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Abstract: This study presents a novel linear approximated methodology for full alternating current-optimal power flow
(AC-OPF). The AC-OPF can provide more precise and real picture of full active and reactive power flow modelling, along
with the voltage profile of buses compared to the commonly used direct current-optimal power flow. While the AC-OPF
is a non-linear programming problem, this can be transformed into a mixed-integer linear programming environment
by the proposed model without loss of accuracy. The global optimality of the solution for the approximated model can
be guaranteed by existing algorithms and software. The numerical results and simulations which represent the
effectiveness and applicability of the proposed model are given and completely discussed in this study.

OC operation cost ($/h)
Nomenclature

Indices
i, j
 indices of buses

k
 indices for binary variables
Sets
Ωb
 set of all buses
Constants
ai, bi, ci
 cost coefficients of active power generation at bus
i ($/MW2h, $/MWh, $/h)
BM1ij, BM2ij
 disjunctive parameters (big M parameters)

jBsh

ij
 shunt admittance of line ij (ʊ)

k1
 maximum value of k

n
 number of sides of regular polygon used in

piecewise linear formulation of a circle

PDi
 active power demand at bus i (MW)
PGmin
i
 minimum active power generation at bus i (MW)
PGmax
i
 maximum active power generation at bus i (MW)
QDi
 reactive power demand at bus i (MVAr)
QGmin
i
 minimum reactive power generation at bus i

(MVAr)

QGmax

i
 maximum reactive power generation at bus i
(MVAr)
|Sij|
max
 maximum magnitude of apparent power of line ij

(MVA)

|Vi|

min
 minimum of the voltage magnitude at bus i (kV)

|Vi|

max
 maximum of the voltage magnitude at bus i (kV)

Yij
 admittance of line ij: (Yij =Gij + jBij) (ʊ)

umin
ij
 minimum value of θij (rad)
umax
ij
 maximum value of θij (rad)

θref
 voltage phase angle for the slack bus (θref = 0)

(rad)

Δθij
 width of each section in binary expansion

discretisation method (rad)
Variables
mijk
 binary variables used in binary expansion
PGi
 active power generation at bus i (MW)

Pij
 active power flow of line ij (MW)

QGi
 reactive power generation at bus i (MVAr)

Qij
 reactive power flow of line ij (MVAr)

|Vi|
 voltage magnitude at bus i (kV)

xijk, yijk
 auxiliary variables in BE method

αij, βij,
gij
continuous variables defined in Pij and Qij linearisation
process
θij
 voltage angle difference between buses i and j (rad)
1 Introduction

Optimal power flow (OPF) research has had a long history and has
been one of the most widely researching subjects since its first
development by Carpentier in 1962 [1]. The OPF is defined as a
non-linear optimisation problem in which one seeks to minimise
(or maximise) a specific objective function subject to the physical
and operational constraints of the power system.

In general, the OPF is a large-scale and non-convex optimisation
problem which is very difficult to solve. This non-convexity is partly
as a result of the non-linearity in active and reactive power equations
which raises the probability of existence of local solutions for OPF
problems. So far, many solution algorithms and methods have
been presented and successfully applied to the OPF problem.
These methods include [2] Lambda iteration method, gradient
method, Newton’s method, linear programming method, interior
point method and so on. These methods and relevant references
have been appropriately discussed in [2]. Also, many heuristic
methods, such as genetic algorithm [3], particle swarm
optimisation [4], Tabu search [5], artificial bee colony [6] and
etcetera were successfully applied to the OPF problem.

A review of selected OPF literature to 1993 is provided by
Momoh et al. [7, 8]. None of the methods surveyed in the
mentioned papers guarantee a global solution to be found at the
presence of local ones. Also Huneault and Galiana [9] proposed a
quite good paper which surveys 163 papers in the field of OPF
and dispatching. A flexible mixed-integer linear programming
(MILP) formulation of the alternating current-OPF (AC-OPF)
problem for distribution systems, using linearisation techniques are
presented in [10]. Wang et al. [11] present a market-based OPF
using trust-region-based augmented Lagrangian method and
step-controlled primal-dual interior point method. A stochastic
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OPF problem with stability constraints is presented by Hamon et al.
[12]. As wind energy continues to increase, new tools and models are
proposed for OPF problems due to the intermittent nature of wind
flow [13–15].

