variate proba-
bility distribution with 24 empirical marginal distributions, in
a way to get a dependence structure like that of Fig. 1(b). This
can be generalized by varying the time resolution, in general, an
-variate copula over an index set . For example, considering

min (time resolution) over h results in .
It is shown in [23] that the copula function is uniquely de-

termined by the multivariate cumulative distribution function
(cdf) and marginal cdf if all are con-
tinuous (Sklar’s Theorem) as follows:

(1)

Let and be the corresponding joint density
and marginal densities, respectively. Then, copula density is
defined by

(2)

Consequently, can be expressed by

(3)

Different families of copulas present various dependence
details. Elliptical copulas (the Gaussian and copulas) can
easily be generalized to higher dimensions, allowing any mar-
ginal distributions and any positive definite dependence matrix.
Archimedean copulas provide the capacity to represent more
complicated dependence structures [14]. However, this letter

uses the Gaussian copula since it performs suitably in modeling
wind speed and can be easily put in practice. Nonetheless, any
other type of copula can be applied in the proposed algorithm
given that the following conditions are considered:
• The copula should be able to represent/model the nega-
tive correlation as well as the positive correlation. For ex-
ample, some of Archimedean copulas such as Gumbel or
Clayton represent data only in terms of positive correla-
tion; whereas, the Frank copula which is an Archimedean
copula as well, models the whole range of correlation [14].

• Since the number of variates in the proposed method
is higher than 3, sample generation and manipulation
algorithms depending on the type of the chosen copula
may need complicated procedures [14]. In this regard,
Gaussian and copulas provide simple and practically
attractive computer codes [31]. It is more convenient to
implement Archimedean copulas in higher dimensions by
commercially available software packages [32].

The correlation matrix is constructed by the Spearman rank
correlation that is more appropriate to fulfill the desirable char-
acteristics of a measure of dependence [3]. Furthermore, esti-
mated empirical cdf with kernel smoothing have been used for
. Fig. 2 illustrates the full procedure by a pictorial flowchart.
The fitting procedure (step 3 of Fig. 2) is detailed by the fol-

lowing procedure as a practical way to generate sample data
using Gaussian copula:
1) Fit marginal distributions to the columns of the modeling
matrix built in step 2 in Fig. 2.

2) Use empirical cdf functions to transform to , so that
has values between 0 and 1.

3) Calculate an estimation of the dependence parameter of the
copula considering data in . Note that the marginal dis-
tributions are all inverse cdf’s fitted in steps 1 and 2 above,
hence, the dependence parameter of the copula is the main
estimation to be made at this stage. The maximum likeli-
hood method is applied to obtain the copula parameters es-
timates. This may be referred to as the pair-wise correlation
matching problem that computes the most fitting positive
semidefinite matrix of the dependence parameter simply by
applying the maximum likelihood method [33].

4) Generate new data from the copula by traditional sam-
pling.

5) Use appropriate inverse cdf functions to transform
to .

In brief, the proposed method simulates wind speed using a
Gaussian copula as follows:
1) Choose the time resolution that gives the total number of
sample points , modeling index set or basicmodeling time
, and total modeling time .

2) Divide the whole data into subsets and prepare
empirical cdf from the history of wind speed data.

3) Calculate rank correlation matrix.
4) Fit the copula to the -variate data.
5) Simulate using the fitted copula and marginal cdf.

III. VERIFICATION OF THE SUGGESTED MODEL

The suggested approach is applied to the wind speed data
gathered from Manjil Wind Park in northern Iran (2007–2008).
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Fig. 2. Schematic representation of the proposed copula-based wind modeling.

