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Renewable distributed generation introduced as an environmental friendly alternative energy supply
while it provided the power system with ever-growing technical benefits such as loss reduction and
feeder voltage improvement. The evaluation of the effects of small residential photovoltaic and wind DG
systems on various system operating indices and the system net load is complicated by both the
probabilistic nature of their output and the variety of their spatial allocations. The increasing penetration
of renewable distributed generation in power systems necessitates the modeling of this stochastic
structure in operation and planning studies. An advanced stochastic modeling of the system requires
multivariate uncertainty analysis involving non-normal correlated random variables. Such an analysis is
to epitomize the aggregate uncertainty corresponding to spatially spread stochastic variables. In this
paper, an integration study of photovoltaics and wind turbines, distributed in a distribution network, is
investigated based on the stochastic modeling using Archimedean copulas as a new efficient tool. The
basic theory concerning the use of copulas for dependence modeling is presented and focus is given on
an Archimedean algorithm. A comprehensive case study for Davarzan area in Iran is presented after
reviewing Iran’s renewable energy status. This study shows an application of the presented technique
when large datasets, assuming 10-min interval between data points of PV, wind and load profiles, are
involved where a deterministic study is not trivial.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Distributed generation (DG) devices interact with the operation,
protection and control of the distribution feeder at which they are
installed. The produced electrical power via a variety of these
generation units is stochastic by a non-dispatchable primary energy
source. Therefore, DG systems inherently provide some benefits and
produce some potentially unwanted effects. They may improve the
load curve and the voltage profile across the feeder, may reduce the
loading level of branches and substation transformers, and provide
environmental benefits by offsetting the pollutant emissions. Utility
economic benefits also include loss reduction, avoided costs of energy
production, generation capacity, distribution and transmission
capacity investment deferral, reducing risk from uncertain fuel prices,
green pricing benefits, etc [1]. However, there are some issues
remained to be solved such as the high capital costs of renewable
energy technologies and poor reliability in stand-alone remote supply
systems [2]. Nonetheless, it is strongly expected that the renewable
DG systems will play an important role in future power systems.
ax: þ98(21)88462066.
eh Haghi).

All rights reserved.
Although the practical capacity of these systems is smaller than
the conventional generation units, their integration may signifi-
cantly alter the behavior of the system across which they are
installed. Deterministic modeling of such a system with stochastic
non-dispatchable DG units (e.g. wind or photovoltaics) is not trivial,
due to the following reasons.

� The aggregate wind or PV power outputs are stochastic in
a time-independent manner;
� the daily load profiles of a distribution network are stochastic

in a time-dependent manner;
� the system configuration and device types have uncertainty at

the planning stage;
� there are always a large datasets to consider that may cause an

extreme computational burden; and
� a high dependence exists between the system and the

renewable PV or wind DG units which is deterministically
uncharacteristic resulting from an aggregate uncertainty.

Therefore, the use of stochastic methods (e.g. statistical data
analysis and Monte Carlo simulation) is necessarily unavoidable in
addition to the basic deterministic methods.
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Just as consumer demands are smoothed by aggregation, so is the
output from wind or PV plant, and geographic dispersion dramati-
cally reduces the wind speed or solar radiation fluctuations.
However, the DG-enhanced distribution system planning (e.g. for the
calculation of the system net load distribution, which is a main
concern of this paper) should completely take into account the
dependence structure between the relevant determinants as follows.

(1) Wind speed in different locations;
(2) converted wind power in the wind turbine output if not

available;
(3) PV output power; and
(4) system load curve data in different locations.

Not taking these dependence structures properly into account
by assuming independence or by simplified modeling (e.g. using
Normal distributions) would contribute to different results. This
paper obtains the system net load distributions which can be used
for calculating the capacity credit added to the generation system
due to the integration of wind and PV distributed power. In addi-
tion, using this method coupled with the system design programs
(such as probabilistic load flow algorithms) reveals the necessary
system reinforcements and policy changes due to the incorporation
of renewable distributed PV and wind powers. The dependence can
be modeled separately from the marginal distributions, linking
them using a copula function. Using copulas for modeling purposes
includes two straightforward steps: first, the marginal distributions
along with their correlation matrix should be modeled; and second,
a proper copula should be selected and fitted to the data. It should
be mentioned that it is an obscure task to find a multivariate
distribution and fit it to the data. Besides, the use of copulas is
practical as some good software packages have already provided its
complete implementation (such as [3,4]).