In this paper, we present a novel linear model and approximated
methodology to solve the AC-OPF problem without losing
accuracy. It is to be noted that OPF inherently is a non-linear
optimisation problem and hence employing a non-linear solver
does not guarantee to find a global optimum solution [16–20].
However, a smart initialisation may help to find a good practical
feasible local optimum solution that meets the requirements of
system operator. Generally speaking, in solving a non-convex
optimisation problem, there will be no guarantee to obtain the
global optimum solution and this issue remains correct for the
most practical optimisation models in a power system including
generation and transmission expansion planning in which the
mathematical formulations form a mixed-integer non-linear
programming (MINLP) problem. It can be said that MINLP
problems are the most difficult optimisation problems to solve and
no effective algorithms exist to solve such the complex problems.
To avoid any local optimal solutions, we transform the non-linear
programming (NLP) problem of OPF into an MILP problem
incorporating reactive power as well as voltage of buses using
binary expansion (BE) discretisation. The problem can be solved
efficaciously to the global optimality by existing optimisation
software and algorithms. Finding a good solution technique for the
full AC-OPF could potentially save tens of billions of dollars
annually [21]. It should be highlighted that there exist other
techniques and models which try to convexify or linearise the
non-convex optimisation problem of AC-OPF. Nevertheless, these
methodologies completely differ from that presented in this paper.
In [2], a linear programming method based on sensitivity
coefficients is suggested which can easily handle the inequality
constraints. P.O’Neill et al. [22] argue that the current–voltage (IV)
formulation and its linear approximations may be easier to solve
than the traditional quadratic power flow formulations. In [23, 24],
it is suggested solving the dual of an equivalent form of the OPF
problem rather than the OPF problem itself. This dual problem is a
convex semi-definite program and therefore can be solved
efficiently in polynomial time. They show that if there is no
duality gap a globally optimal solution to the OPF can be
recovered from the SDP dual. As stated in [25] the subject of
possible existence of local optima for OPF problem is an
important issue which has not been well covered in the literature.
A MILP model for the solution of the minimum-losses
configuration problem of distribution networks is presented by
Borghetti et al. [26, 27] considering typical operating constraints
and the presence of the embedded generation. Also, it is proposed
a mixed-integer conic programming formulation for the minimum
loss distribution network reconfiguration problem in [28] which
employs a convex representation of the network model. In [29], a
flexible optimisation-based framework for intentional islanding is
presented in which the approach uses a piecewise linear model of
AC power flow, which allows the voltage and reactive power to be
considered directly. It is evaluated the accuracy and feasibility of
the linearised DC model in [30]. Coffrin et al. in [30] also propose
three new models to improve the accuracy of the linearised DC
model.

The linearisation process in this paper involves many techniques
including Taylor series expansion theory, binary expansion
discretisation approach, piecewise linear approximation and other
simple techniques. The OPF has many applications in power
system problems such as generation/transmission expansion
planning, reactive power planning (RPP), distribution expansion
planning and so on. It might be necessary to employ further
linearisation methods in order to apply the presented work to these
areas. Reactive power has significant effects in reliable and safe
operation of power systems. Since the presented work considers
both reactive power and voltage, planners can use the proposed
method. However, it should be highlighted that in an optimisation
problem for the RPP, bus voltage magnitudes may differ more
significantly from 1 p.u. which can affect the accuracy of the
1118
proposed method. Hence, to assess the preciseness, feasibility and
applicability of the proposed method to this area many numerical
studies have to be done.

This paper is organised as follows: Section 2 presents the basic
AC-OPF formulation. In Section 3, the proposed linear model is
illustrated. Simulation results are given in Section 4. Finally, the
concluding remarks are drawn in Section 5.
2 AC optimal power flow

Here the basic standard AC-OPF is formulated in usual polar
coordinate as follows

Min OC =
∑
i[Vb

aiPG
2
i + biPGi + ci (1)

subject to

PGi − PDi =
∑
j[Vb

Pij (2)

QGi − QDi =
∑
j[Vb

Qij (3)

Pij = Vi

∣∣ ∣∣2Gij − Vi

∣∣ ∣∣ Vj

∣∣∣ ∣∣∣ Gij cos uij + Bij sin uij

( )
(4)

Qij = − Vi

∣∣ ∣∣2 Bij + Bsh
ij

( )
− Vi

∣∣ ∣∣ Vj

∣∣∣ ∣∣∣ Gij sin uij − Bij cos uij

( )
(5)