The simulation was carried out under a 10-min time resolu-
tion, i.e., , , , h,
and year. Thus, Fig. 3(a)–(e) presents the dependence
structure of the simulated wind speed. Interestingly, while the
ARMA model assumes an overestimated linear correlation, the
proposed method captures complete temporal structure of wind
speed. On the other hand, the Markov model does not replicate
the correct dependence in corners, i.e., an important time evo-
lution characteristic. It should be mentioned that the application
of the employed ARMA model includes determining the model
order, seasonal correction, and verification tests. For instance,
Fig. 4 shows that the residuals of the simulation from the em-
ployed ARMAmodel approximate to white noise; therefore, the
model can be accepted as satisfactory.
Fig. 3(f)–(j) (the box and whisker plots) compares actual data

with simulations performed by the proposed method, ARMA,
Markov chain, and marginal-only simulations (steps 1 and 2 of
the proposed method only). A box and whisker plot is a way
of graphically comparing distributions between several sets of
data through their five-number summaries. On each box, the
central mark is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted indi-
vidually by a plus sign. Fig. 3(f)–(j) shows that the distributions
of the WSTS at any time are closest to the simulated WSTS by
the proposed method. Hence, these graphs demonstrate that the
proposed method, unlike the ARMA and Markov chain, retains
the probability distribution of the original data.

Fig. 3. Temporal correlation structure (left column) and “box and whisker”
plots (right column) of wind speed based on (a) and (f) exact data, (b) and
(g) the proposed method, (c) and (h) ARMA(4,3), (d) and (i) marginal distri-
butions apart from correlations, and (e) and (j) nonparametric Markov chain
with 21 states.

Fig. 4. ACF of residuals of the employed ARMA for Manjil area, showing
adequate ARMA model estimation.

Fig. 5 shows the dependence structure of the WPTS corre-
sponding to the data in Fig. 3. Wind speed measurements and
simulations are converted to power generation using a curve de-
veloped for a generic turbine by the National Renewable Energy
Laboratory [34]. It is obvious that converting simulated wind
speed to wind power using the nonlinear power curve of the
turbine would destroy the original dependence structure when
linear correlation measures are implicitly or explicitly used in
the model. This is the case when using the ARMA and conven-
tional Markov models. However, the proposed model employs
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Fig. 5. Temporal correlation structure of converted wind generation based on
(a) exact data, (b) the proposed method, (c) nonparametric Markov chain with
21 states, and (d) ARMA(4,3). (a) Real. (b) Copula. (c) NPMarkov. (d) ARMA.

the Spearman rank correlation as stated in Section II; therefore,
it measures the correlation only in terms of ranks. As a conse-
quence, the rank correlation is preserved under any monotonic
linear or nonlinear transformation. In particular, the transforma-
tion by the power curve preserves the rank correlation. There-
fore, modeling the rank correlation structure of the WSTS ex-
actly determines the rank correlation of the final transformed
WPTS. While the linear correlation coefficient is needed to pa-
rameterize the underlying process, the Spearman correlation is
more useful in describing the dependence between random vari-
ables, because it is invariant to the choice of marginal distribu-
tions.
An effect of transforming the real temporal dependence

through the turbines power curve is shown in Fig. 6, where the
simulated WPTS and WSTS are plotted against real recordings
for the three models. The perfect modeling would fit the straight
line.
Moreover, Fig. 7 performs a similar comparison in terms

of the autocorrelation function (ACF). Fig. 7(a) shows the
ACF over the basic modeling time span whereas Fig. 7(b)
compares the ACF over a one-year extension of the simulated
data. If a more appropriate selection of , , and was
performed for the available data in advance, then the accuracy
of the proposed method would be even better. Thus, Fig. 7(b)
illustrates significant potential of the proposed method in mod-
eling long-memory dependence as well as periodic variations
of wind speed dependence structure. The latter represents a
cyclic variation known as seasonality, periodic variation, or
periodic fluctuations. This variation can be either regular or
semi-regular with a period of less than one year that should
be measured apart from the deterministic trend (e.g., diurnal
variations would be categorized as seasonal but exponential
growth would not). If the exact period is known, seasonal sub-
series plots are a tool for detecting seasonality in a time series,
whereas, if the period is not known, an autocorrelation plot or
spectral plot can be used to determine it [35]. The WSTS sea-
sonal patterns are not exactly identifiable a priori [36]; hence,
we have used autocorrelation plots to demonstrate capability

Fig. 6. Simulated WPTS and WSTS against real recordings for the three
models. The dashed lines are the estimate.