This paper proposes an Archimedean copula algorithm for case
studies. Such a copula approach was successfully applied to the
simulation of the three-phase voltage unbalance in distribution
feeders [5,6]. The stochasticity of dependent chaotic variables and
time series of power systems can be efficiently modeled using copulas
[6,7]. Besides, an appropriate choice should be made between the
Archimedean and Elliptical copula families considering their specific
applications [9]. As well, using Gaussian copulas impose some
simplifications to the model that seems to be acceptable in some cases
where either a threshold analysis is required [6] or a lower precision is
chosen over a more detailed algorithm [8]. Besides, Gaussian copulas
do not model the tail dependence which is discussed in the following
section. On the other hand, Archimedean copulas can efficiently used
to produce non-conventional multivariate distributions for Monte
Carlo studies as presented in Sections 2 and 3.

In the following text, the main theorems and procedures for
using copulas are presented focusing on an Archimedean approach.
Afterwards, the basic discussions regarding the integration of
distributed wind and solar systems in a distribution network are
presented. Then, an updated review of Iran’s renewable energy
resources and policies is presented focusing on wind and PV
systems. The discussions are followed by introducing the Davarzan
area and the presented case study. The recorded wind speed, solar
radiation, and load profiles of a radial network are used to imple-
ment the proposed copula analysis.

2. Principles of copulas and dependence

2.1. Basic definitions

According to [9], copulas are ‘‘functions that join or couple
multivariate distribution functions to their one-dimensional
marginal distribution functions’’ or equivalently in terms of math-
ematical representation [10], a copula is a function (C) of n variables
on the unit n-cube [0,1]n with the following properties.

(1) The range of C is the unit interval [0,1];
(2) C(u) is zero for all u ¼ ðu1;.;unÞ in [0,1]n for which at least

one coordinate equals zero;
(3) CðuÞ ¼ uk if all coordinate of u are 1 except the k-th one;
(4) C is n-increasing in the sense that for every a� b in [0,1]n the

measure DCb
a assigned by C to the n-box

½a; b� ¼ ½a1; b1 �/� ½an;bn�� is non-negative, i.e.

X
Xn

ei
DCb
a :¼

ðe1;.;enÞ˛f0;1gn

ð�1Þi¼1 Cðe1a1þ

ð1� e1Þb1;.; enan þ ð1� enÞbnÞ � 0 ð1Þ

where, n is the number of dependent outcomes that should be
modeled and all marginal distributions of the random vector
u ¼ ðu1;.;unÞ are uniform. It can be illustrated from the definition
that copulas have many useful properties, such as uniform conti-
nuity and existence of all partial derivatives. Samples of copulas
from different families are shown in Fig. 1 in bivariate form.

To complete the construction of copula, a set of arbitrary
marginal distribution functions can be assumed and therefore, the
C defines a multivariate distribution function evaluated at x1,
x2,.,xn as:

C½F1ðx1Þ; F2ðx2Þ;.; FnðxnÞ� ¼ Fðx1; x2;.; xnÞ: (2)

Sklar [11] showed that any multivariate distribution function F
can be written in the form of (2) that is copula representation. He
also showed that if the marginal distributions are continuous,
there is a unique copula representation. The aforementioned
statements are the key theorem of copulas referred to as Sklar’s
theorem and clarify the relations of dependence and the copula of
a distribution. It should be mentioned that constructing multi-
variate distributions without the concept of copula has some
drawbacks such as:

� Different families are necessarily needed for different marginal
distributions.
� Extension of multivariate distributions to thrivariate cases and

above is unclear.
� Measures of dependence often appear in the marginal

distributions.