PGmin
i ≤ PGi ≤ PGmax

i (6)

QGmin
i ≤ QGi ≤ QGmax

i (7)

Pij

( )2
+ Qij

( )2
≤ Sij

∣∣∣ ∣∣∣max( )2
(8)

Vi

∣∣ ∣∣min ≤ Vi

∣∣ ∣∣ ≤ Vi

∣∣ ∣∣max
(9)

umin
ij ≤ uij ≤ umax

ij (10)

Equation (1) shows the objective function in which operation cost
curves are considered to be quadratic curves. Constraints (2) and
(3) enforce the active and reactive power balances at each bus,
respectively. Constraints (4) and (5) represent the active and
reactive power flows in line ij, respectively. Generation limits of
each generator are shown by (6) and (7). Equation (8) imposes the
thermal limit of transmission lines. Equation (9) maintains the bus
voltages within their permissible limits. Constraint (10) shows the
angles limitation between nodes. All equations are valid ∀i, j [ Vb.

The above formulated problem is an NLP problem due to the
non-linearity in (4), (5) and (8). It should be noted that the
obtained solution for the model (1)–(9) is a local optimum
solution rather than a global one.
3 Proposed linear approximated AC-OPF

In this section, the linear AC OPF (LAC-OPF) is formulated. It is to
be noted that in [31] a piecewise linear upper approximation is
presented which is used here to linearise operation cost of (1). To
maintain the system security, it is assumed that θij for each bus i
and j which are connected by line ij is small enough and voltage
magnitude is about 1 p.u. for all buses. These assumptions are
practically true under normal operating condition [32]. On the
basis of these assumptions, it is proposed to rewrite (4) by
replacing sine and cosine functions with their Taylor series
expansion about zero and also by substituting quadratic function
of |Vi|

2 and two-variable function of |Vi||Vj| with their Taylor series
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Fig. 1 Piecewise linear approximation of a circle
expansion about 1 as below

Pij � 2 Vi

∣∣ ∣∣− 1
( )

Gij − Vi

∣∣ ∣∣+ Vj

∣∣∣ ∣∣∣− 1︸							︷︷							︸
gij

⎛
⎜⎜⎝

⎞
⎟⎟⎠ Gij 1− u2ij

2

( )
+ Bijuij

( )

(11)

Assuming αij = gijθij and bij = giju
2
ij we obtain

Pij � 2 Vi

∣∣ ∣∣− 1
( )

Gij − gijGij + Gijbij/2− Bijaij

= Gij Vi

∣∣ ∣∣− Vj

∣∣∣ ∣∣∣+ bij/2
( )

− Bijaij (12)

Equation (12) is linear with respect to the variables of |Vi|, βij and αij.
However, αij and βij are non-linear. To linearise αij which is the
product of two continuous variables, we use the binary expansion
approach as proposed in [18]. Effectiveness of BE method was
shown in the aforementioned paper for strategic bidding
approaches. The basic idea is to approximate the continuous
decision variables of θij by a set of discrete values as follows

uij = umin
ij + Duij

∑k1
k=0

2kmijk (13)

where Duij = (umax
ij − umin

ij /2k1 ).
By multiplying the both sides of (13) by variable gij it is obtained

aij = giju
min
ij + Duij

∑k1
k=0

2kxijk (14)

where xijk = gijmijk. To linearise xijk which is a bilinear product of a
binary variable (mijk) and a continuous variable (gij), we use the
two following equations

0 ≤ gij − xijk ≤ 1− mijk

( )
BM1ij (15)

0 ≤ xijk ≤ mijkBM1ij (16)

To linearise βij which is the product of three continuous variables,
two different methods may be used. One is to approximate u2ij by
piecewise linear modelling and then using BE approach. However,
this approach introduces new variables and equations which make
the problem very large to handle. We propose a linearisation
scheme as follows

bij = giju
2
ij = aijuij = aiju

min
ij + Duij

∑k1
k=0

2kyijk (17)

− 1− mijk

( )
BM2ij ≤ aij − yijk ≤ 1− mijk

( )
BM2ij (18)

−mijkBM2ij ≤ yijk ≤ mijkBM2ij (19)

where yijk = αijmijk.
The advantage of this method is that, fortunately, it is only

required to discretise θij when linearising both αij and βij. It is to
be noted that in BE approach it is needed to define k1 + 1 new
binary variables for each discretised variable.

