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S =0 + jo Complex variable Ll .

N

Real part as> ,lai Imaginary part s ss s ,los
G(s) = G, + jG,  Complex function Laki<e ~0

. [0
G, and G, are real quantities JS

magnitude of G(s) is VG2 + G>

angle 6 of G(s) is tan"'(G,/G,)
S plane

complex conjugate of G(s) is G(s) = G, — jG,



* Ordinary point

Points in the S plane at which the function G(s) is analytic
* Singular point 3_iie Jalss
Points in the S plane at which the function G(s) is not analytic

* Pole kaé

Singular points at which the function G(s) or its derivatives

approach infinity z )3« () alaa s (gla 4y

e Zero Ja

Singular points at which the function G(s) equals zero



 K(s +2)(s + 10) .
G8) = S5 + 1)(s + 5)(s + 15 Jt

G(s) haszerosats = —2,s = —10,.

simple polesats = 0,s = —1,s = =5,
a double pole (multiple pole of order 2) at s = —15.

for large values of s G(s) = 53

S

G (s) possesses a triple zero (multiple zero of order 3) at s = oc.



Laplace Transform _w3t¥ o

f(¢t) = afunction of time ¢ such that f(¢) = Ofort < 0

s = a complex variable

"y
Ve
Cn
N
I

Laplace transform of f(¢)

Laplace transform of f(z) is given by

grw] = Fs) = [ eralio)= [Tfwea

i) sl
/ L e/? = cos6 + jsin6 M:sw&u@l:




1) Unit Step function =19 4y xG

1(t)

t'

A7) = [1xe =] =T e =)= 0=

\)

G\S&JJJ.?’-\SJ\?QU: Ja-\jc\liajgl_«.o

LIf(t — a)l(t — @)] = e*F(s) a=0



Pulse function b &b

f(t)lk
A A
Aty £ = 2108 — 21 - 1)
Lo Lo
g _A_ A — sty
v 0] = S toS
A <l
(¢) = lim 4 for0<i<i Impulse function 4 e b
to_) 0 § tp—0 tO’ 0 p 0Jc é?
= 0, fort <0, <t 4
@ #s(0)] = fim | 21— )
d —st,
5(t) | d—tO[A(l —e )]
= lim
ty—0 d
X d, (205)
t As



(S 55 JolS Jsaz) (g pme mil$ Y oot

() F(s)
Aal g4y pia Unit impulse 6(¢) 1
. 1
2l g aly Unit step 1(¢) -
1
g s?
n!
t" (n=1,2,3,...) ntl
S




e
s+ a
t —at 1
€ 2
(s + a)
n _,—at n!
t"e (n=1,2,3,... .
(s +a)"
) @
sin wt 5 5
§°+ w
Ky
cos wt 5 5
s+ w
: ®
e sin wt > >
(s +a)+ow
s+ a
e % cos wt




Y b Wolg,y Sy
SE[f(i)} = aF(as) (LS 55 Loy, JolS o)
S e s

N -
Elef(t)] = F(s + a) ELA() £ f(1)] = Fi(s) £ F(s)

t F(s) ] oo s o g ha ) AL
A
EE[/f(t) dt} = S[Af(t)] = AF(s)
0
d" % e
Lefn)] = 1) (n=1,2,3,...) oW dui I 8 Gide
[d" (1)} F(s) — és”"‘(ﬁgi) Ghajejss 52 @l Giie 0ILY dias
dt" ~
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Convolution Integral ¢swgdgsls™ 1,551

CM»‘Q\A) 0y 9> 43 d&jjj;\fd:\:u blses 0y 9> 43 uﬁal.éb-

EE[ltfl(t — ’T)fz(’T)d’T:| = Fi(s)Fy(s)
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f(t)
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f(t) A
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Final Value Theorem 2lg yldo 4ud
x,8 513 s plane G e 3 SF(S) sla s ol oS 550

:v.i)‘.b
f(o0) = lim f(t) = lim sF(s)

t—00 s—0
358 030l W5 (gp e ;L0 Il ey 4o (51
Initial Value Theorem aJgf ylude duiad

F(O+) = Lm f(t) = limsF(s)

t—0+ §—>00
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Partial-Fraction Expansion gy s s faws