2.2. Correlation measures

To continue with the concepts of applying copula fits to the
simulation of dependency, a brief reminding of correlation and its
measures seems to be necessary. The familiar form of correlation is
the Pearson’s pairwise linear coefficient and defined as

rðX; YÞ ¼ cov½X; Y �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2½X�s2½Y �

p : (3)

This correlation has some shortcomings to measure the
dependence except the linear case; first, it is non-ideal for
a dependence measure of heavy-tailed marginal distributions.
Second, assume correlation of a jointly non-normal distribution
with a non-linear relationship is zero if relationship (3) is
applied. Empirically, it is shown that there are certain data that
introduce nonzero correlation in the contrary to Eq. (3); and
third, when a non-linear scale transformation is applied to the
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Fig. 1. Samples of different bivariate copula functions: (a) Gayssian copula; (b) t copula; (c) Clayton copula; and (d) Gumbel copula.
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multivariate distributions, the calculated correlations before and
after the transformation using Eq. (3) results in different values.
Therefore, a rank correlation coefficient, such as Kendall’s s or
Spearman’s r, is more appropriate to fulfill the desirable char-
acteristics of a measure of dependence. Spearman’s rank
correlation has been used in the succeeding analysis which is
given by

rSðX;YÞ ¼ rðFXðXÞ; FY ðYÞÞ (4)

where, FXðXÞ and FY ðYÞ are the distribution functions of the random
variables X and Y respectively. It should be mentioned that for the
jointly normal distribution, Spearman’s rank correlation is almost
identical to the linear correlation; however, this is not true when
a certain transformation is applied to the available data.
2.3. Modeling of stochastic dependence

There are various situations in the applications of power
system analysis where we might wish to simulate dependent
random vectors and configurations (as evidenced by Monte Carlo
algorithms). Examples of such applications are in the noise
modeling, reliability studies, materials and natural phenomena
uncertainty analysis, risk assessment, complex modeling, etc.
Randomly behaving variables of such circumstances may be
assumed completely dependent, linearly correlated, superposed,
or completely independent; the most appropriate choice is
influenced by several factors such as the characteristics of the
system and the required accuracy. In the power system prob-
lems, anyhow, many cases involve high levels of dependency.
Therefore, it is very tempting to approach the problem in the
following way:
(1) Estimate matrix of pairwise rank correlations,
(2) estimate marginal distributions,
(3) combine this information using a copula.

To perform a simulation, therefore, the following information
should be specified from the measured or calculated data:

(1) the copula family and any required shape parameters,
(2) the rank correlations among variables, and
(3) the marginal distributions for each variable.

It should be mentioned that the copula is assumed to be chosen
by the designer based on their experiences. The most commonly
used copulas are the Gaussian copula for linear correlation, Gumbel
copula for extreme distributions, and the Archimedean copula and
the t-copula for dependence in tail [9,12].

Furthermore, a realistic correlation matrix must be positive
semi-definite, real-valued, and symmetric. Proper modeling of such
a matrix based on the realistic data is an important stage of the
algorithm; specifically when there is some data misplacement or
the values are noisy, unavailable, or unreliable. There are practical
methods to deal with the problems associated with the non-proper
correlation matrices [13]. However, these methods generally apply
to abnormal data recordings and become redundant in Gaussian
copula construction algorithms.

Another key point in a reliable dependency modeling is building
the marginal distributions. One could fit a parametric model
separately to each dataset, and use those estimates as the marginal
distributions; however, a parametric model may not be sufficiently
flexible. Instead, a nonparametric model to transform to the
marginal distributions seems to be appropriate. Meanwhile, using
empirical cumulative distributions results in a discrete
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representation which may not desirable for a continuous distribu-
tion. Therefore, it is advisable to apply a smoothing technique such
as kernel smoothing or interpolate between the midpoints of the
steps with a piecewise linear function.

2.4. Simulation algorithm

For the simulation, it is a good idea to experiment with
different copulas and correlations. The two main simulation
strategies are the Archimedean and compounding methods [14].
Both methods can be easily implemented for more than two
dimensions (multivariate case). Nonetheless, the compounding
algorithms are computationally more straightforward than the
conditional distribution approach used in Archimedean methods.
Meanwhile, it requires the generation of an additional variable
which can be computationally expensive in applications. Because
the power system problems typically require extensive calcula-
tions, addition of extra variates may be unacceptable. Therefore,
as popularly used in most software [3], the Archimedean
construction is used in this paper. One method is briefly as follows
[14]:

(1) Generate independent uniform random numbers U1, U2,.,Un.
(2) Set X1 ¼ F�1

1 ðU1Þ and c0¼ 0.
(3) For k¼ 2,.,n, recursively calculate Xk by

Uk ¼ FkðXkjx1;.; xk�1Þ ¼
F�1ðk�1Þfck�1 þ F½FkðxkÞ�g

F�1ðk�1Þðck�1Þ
: (5)