In a similar way, for reactive power one can obtains

Qij � −Bij Vi

∣∣ ∣∣− Vj

∣∣∣ ∣∣∣+ bij

2

( )
− Gijaij − Bsh

ij 2 Vi

∣∣ ∣∣− 1
( )

(20)

The last step is to linearise constraints (8). It should be noted that
constraint functions of (8) are convex and the key concern in
mathematical programming is convexification not linearisation.
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However, in order to generate a linear programming model, it is
proposed to employ piecewise linear formulations to linearise (8).
This allows the use of high performance, efficient and reliable
algorithms and solvers so as to solve the resulting MILP problems.

In the P–Q plane, (8) represents a circle with radius |Sij|
max. It is

proposed to use piecewise linear modelling as depicted in Fig. 1.
Indeed, the circle is approximated by an n-sided convex regular
polygon. A similar concept for approximation of a circle using
polygonal inner approximation has been presented by Ferreira
et al. [10] and Hamon et al. [12]. Therefore, the non-linear
equations of (8) are transformed into n linear equations as follows

sin
360◦l
n

( )
− sin

360◦

n
l − 1( )

( )( )
Pij

− cos
360◦l
n

( )
− cos

360◦

n
l − 1( )

( )( )
Qij

− Sij

∣∣∣ ∣∣∣max × sin
360◦

n

( )
≤ 0 (21)

Linear constraints (20) hold for l = 1, 2,…, n. The higher the number
of sides (n), the more precise the solution is, but at the expense of
more computational burden.

The full AC-OPF problem is now completely a linear
programming problem which can be solved efficaciously by
existing algorithms and solvers ensuring that the global optimal
solution is found.

It should be emphasised here that objective function (1) consists of
only the power system operation cost in a quadratic format.
However, other objective functions such as power losses, load
shedding cost, security cost or any other objectives including
reactive power or voltage of buses – which are neglected in a
DC-OPF approach – can be added to the problem, if necessary.
Therefore, it might be required to employ further linearisation
techniques to reach to a linear mathematical problem. It is also to
be noted that the proposed method guarantees convergence to
global optimality in the neighbourhood of |Vi| = 1 p.u. and θij = 0.
However, as the results show, this is completely accepted from the
engineering practice point of view not from the viewpoint of
mathematics. Indeed, the global solution of the approximated
problem is efficiently near the global solution of the exact
problem. In the following section, it is applied the presented work
to some power systems to show the effectiveness and applicability
of the proposed model. As it will be seen shortly the results are
promising and show the feasibility and capabilities of the proposed
model.
4 Illustrative examples

This section is devoted to case studies and simulation results which
are used to demonstrate the proposed method. Different cases are
used to show the applicability and accuracy of the method.
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Table 1 Generators and loads data for two-bus power system

Bus Generators Demand

bi , $/MWh PGmax
i ,

MW
QGmax

i ,
MVAr

QGmin
i ,

MVAr
PDi,
MW

QDi,
MVAr

1 20 160 60 −30 100 20
2 30 160 60 −30 200 40

Table 2 Solution results for two-bus power system
In all simulations, general algebraic modelling system (GAMS) is
used as a high-level modelling system for optimisation problems
which consists of integrated high-performance solvers [33]. For
NLP problems CONOPT is considered as a solver whereas for
MILP problems CPLEX are considered as solvers. The relative
optimality gap tolerance was set to 0.01%, which results in high
accuracy solutions. The GAMS code is run on a computer with
Intel Core 2 Duo CPU clocking at 2.00 GHz with 1.00 GB of
RAM with Windows 7 as operating system. The presented
methodology for OPF is applied to a 2 and 3 bus power system
and standard IEEE benchmark system with 24 and 118 buses.
Method OC, $/h Bus PGi, MW QGi, MVAr Vi, p.u.

NLP 7527 1 160 60 1.05
2 140.2 0.7 1.042

MILP 7524 1 160 60 0.991
2 140.1 0.4 0.982
4.1 Two-bus simple power system

Fig. 2 shows a simple two-bus power system. System data can be
found in Table 1 in which active powers are in MW and reactive
powers are in MVAr. Admittance of lines 1 and 2 is considered to
be Y12 =G12 + jB12 = 15 + j(−60) in per unit (p.u.). Maximum and
minimum magnitudes of voltage are assumed to be 1.05 and 0.95
p.u. Bus 1 is the slack bus. Total production cost is considered to
be the objective function.