Fig. 7. (a) ACF with , (b) over one year with .

of the proposed model for representing seasonal variations.
The autocorrelation plot should show peaks at lags equal to
the period of the seasonal trends. For example, since there is
a diurnal seasonality effect on the WSTS, it is expected to see
significant peaks at lags 144, 288, 432, and so on according to
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Fig. 8. ACF of simulated and recordedWSTS in the logarithmic scale showing
the long-term dependence of wind.

a 10-min data resolution. Fig. 7(b) confirms this, although the
amplitude of peaks decreases over time. Fig. 7(b) also shows
patterns of monthly seasonality as the peak at lag 4320 (i.e.,
144 30) is slightly higher than the preceding quarterly peak
at lag 3744.
The presence of long memory in the WSTS can be seen in

Fig. 8. Temporal dependence and autocorrelations decay pro-
portional to ( and is the lag). In other words,
the temporal dependence structure considering sum of all corre-
lations with lags

must be proportional to , i.e.,

(4)

where implies

(5)

Thus, slow decay rate of the correlations tends the summation
in (5) to infinity. More specifically, (4) is correct if

(6)

where tends to infinity and is a finite positive constant.
The intuitive interpretation of (6) is that the process has long
memory. In other words, the dependence between events that
are far apart in time diminishes very slowly with increasing dis-
tance. This is in contrast to the processes with summable cor-
relations which are also called processes with short memory or
weak temporal dependence. For example, the asymptotic decay
of the correlations for ARMA and Markov processes is expo-
nential in the sense that there is an upper bound

(7)

Fig. 9. KWt results for all discussed models.

TABLE I
MSE BASED ON THE SAMPLE MEAN

where are constants. Because the
absolute value of is less than 1, (5) does not hold and

(8)

Fig. 8 indicates that the slope of the fitted least squares line
is equal to 0.43, far from 1 as a theoretical summable cor-
relation. This plot of the autocorrelations in log-log coordinates
suggests a slow decay of long-lasting temporal dependences.
This is typically the case for processes with nonsummable cor-
relations [37]. The complicated dependence structure as well
as the slope of the fitted line is completely modeled by using
the copula model; however, other models could not capture the
exact dependence structure.
On the other hand, in order to evaluate the hypothesis that the

observed and simulated samples are drawn from the same dis-
tribution, the Kruskal–Wallis test (KWt) provides an effective
verification. Fig. 9 shows the -values resulting from KWt, in-
dicating that the ARMA and nonparametricMarkov simulations
of temporal pdf is rejected at 95% confidence level in view of
null hypothesis (all samples are simulated with the same distri-
bution). Meanwhile, the proposed modeling is strongly verified
at all time instants by the KWt in Fig. 9. It should be mentioned
that if the -values, i.e., the -axis of Fig. 9, is near zero, this
casts doubt on the null hypothesis, suggesting that at least one
sample median is significantly different from the others. The
choice of a critical -value to determine whether the result is
judged statistically significant or strongly verified is often 0.05
or 0.01. When the -value is less than this significance level, the
test rejects the null hypothesis. The proposedmethodwould also
be verified by choosing a higher significance level of 0.15 that
could be deemed an extraordinary verification within the most
extreme 15% of all possible results under the null hypothesis.
Finally, the mean squared error (MSE) has been calculated

based on the sample mean for the three models in comparison
with the real recorded WSTS. The obtained results are included
in Table I. It should be emphasized that modeling time series
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then simulating the model to produce alternative versions of the
time series, is different from the forecasting process. The latter
describes the likely outcomes of the time series in the immediate
future by performing on knowledge of the most recent outcomes
point-by-point. Hence, calculating the MSE would be helpful as
long as we use the “sample mean” of the simulated WSTS. The
sample mean or empirical mean is a statistic computed from a
collection of data on one or more random variables. The sample
mean is a vector defined as follows [38]. Let be the th
independently drawn observation on the th
random variable . These observations can be
arranged into column vectors, each with entries, with the
th observation denoted . This assumption is in accordance
with the proposed algorithm as and . The
sample mean vector is a column vector whose th element
is the average value of the observations of the th variable

(9)