Where,

ck ¼ F½F1ðx1Þ� þ/þ F½FkðxkÞ�,

This algorithm is to generate X1, X2,.,Xn having modeled
distribution function of (1), the copula is

Cðu1;u2;.;unÞ ¼ F�1½Fðu1Þ þ/þ;FðunÞ�; (6)

Equation (6) defines a class of copulas known as Archimedean.
The Archimedean representation allows us to reduce the study of
a multivariate copula to a single univariate function. The function F

is a generator of the copula and uniquely determines it [15].
Given a dataset, choosing a copula to fit the data is an impor-

tant but difficult problem [16]. Since the real data generation
mechanism is unknown, it is possible that several candidate
copulas fit the data reasonably well or that none of the candidate
fits the data well. When maximum likelihood method is used, the
general practice is to fit the data with all the candidate copulas
and choose the ones with the highest likelihood [17]. A graphical
tool to choose among Archimedean copulas is based on the Ken-
dall’s process [18]. Indeed, copula selection is an ongoing research
area.

Considering the maximum likelihood, the Frank copula is
chosen in this paper because it fits the studied data well. It should
be mentioned that Frank’s family permits negative as well as
positive dependence. Nonetheless, other types of Archimedean
copulas permit only non-negative correlations because of the
limited dependence parameter space. This is the other reason to
use Frank copula in the following section.

The technique for random vectors can be applied for time series
as well [19]. A moving window with a certain number of vectors is
taken as a sample vector for a stationary time series. The marginal
distributions and the copula are then estimated with this sample
according to the above algorithm.
3. Wind and PV renewable dispersed generation focusing on
Iran

3.1. PV/wind systems in distribution networks

As mentioned in the introduction, renewable energy resources
essentially have unpredictable stochastic behaviors. However,
some of them like solar radiation and wind speed, have comple-
mentary profiles. Stand-alone dispersed hybrid systems usually
take advantage of this particular characteristic combining PV
panels and wind turbines, in conjunction with a diesel-powered
backup generator or battery storage based on economical consid-
erations [20]. Since storage cost still represents the major economic
restraint, usually PV/wind systems are appropriately sized to
minimize its requirements. Also, wind power is lower in cost than
PV power approximately by a factor of five, so it often gets the main
role in generation [21].

In radial networks, distributed generators on the feeder effec-
tively decrease the load active power demand, change the power
flow along the feeder and improve local voltage conditions. The
layout of a distribution feeder in Davarzan area in north-east of Iran
with one possible allocation of distributed generators, is shown in
Fig. 2. This area and the recorded data are used in the following
section’s case study. Fig. 3 shows how the effective load is
decreased in the presence of a PV generator, when the peaks of PV
generation and load demand are matched. The capacity of a PV
generator in this example was 20% of the nominal load [1].

3.2. Iran’s wind/PV power resources

The renewable energy technologies relevant to the Iranian
context are mainly those for grid-connected power generation.
They include onshore wind farms, solar photovoltaics, small and
medium hydropower, geothermal power, concentrating solar
power, and landfill gas. We review here the wind and solar energy
potentials.

Wind resources in Iran are plentiful. Based on a mesoscale wind
map [22], it has been estimated that more than 10,000 MW of wind
power can be installed in Iran. According to Iran Renewable Energy
Organization (SUNA), wind speed in Khaf (Khorasan province) is
exceptional; in Manjil (Gilan province) is excellent; and Zabol-
Loutak (Sistan va Balochestan province) is good; whereas the
remaining sites may be more questionable. Even so, there may
possibly be economic sites on hill ridges within the more ques-
tionable area, such as Namin (Ardabil province) and Davarzan
(Khorasan province), and in any case, a proper economic evaluation
requires a more thorough analysis of the costs of alternative power
generation. In addition, the cost of grid integration, match with the
demand, and site access would have to be evaluated to get a more
complete picture.