For this simple power system, running full AC-OPF with
CONOPT under GAMS will lead to a feasible solution. Objective
function will be 7404 $/h. Active power generations at buses 1
and 2 are 160 and 140.1 MW, respectively. Reactive power
generations are 20 and 40.5 MVAr, respectively. Voltage
magnitudes are 1.05 and 1.048 p.u. at buses 1 and 2, respectively.

If lower and upper levels for voltage magnitudes are changed to
0.98 and 1.00 p.u., the same results for the objective function and
active power generation are obtained while different voltage
profiles are observed (1 and 0.998 p.u. at buses 1 and 2,
respectively) which means there is no unique solution for the
AC-OPF problem. In other words, different results might be
obtained for voltage profile and reactive power flow pattern by
different algorithms while trying to solve the same OPF problems
in which the objective functions are only related to the cost of
active power production. This, however, is due to the existence of
multiple solutions for load flow problems which is reported in
[25]. In this paper, it is presented a simple load flow example with
multiple solutions.

Now, the OPF problem is solved using the proposed MILP model.
The objective function is obtained to be 7404 $/h and active power
generations are 160 and 140.1 MW. As it can be seen the same
results are obtained comparing with the solution results of original
OPF, which proves the effectiveness and precision of the presented
linear method. However, the voltage magnitudes will be 0.957 and
0.95 p.u. for buses 1 and 2, respectively, and reactive power
generations will be 51 and 9 MVAr for generators 1 and 2,
respectively, which show significant changes compared with the
previous results. To obtain the unique results for the entire
variables in both approaches – i.e. NLP approach and proposed
MILP approach –, it is needed to incorporate the reactive power
generation into the objective function. In doing so, reactive power
generation cost is embedded to the objective function with the cost
coefficients equal to one-tenth of the corresponding values
provided in Table 1 for active power – i.e.
OC = ∑

i[Vb biPGi + 0.1× biQGi –. However, it is emphasised
that this is not based on a real operating system and a precise
discussion about reactive power offers from generators can be
found in [34, 35] which is beyond the scope of this paper.
Nevertheless, our simple assumption is enough to investigate the
results. The results for two approaches are given in Table 2. As it
Fig. 2 Two-bus simple power system
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can be seen the results for reactive power will be approximately
the same. The elapsed time to solve the problem by both NLP
approach and also MILP approach is reported to be about 0.5 s.

This simple illustrative example clearly shows that the proposed
method to solve OPF problems is so effective and accurate and the
results will be verifiable and promising. One of the disadvantages
of the proposed method is the number of variables, including
binary or continuous variables as well as the number of equations
which will increase as the system size gets larger. However, it is
believed that with the advent of advanced high-speed
micro-processors and large memory, this will not be a problem. Be
noted that the time it takes to get to the global optimal solution for
some purposes such as planning approaches may not be an
important issue. Though, this is the expense of getting to the
global optimal solution.

4.2 Three-bus simple power system

A three-node power network as shown in Fig. 3 is chosen to apply
the method. This system is adopted from [25]. Network data
completely can be found in [25]. As it was demonstrated in the
aforementioned paper the network has at least three local
solutions. These locally optima solutions can be found by
randomly generating different initial points for state variables
employing the uniform distribution. The solvers used to solve the
NLP problem were IPOPT and SNOPT under GAMS. It is also
solved the proposed MILP problem using CPLEX. Results are
indicated in Table 3. It is to be noted that the quadratic term in
objective function is represented by piecewise linear approximation.

As it can be observed from Table 3 the global minimum of the
OPF problem is about 5694. Three other local optima solutions
have been reported as well. One should be informed that there
might be also some other local solutions. However, the solution of
5694 is certainly the global one, since the presented linear
approximated method is also converged to it (5699) in which the
little difference is due to the assumptions made to the problem to
linearise it. This issue proves that the MILP model is precise and
Fig. 3 Three-bus simple power system
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Table 3 Solution results for three-bus power system

Method OC, $/h Bus PGi, MW QGi, MVAr Vi, p.u.