IV. ASSESSING VALIDITY OF THE MODEL: STUDYING OPTIMAL
SIZING OF A MICROGRID

A considerable share of renewable distributed generation in-
creases the uncertainty in sizing, planning, and operation of both
microgrids and standalone power systems. These uncertainties
affect both long-term and medium-term system planning as well
as the day-ahead operation. This explains the growing impor-
tance of probabilistic tools in such applications. Considering the
uncertainty in planning studies makes the whole system less ex-
pensive and more secure.
Generally speaking, many factors can introduce uncertain-

ties for sizing microgrids. Examples are the nominal produc-
tion, cost of energy, cost of gas or fuel, environmental con-
straints, stochastic generation, and load growth. In this section,
it has been assumed that the power production of wind turbines
(WTs) is the main cause of uncertainty. The other factors (cost
of energy, cost of gas or fuel, and so on) are assumed to be de-
terministic. This assumption allows us to effectively compare
the proposed modeling of WSTS with those of the ARMA and
Markov models. The remote microgrid under study, as shown
in Fig. 10, has several battery units to meet the required level
of storage. The optimal energy storage sizing is a main deter-
minant of a successful operation and the optimal cost as well.
The storage sizing problem has been frequently addressed in the
literature for remote areas [4], [39]–[41], using a variety of opti-
mization techniques. In this paper, the optimal sizing of a hybrid
standalone system is investigated with a genetic algorithm. The
methodology is generally based on [41], in which the microgrid
consists of some wind turbines (WTs) and photovoltaic (PV)
units along with some battery storages.
It is assumed that both WT and PV units are connected to a

common dc distribution network. The battery banks are to be
charged from the respective PV and WT input power sources,
which are usually configured in multiple power generation
blocks. An inverter is used to interface the dc battery voltage to
the consumer load ac requirements. The outputs of all battery
chargers, the battery banks, and the inverter input terminals are

Fig. 10. Concept of the case study.

connected in parallel according to Fig. 10. The energy produced
from each PV or WT source is transferred to the consumer load
through the battery charger and the dc/ac inverter, while the
energy surplus is used to charge the battery banks. This forms
a kind of dc distribution network for integrating various gen-
erators, storage systems, and dc loads in a local dc distribution
network that is interfaced with public grid by means of one or
more inverters. This solution makes the islanding operation
easy for the generators.
The sizing of the components can be seen as a multiobjective

cost optimization problem which takes place over three main
stages with the following information:
1) Input data: specifications of battery, PV modules, WTs,
chargers, and inverters as well as wind speed, solar radi-
ation, electrical load, and temperature time series.

2) System modeling and operation: wind turbine power curve
that gives WPTS, modeling PV modules by considering
maximum power point tracking (MPPT) and temperature
that gives the PV output, and a model of battery bank op-
eration considering charging characteristics and state-of-
charge (SOC) at every time instant throughout the whole
year. The modeling equations is used to verify whether a
solution derived by the GA-based optimization fulfills the
load power requirements during the whole year while con-
sidering SOC and other constraints.

3) Cost optimization: a multiobjective cost function of the in-
dividual system devices capital and 20-year round mainte-
nance costs optimized using the conventional GA routine
with crossover and mutation.

The net present cost (NPC) of the th component can be cal-
culated via

(10)

where is the number/rating, is the capital cost,
is the replacement cost, and is the operation and mainte-
nance cost, all for th equipment ( represent wind
turbines, PV units, and battery storage, respectively). In addi-
tion, is the project’s lifespan, and IR is the so-called real in-
terest rate that is assumed to be 0.08. Other parameters, AP and
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Fig. 11. Occurrences of the optimal storage estimations against real storage
requirements.

are annual payment present worth and single payment present
worth, respectively, defined as

(11)

where is the number of times each component is replaced and
is the lifespan of each component. Therefore, based on the

definition of NPC along with the constraints, a multiobjective
optimization problem could be written as

The function performs the system simulation in order
to verify that the system configuration fulfils the uninterrupted
power supply requirement of the load during the simulation time
span. If verified, the output would be 1, otherwise 0.
The optimization procedure was carried out four times. First,

it was fed by the real recorded WSTS together with the other
inputs. The result is assumed to be the real storage. Then, the
simulated WSTS by the proposed copula, ARMA, and Markov
models were fed into the program one at a time while other data
and parameters were unchanged. Thus, the outcome provides
four sets of optimal sizes over a 365-day period which could
be used to evaluate the performance of the three models against
real data.
It should be noted that all three simulated models produce

one-year-long data, the very same as the length of the real
recorded data. The main goal is provision of a credible ground
for comparison. Once a real investment is intended, the op-
timal storage size would be calculated using a parameterized
time-series model (e.g., one of the three studied models) as data
inputs. This potentially provides many years of synthetic wind,
PV, and load data. This presumably resemble what a long-term

Fig. 12. Real battery sizes compared to the estimated battery sizes using the
three models of the WSTS.