Currently, Iran has a number of wind farms using modern wind
turbines, primarily near Manjil (100 MW) initially using 300 kW
and 550 kW Nordtank stall controlled turbines from the mid 1990s,
and more recently Vestas V47, 660 kW pitch-controlled turbines.
The sites in use include Manjil, Roodbar, Herzeville and Siahpoosh.
Another wind farm of 28.3 MW is operating at Binalood in Khor-
asan province.

Current wind farms are owned and operated by the government-
owned electrical utility, but power purchasing agreements for about
600 MW are currently in progress with private developers. However,
it seems that present wind energy tariffs are insufficient to drive
a commercial market for wind energy [23].

On the other hand, the solar energy is outstanding. Solar radi-
ation intensity is the highest in the arid regions of Iran, approxi-
mately below 30 degrees latitude [24]. Vast expanse of dessert
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areas in these regions could provide ample room for concentrating
solar power (CSP) installations. In Shiraz and Yazd, for example,
where solar thermal power projects are being carried out or plan-
ned, the direct normal insolation (DNI), which is the portion of
global solar radiation usable by CSP, were measured to be 6.8 and
5.6 kWh/m2/day, respectively. The DNI of 5 kWh/m2/day is gener-
ally considered to be the threshold for CSP applications.

Unlike CSP, PV can work well almost anywhere in Iran, as it uses
all components of global radiation. To date, a total of 500 kW PV
installations have been made in Iran which is mainly include stand-
alone and pilot applications. In recent years, emphasis of the PV
program has become increasingly focused on offgrid rural electri-
fication. The only grid-connected application installed so far is
a 30 kW system in Taleghan province which is for operational
experience only. It has been estimated by SUNA that the cost of PV
installations in Iran is about 10,000 $/kW which is somewhat
higher than internationally quoted figures of about 6000–8000
$/kW for silicon wafer based PV. Accordingly, due to the high costs
of grid-connected PV compared to other renewable energy alter-
natives, SUNA has focused on the use of PV for offgrid distributed
electrification. For dispersed users requiring relatively small
amounts of power, PV is already a competitive or least cost tech-
nology. It is rugged, modular and requires little maintenance and
thus highly suitable for remote rural users. For relatively larger
rural productive loads, PV systems can be hybridized with wind or
provided with storage batteries.
4. Case study: Davarzan area in Iran

Davarzan area is situated in Khorasan, North-east of Iran on
a terrain suitable for wind activity (Fig. 4). This area reveals a good
wind and solar capabilities and due to its geographical and socio-
logical conditions has potentially the benefits of distributed wind/
PV systems. As a numerical example, the distribution feeder of
Fig. 2 is considered, with a few modifications in the placement of
loads. The network data is presented in Table 1. Fig. 2 also shows the
locations of loads and one possible distribution of PV and wind
generators. The daily load profile is obtained from the actual utility
data for a Central-Iran small city. The patterns of the loads at the
feeder are different following the real recorded diversity of
consumers. Fig. 5 illustrates five different typical load profiles
(TLPs) corresponding to five groups of consumers. It is better to
mention that, calculating these typical load profiles for a group of
consumers is based on field measurements of the individual con-
sumer’s load curves. Typically, there are two types of methods for
deriving TLPs: one is based on load-survey systems [25], and
second, is according to predefined consumers’ groups or groups
identified during the process of TLPs determination [26]. The
second group is obtained by identifying TLPs depending on the
shape of the load curves using various pattern-recognition
methods [26]. For the first TLP-determination approach, measure-
ments need to be performed over a long time period. For the second
approach, typical customer groups represented by the TLPs need to
be formed. Here, we used the second method, based on [27].

The measured utility data spans one whole year in 10-min
intervals, which is also the period and the resolution considered in
this study for wind speed and solar radiation. The availability of
higher resolution data would allow more precise detection of the
stochastic dependence, as more information describing the inter-
action between the PV/wind output and load will be available.

The application of the Archimedean copula algorithm, as
mentioned in Section 2, requires the computation of the following
statistics:



Fig. 4. Davarzan area with the wind and solar recorded data for the presented case study test system.
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� Marginal distributions: the wind speed/power distributions at
each generation site, the system load distribution and the PV
power distributions at each generation site.
� Dependence structure: the rank correlation matrix between

the wind speed random variables, the system load and the solar
radiation.