NLP 1 5694 1 128 42 1.100
2 188 49 1.100
3 0 70 1.100

2 7966 1 181 381 0.900
2 194 250 0.900
3 0 403 0.900

3 9400 1 239 326 0.901
2 144 231 0.907
3 0 466 0.903

4 9693 1 234 444 0.900
2 165 332 1.100
3 0 468 1.031

MILP 5699 1 137 38 1.099
2 179 52 1.100
3 0 72 1.100
accurate and also it shows the capability of the work to find the
global solution. The elapsed time to solve the problem by NLP
approach is about 0.5 s and by MILP approach is 2 s.

4.3 24-bus IEEE RTS

As the third example, the well-known 24-bus IEEE RTS is used
which is plotted in Fig. 4. This system consists of 10 generators
plus a synchronous condenser in buses 14, 17 loads and 38 lines.
Area 1 is the 138 kV sub-network and Area 2 is the 230 kV
sub-network and 5 tie-lines have connected these two areas. The
system data is given in [36].
4.3.1 Linear generation cost curve: The operating costs of the
generating units are those provided in [37] and can be found in
Table 4. The OPF problem – NLP formulation – is solved using
both MATPOWER 4.1 (case 1) [38] and GAMS (case 2). In both
cases, the objective function is obtained to be about 56,360 $/h
showing that the same active power dispatch pattern is obtained by
means of MATPOWER or GAMS. Generators at buses 1, 2, 7, 13,
15, 16, 18, 21, 22 and 23 produce 192, 192, 156, 49, 66, 155,
400, 400, 169 and 660 MW, respectively. The maximum
locational marginal price (LMP) is equal 24.6 $/MWh and belongs
to node 8 while the minimum LMP 21.2 $/MWh belongs to bus
22. However, the voltage profiles of buses and also reactive power
generation are different in these two cases.

Solving linearised OPF by GAMS – third case – results in an
objective function with the same amount as mentioned above,
however, different profiles for bus voltage and therefore different
flow patterns for reactive power are observed. To achieve these
results, it is assumed n = 64 and k1 = 14. The program coded in
GAMS has 13,335 single equations, 5059 single variables and 510
binary variables. Be noted it is only required to discretise θij in
which ij refers to a transmission line connecting buses i to j. As it
can be seen, for this particular case, both NLP and MILP methods
are converged to the global optimal solution. As it was seen
earlier, this is not going to be general for all cases. Again,
incorporating reactive power cost in objective function results in
the same outcomes for reactive power dispatch in power system.
The elapsed time to solve the problem by NLP approach is about
2 s and by MILP approach is 1709 s.

Other objective functions such as power losses can also be
considered. It should be highlighted that active power losses in
corridor ij can be calculated as Plossij = Pij + Pji. If the objective
function is considered to be only the operating cost of generators,
the active power losses will be 41.2 MW. Considering the active
power losses as the objective function reduces the power losses to
27.3 MW. However, the operation cost increases to 57,676 $/h.
These two objective functions are conflicting and it is necessary to
employ a multi-objective optimisation approach to obtain Pareto
optimal solutions. These results are verified by both NLP approach
as well as by MILP approach.
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Including shunt admittance in simulation study has little effect on
objective function which is defined to be the operation cost.
Objective function increases from 56,360 to 57,045 $/h. The active
power flow, also, would be approximately the same as before.
However, as it was expected, shunt admittances affect the voltage
profile as well as reactive power flow. This issue is also verified
for the next numerical study for 118-bus IEEE test system.

It should be emphasised here that one has to be careful about
determining parameters n and k1. A small n imposes more
restrictions on transmission capacity and it may make the problem
infeasible while a big n would increase the number of equations.
Also, the number of binary variables depends on k1. While a small
k1 might lead to the less efficient solution, a big k1 would lead to
too many binary variables and a larger search space to be explored.

The results are compared for different n and k1 and are shown in
Table 5. We also have compared the time to solve the optimisation
problem and also the number of variables/equations. As it can be
seen, the time it takes to reach the optimal solution will increase
as the number n increases. The number n can be different for
various lines. It clearly depends on the operating point of active
and reactive powers of each line in the corresponding P–Q plane.
For highly congested transmission lines, number n have to be
large enough, but for the lines operating far from their limits n can
be smaller without losing any generality. Solving OPF using
simple DC power flow might be helpful to identify that which
lines are more congested. Meanwhile, the engineer’s experience
would help to select the number n and k1. Also, it is clear from
Table 5 that as the number n reduces, the operation cost is
increased due to the commitment of more expensive generating
units because of imposing more restrictions on transmission lines
capacity.
4.3.2 Quadratic generation cost curve: The operating costs of
the generating units are considered to be quadratic curves, i.e. in the
form of F PGi