Fig. 13. Estimated versus actual storage plotted against estimated versus actual
ACF.

dataset would look like. In fact, using the historical data records
with limited length (obtained from the site under study over a
year) would be inadequate in the presented long-term planning
of combined wind and storage systems in practice and, for
example, the proposed copula-based time-series models should
be used to produce several years long dataset.
Fig. 11 shows the probability distribution of the calculated

optimal battery size. It is seen that the ARMA and Markov
models underestimate the required battery storage capacity in
general. The difference becomes more obvious if the calculated
optimal battery size values based on the simulated WSTS are
compared to the real optimal storage needs in Fig. 12.
On the other hand, in order to provide a more sensitive index,

the estimated storage values are divided by the real storage
value, yielding a storage fraction. Such a fraction is calculated
for ACFs as well. Fig. 13 is a scatter plot of these fractions for
all cases. It is clear that closer and more concentrated cluster
points to (1,1) introduce better fitness for the corresponding
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Fig. 14. Probability distributions of the occurred optimal sizes of each compo-
nent along with the optimal costs.

model. Therefore, according to Fig. 13, the copula-Markov
is much better than the other two models in terms of both
nearer and more accurate estimations. Finally, the optimal sizes
of the other components as well as battery units along with
corresponding minimal cost occurrences are shown in Fig. 14
by cumulative distribution plots.

V. CONCLUSION

There exist more than one simple autoregressive temporal de-
pendence structure for a given wind speed data set. This paper
proposes a copula-based approach in achieving temporal depen-
dence as well as actual distributions. The proposedmodeling ap-
proach gives both an accurate and practically simple representa-
tion of wind generation uncertainty which is crucial in optimal
planning and operation of active networks with high penetra-
tions of wind power. For example, sequential reliability studies,
storage design, as well as stochastic programming decision tools
rely on accurate time series models generated using available
wind data. The uncertainty characterization is such that the gen-
erated scenario sets retain the main statistical properties of both

the WSTS and WPTS. Several statistical tests and a compre-
hensively analyzed case study indicate that the proposed model
performs better than those of previous literature such as the
ARMA and conventional Markov. In particular, the proposed
model achieves the following advantages:
• The proposed model replicates nonlinear long-memory
temporal dependence of the WSTS as well as the con-
verted WPTS. Autocorrelations are completely preserved.
This means that any analysis for power systems having
substantial long-term storage which adds memory to the
system, could rely on the modeledWSTSmore effectively.

• Empirical probability distributions of the WSTS at any
time instant could be put directly into the model. This elim-
inates any preventable approximation errors in comparison
with applying well-known distributions. Also, empirical
distributions extend the use of nonparametric methods in
an effort to identify the importance of accurate characteri-
zations of wind-speed distributions.

• The nonlinear turbine power curve still preserves the exact
correlation structure of the WSTS when transformed to the
WPTS.

• Energy storage buffers against short- and long-term fluc-
tuations in output from wind generation. Meanwhile, this
buffering effect in storage operation should be integrated
into the optimal planning of the energy content. Hence,
modeling the exact temporal wind power variations would
contribute to more accurate estimations of the stored en-
ergy content for both short- and long-term delivery periods.

An interesting area of future research could be the choice of
an appropriate parametric copula, extension to copula-based
semiparametric Markov processes of any finite order, and
employing time-varying copulas. These would enable rea-
soning and computation with the model when the data is to be
controlled or streamed in smart grid applications. For example,
modeling and controlling electric vehicles and managing data
from the advanced metering infrastructure (AMI) would be of
interest. Furthermore, the proposed simulation approach could
be used within the short-term forecasting (not simulation)
framework in parallel with wind power prediction tools to
further correct for errors.
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