4.1. Marginal distributions

4.1.1. Wind speed/power distributions
The wind speed distributions for the sites where data are avail-

able are obtained considering the measurement height of 40 m.
Typical pitch-controlled wind turbine generators (WTG) are
considered for this project, with a hub height of 40 m, a nominal
power of 600 kW and cut-in, nominal and cut-out wind speed
values of 3,13 and 25 [m/s]. In Fig. 6, the wind speed and wind power
distributions for such a wind turbine generator are presented as
obtained by a 10,000-sample Monte Carlo simulation similar to the
method described in [28]. On the top graph, the wind speed distri-
bution for a typical site is presented (discontinuous line), together
with the wind speed/power wind turbine generator characteristic
(continuous line). An accumulation of probability masses at the zero
and nominal wind power is observed. The zero values correspond to
wind speeds lower than the cut-in and higher than the cut-out wind
speed values. The nominal power output values correspond to wind
speeds between the nominal and the cut-out values.

The sampling of the wind speed distributions has been per-
formed based on the empirical distribution obtained by data,
according to the methodology presented in Section 2. In Fig. 7, the
measured wind speed distributions are compared to the simulated
ones obtained from a 10,000-sample Monte Carlo simulation. The
simulated distributions yield very accurate approximations of the
measured ones.

4.1.2. Solar radiation and system load distribution
From the viewpoint of marginal distributions, the pdf and cdf for

the system load are presented in Fig. 8 compared to the simulated
ones. Also, the match between possible PV modules output and the
actual system load is illustrated by Fig 9.
4.2. Dependence structure

For the application of the method (see Section 2), the 11�11
rank correlation matrix is calculated and presented in Table 2.



Table 1
Network data of Fig. 2.

Branch
No.

Sending
node

Receiving
node

Branch
parameters

Receiving node
avreage load

r (U) x (U) P (kW) Q (kVAr)

1 0 1 1.303 0.408 410 350
2 1 2 0.358 0.124 560 420
3 2 3 1.904 0.808 580 360
4 3 4 0.987 0.456 320 280
5 4 5 0.300 0.110 380 210
6 5 6 0.150 0.055 610 430
7 0 7 1.113 0.501 330 260
8 7 8 0.902 0.414 380 200
9 8 9 0.493 0.228 390 270
10 9 10 0.512 0.232 460 230
11 10 11 0.512 0.232 320 240

Substation voltage: 20 kV.
Total load: P¼ 4740 kW, Q¼ 3250pukVAr.
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Seven rows and columns correspond to the active powers in
accordance with the locations in Fig. 2; three rows and columns
correspond to the wind speeds at three different hub heights; and
the last row and column corresponds to the solar radiation. A
moderate correlation between the wind and solar activity and the
system load is observed, ranging from 0.02 to 0.58. Also, it should
be noted that the wind resources are correlated throughout the
area and the solar activity can potentially makes a good correlation
with the system load at some locations with a specific typical load
profile. A visual demonstration of the data presented in Table 2 is
shown in Fig. 10 for three TLPs. In this figure, the scatter plots
display the mutual dependence structure while the diagonal bar
plots show the marginal distributions.

In Fig. 11, the system net load distribution obtained as the
difference between the distribution in Fig. 8, and the aggregate
wind and solar activities’ distribution. These distributions are
subtracted considering the correlation between wind speed and
load and also by the transformation of wind speed to power.

The presented analysis provides for an appropriate calculation
of the system net load distribution, taking into account the
dependence structure between the wind and solar activities in
different locations throughout the system, as well as with the
system load. As discussed in Section 3, not taking this dependence
structure into account, either by assuming independence or by
using Gaussian copulas, would contribute to different results.
Focusing on the specific case study, the obtained distributions are of
a major importance for considering the capacity credit added to the
0 6 12 18 24

100

200

300

400

500

600

Time (hours)

)
Wk(re

wo
P

TLP 3
TLP 1
TLP 6
TLP 2
TLP 4

Fig. 5. Scaled patterns of group typical load profiles.
generation system due to the integration of wind and solar power.
Besides, the estimation of the system power flow distributions can
be performed using the same method if it is repetitively calculated
in the system steady state model. These studies enable the system
designer to calculate the necessary system reinforcements due to
the incorporation of wind and solar powers.