( ) = aiPG
2
i + biPGi + ci. To employ an MILP

approach, the quadratic curves have to be linearised by piecewise
linear approximation method. In [31], a piecewise linear upper
approximation is presented which is used in this paper. It is
assumed ai = 0.01bi and ci = 100bi in which coefficient bi
is provided in Table 4. In NLP approach the value of 259,405 $/h
is obtained for objective function. Approximating the quadratic
curve by piecewise linear method and solving MILP approach
results in the value of 260,910 $/h for objective function. As stated
in [31] a piecewise linear lower approximation can also be used in
which the piecewise linear approximated operation costs are no
larger than the corresponding values calculated from the original
quadratic cost curve.
4.4 118-bus IEEE test system

The IEEE 118-bus test system has been also used to apply the
presented work. To better compare the results, the original
standard AC-OPF problem which was formulated in Section 2 is
programmed in GAMS. It is to be noted that the cost function
coefficients are taken from [38] in which the quadratic terms are
omitted here. For this AC-OPF-based case the total production
cost is obtained to be 81,288 $/h. It takes about 13 s to run the
program. The coded program has 42,461 single equations and
28,193 single variables for this case. The same result is
approximately obtained by the proposed method using LAC-OPF.
In this method, the objective function would be 80,784 $/h and the
written program has 154,393 single equations, 116,837 single
variables and 1700 binary variables.

All NLP solvers are converged to 81,288 and no local solutions
are found in different iterations. To produce local optima solutions
active and reactive power limits are all relaxed as discussed in
[25]. In doing so, two local solutions are found which are
approximately 34 and 47% higher than the global one.
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Table 4 Generators and loads data For RTS

Bus Generators

bi ,
$/MWh

PGmax
i ,

MW
PGmin

i ,
MW

QGmax
i ,

MVAr
QGmin

i ,
MVAr

1 20.3 192 62.4 80 −50
2 18.5 192 62.4 80 −50
7 24.4 300 75 180 0
13 22.2 591 207 240 0
14 – – – 200 −50
15 23.6 215 66.3 110 −50
16 19.1 155 54.3 80 −50
18 16.0 400 100 200 −50
21 20.8 400 100 200 −50
22 21.2 300 60 96 −60
23 16.9 660 248.6 310 −125

Table 5 Results for different values of n and k1 for RTS

OC,
$/h

Number of single equations/
continuous variables/discrete

variables

Elapsed
time, s

k1 = 7,
n = 32

57,901 9255/4345/272 177

k1 = 7,
n = 64

57,755 11,431/4345/272 259

k1 = 14,
n = 32

56,932 11,159/5059/510 1174

k1 = 14,
n = 64

56,360 13,335/5059/510 1709

k1 = 20,
n = 128

56,360 19,319/5671/714 5503

Fig. 4 24-bus IEEE RTS
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5 Concluding remarks

In this paper, a new linear AC-OPF model was presented. The
linearisation process in this paper involves many techniques
including Taylor series expansion theory, binary expansion
discretisation approach, piecewise linear approximation and other
simple techniques. Theoretical developments of the presented
work and its application were comprehensively reported. The
presented method provides more precise and real picture of both
active and reactive power flows along with the voltage profile of
the network. The AC-OPF is an NLP problem that is transformed
into an MILP by the proposed method. In doing so, a new
linearisation approximated method is presented to transform the
non-linear model into a linear one. The formulated problem then
can be solved by available commercial and efficient algorithms
and software which due to the linearity of the proposed formulated
problem, the global solution of the approximated model is
guaranteed to be found as shown in the numerical studies. The
proposed method guarantees convergence to global optimality in
the neighbourhood of |Vi| = 1 p.u. and θij = 0. However, as the
results show, this is completely accepted from the engineering
practice point of view. Indeed, the global solution of the
approximated problem is efficiently near the global solution of the
exact problem. One advantage of this work is that active and
reactive power flow patterns and voltage profiles are obtained at
the same time. However, one main disadvantage of the method is
the exponential growth in the execution time when using CPLEX
as solver which employs the branch and bound method to solve
the problem. Some of the applications were named for which the
applicability of the presented work can be investigated and can be
considered as good future researches. Simulation results are
presented and thoroughly discussed for small systems as well as
power networks of standard IEEE benchmark systems.
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