5. A discussion on the applications of the presented method

As previously mentioned, the wide use of renewable DG is
supported by the continuous technological development, the
effective reduction of greenhouse gas emissions, the spread of
automation in control and management of electrical networks and
by the liberalization of energy markets. Nevertheless, the gradual
increase of DG penetration, especially of renewable type, will
determine a deep revision of methodologies for planning and
management of electrical distribution networks. The impact of
high-penetration renewable distributed generation on electric
power system planning methodologies is briefly discussed in this
section, and it is outlined how the presented method could makes
a contribution to enable effective integration of variable-output
renewable generation sources. As a general view, all three areas
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of system planning, including generation, transmission, and
distribution, should be involved. Some of the potential applications
are briefly outlined as followed.
5.1. Generation system planning

Generation planning is shifting from planning for peak load
towards planning for system energy. This shift is centered on using
net load as a basis for capacity planning and this creates a set of
requirements for reliable and large sets of renewable resource data
analysis [29]. Besides, the marginal dimension of this shift is to
incorporate the variability of net load at the time scale of load
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following [30]. This needs an increased flexibility by providing
effective load control, energy storage, and proper portfolio
management. The results of the case study, in the presented form,
contribute directly to the first case. Quantifying the variability to
determine required flexibility also requires correlated historic load
and resource data at the time scales that currently are not being
collected. One may notice that the main aspect of using copulas, as
presented in Section 2, is to modeling the underlying correlated
and non-normal stochastic behavior of the renewable resources.
Integration of renewable distributed resource data into generation
planning is an important area of future work.

To further examine the net load applicability in the power
system planning, consider an emerging practice to include renew-
able energy supply early in the planning process and consider it
during energy growth forecast. In this manner, the variability of
renewable generation is considered as part of the load variation. It is
readily appeared that the system load is reduced to account for
contribution from renewable generation. Generation and trans-
mission are then planned relative to this net load with sufficient
flexibility to meet the net load requirements. This evaluation of
flexibility is a fundamentally important step, as it has a direct
impact on the system’s operating costs [31]. An emerging viewpoint
is proposed by [31] as it is repeated by the diagram shown in Fig. 12.
According to this scheme, the contribution of this paper is centered
on characterizing the variability of wind/PV power output more
precisely by considering the realistic interdependence structure
between them and between the consumers’ load profiles.

5.2. Distribution system planning and operation

Distribution planning guides already incorporate processes
that allow connection of distributed generation [31]. These
Table 2
Copula rank correlation matrix for Davarzan area case study.

1.00 0.23 0.30 0.23 0.50 0.55 0.44 0.16 0.19 0.17 0.19
0.23 1.00 0.67 0.35 0.34 0.02 0.46 0.25 0.19 0.26 0.58
0.30 0.67 1.00 0.24 0.48 0.10 0.67 0.22 0.21 0.23 0.45
0.22 0.35 0.24 1.00 0.11 0.33 0.02 0.07 0.02 0.08 0.34
0.50 0.34 0.48 0.11 1.00 0.35 0.67 0.24 0.25 0.24 0.17
0.55 0.02 0.10 0.33 0.35 1.00 0.26 0.06 0.10 0.06 0.12
0.44 0.46 0.67 0.03 0.66 0.26 1.00 0.22 0.24 0.23 0.29

0.16 0.25 0.22 0.07 0.24 0.05 0.21 1.00 0.61 0.86 0.22
0.19 0.19 0.20 0.02 0.25 0.10 0.24 0.60 1.00 0.66 0.17
0.17 0.26 0.23 0.08 0.24 0.06 0.23 0.87 0.66 1.00 0.24

0.19 0.58 0.45 0.34 0.16 0.12 0.31 0.22 0.17 0.24 1.00



Fig. 10. Some of the simulated buses’ powers, wind speeds, and solar radiation by the proposed copula approach as a visual demonstration of the data presented in Table 2.
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processes were developed for integrating co-generation; however,
they are not optimized for integration of small, renewable
distributed resources such as PV/wind. Currently, remaining
technical problems are possible to mitigate through careful
analysis (stochastic/comprehensive simulations), but the analysis
software should be harmonized with respect to the representation
of renewable DGs such as PV/wind modules, the impact interfaced
inverters have on feeder operating parameters, active and reactive
losses, substation power factor, etc. Deterministic modeling of
such a system with stochastic non-dispatchable DG units is not
trivial, as mentioned in introduction. Therefore, statistical repre-
sentations of these effects are beneficial for distribution planning
and operation purposes.

In order to accurately take into account the effects of stochastic
DG output, a whole system needs to be simulated over an
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Fig. 11. System net load for the presented integration scenario.
extended period of time (typically one year) resulting in extremely
large amount of datasets. This can be done via Monte Carlo
simulation which may cause an extreme computational burden, as
shown by an example in [1]. From this viewpoint, any effort for
reducing the input data, while preserving the underlying behavior
and dependence structure of data, could be invaluable. Using
copulas, in such an application, could provide a predefined arbi-
trarily reduced set of data for the simulation of realistic renewable
power output behavior. It should be mentioned that the copula
approach properly models variates (both the expected and
extreme values) of the renewable prime movers (such as wind
speed or solar insolation) along with their dependence with each
other and with the load. Fitting a suitable copula provides a model
which can then be used to generate data needed for the subse-
quent analysis.
Energy Growth

Peak Load

Planning

Add Renewable DG

Costs/Integration Costs, 
Emissions

Energy Growth

Characterize Variability

Add Renewable DG

Lower Costs/Integration 
Costs, Emissions

Planning

Modify

Traditional Emerging

Fig. 12. Traditional and emerging practice in capacity planning [31].
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5.3. Prediction uncertainties and their dependence

The non-dispatchable nature of renewable distributed genera-
tion implies that system operation depends on power prediction
programs to forecast their output. Unfortunately, the prediction
results have high levels of uncertainty even in the short-term time
horizon. This is mainly because the specific statistical characteris-
tics of stochastic renewable generators (such as wind/PV) impair
the performance of forecasting algorithms. Probabilistic load flow
(PLF) becomes especially difficult when wind/PV generation is
considered. This is due to the high uncertainty of the produced
power, the non-Gaussian probability density function and the clear
dependence between the wind/PV dispersed generators and the
consumers’ load profiles. The predictions provided by short-term
power prediction programs are uncertain, and this uncertainty
must be modeled for an adequate assessment of these predictions
through PLF or other optimization/simulation procedures.

The dependence between uncertainties of short-term power
predictions could be modeled using copulas, by the presented
algorithm in Section 2. This will provide a more accurate modeling
compared to other methods such as using a linear correlation
matrix, or by assuming independence.

Other applications of the presented method are also possible
where a stochastic multivariate uncertainty exists. Considering the
rapid movement of passive power systems towards highly active
topologies forming smarter grids, it seems that the need for
modeling of such uncertainties will increase. In fact, both the tech-
nical problems such as interactions between converters and the grid
network in the new interconnected active system, and the financial
risks, requires an adequate representation and modeling of uncer-
tainty in a multivariate context. This could be efficiently engaged by
using copulas, as it is shown for a case study in this paper.
6. Conclusions

This paper suggests a new type of analysis related to the
deterministic-stochastic dependencies in power systems. The
performance assessment of a distribution feeder equipped with
renewable distributed generators is a challenging problem at the
planning stage. The complexity arises from the uncertainties
involved in predicting the DG output due to stochastic nature of its
input (wind, insolation), its location on the feeder, and interaction
with feeder load, which is another stochastic process. Simulating
stochastic processes that drive DG output, as well as DG placement,
combining it with extensive field measurements of load profiles at
feeders that are candidates for DG installations, and determining
their interaction, result in large datasets. In order to obtain the
usual load profiles, a method is necessary which takes into account
the stochastic dependence structure in a multivariate context. In
order to investigate and model stochastic dependence, the copula
theory has been presented. The Archimedean modeling algorithm
for the Frank copula has been presented together with the
modeling of interactions when the wind and the solar powers are
integrated with the system load in Davarzan area in Iran.

The procedure is demonstrated on an 11-bus MV distribution
feeder, with randomly placed PV generators and wind turbines.
However, the procedure is not affected by the changes in feeder
topology, as it operates on a set of load and DG profiles that may be
applied to an arbitrary feeder. The proposed algorithms serve as
a bridge between uncertainties imposed by having intermittent,
stochastic DG and conventional tools for analysis of distribution
systems. They provide more answers to the designer of DG-
enhanced networks.
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