B(s) _ K(S T Zl)(s T Z2)'”(S M Zm) form < n

T4 T G e )Gt )

where py, py,..., ppand 2y, 25,. .., Z,, are either real or complex quantities,

ol 51 [amn (S 45 50) 03l (gl ab Lo 87 55 900 3

A(s) s+p s+ p s+ p

n



f‘ kg_*la.b' LS‘J" Residue \,g JJLQ.«A..{ g_,g.fp M\:u

o= 6]

ZJj.«fuLsngLa-b f(t)wbm c&kéuﬂflawf\f

$_1|: ak :| — ake_pkt
S + D

f(t) = LYF(s)] = aje™™ + ae ™™ + -+ + a,e P, fort =0

J ke
s = + e —t —2t
(s+1)(s+2) s+1 c+o - ft) =27 -

F(s) =



J}.&; oa ] el 03l Cj& d}a.&ﬂ

+ TR

s+ 2s +5

S+25+5=(s+1+2)(s+1=j2) 4,5, buwl>a

sloul ) 5 alie gl o5 b 0oSon nw Ll oS (o0 o 25 Gk ]

\ -

Flesinwt| =

Fle™ coswt | = 5+ a)+a



s24+2s+5  (s+ 1)+ 22

2 N s +1
(s + 1)+ 2° (s + 1)+ 2°

F(s) =

f(t) = £ F(s)]

- 5513-1[ 2 2] n 255—1[ s+ 1 2]
(s +1)* + 2 (s +1)* + 2

= Se'sin2t + 2e ' cos2t, fort =0




(GG 51V 45,0) (6130 B b b (61 (25 (slo oS Lo

psy = S 2t 3 Je
(s +1)°
F(s) = B(s) _ b, b, bs

AGs) s+1 0 (s+1)2  (s+1)

oo ™) ne {20
= (82 + 25 + 3),— =[(i(s2+23-|—3) .
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_|._
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Partial-Fraction Expansion with MATLAB.

B(s) num  bys" + bys" '+ + b,

A(s)  den "+ as" -+ oa

n

num = [by b; ... b,]
den=[1 a; ... a,]

The command

[r,p,k] = residue(num,den)

B(s) _ r(1) r(2) r(n) S
AGs) s—p() Ts—p@ 5= pmy TG




B(s) 25>+ 5s*+3s +6
A(s) s+ 6s2+11s+6

[r,p,k] = residue(num,den)

r =

-6.0000
-4.0000
3.0000

s+2s+3  s°+2s+3

(s+1)? £ +32+3s+1

num = [1 2 3];
den=1[1 3 3 1];
[r,p,k] = residue(num,den)

r =

1.0000
0.0000
2.0000

p:

-1.0000
-1.0000
-1.0000

[l




Matrices and Vectors

al ais Ain
a1 a2 aan,
A = [aj] =
_aml Adm2 a"mn_

m X n is called the size of the matrix.

Ifm=n,wecall Aann X n squére matrix.

ai1, ase, ***, Ayy 1s called the main diagonal of A.

A vector is a matrix with only one row or column.



Addition of Matrices

The sum of two matrices A = [a;,| and B = [b;;| of the same size is written
A + B and has the entries aj;, + bj;, obtained by adding the corresponding entries
of A and B. Matrices of different sizes cannot be added.

Scalar Multiplication (Multiplication by a Number)

The product of any m X n matrix A = [aji ] and any scalar ¢ (number c) is written
cA and is the m X n matrix cA = [caji| obtained by multiplying each entry of A
by c.

A+B=B+A c(A+ B)=cA + cB
A+B)+C=A+B+C (c + A = cA + kA
A+0=A c(kA) = (ck)A

A+ (-A)=0. 1A = A,




Multiplication of a Matrix by a Matrix

The product C = AB (in this order) of an m X n matrix A = [aj;] times an r X p
matrix B = [b;;| is defined if and only if » = n and is then the m X p matrix
C = [¢ji| with entries

n = 1, ., m
1) Gk = O, aibi, = ajibik + ajobor + + + Ajnbuk
1=1 k=1,---,p.
A B — C
[m X n][n X p] =[mXp].
n=3 p=2 p=2
r A N ——MN— —
(e, a, ap b, by, c;; € | )
@y Gy Gp by by | = | € €y
m=4 < @3 Q3 Qg3 by, by, €31 C3 m

L _a41 Qyy Qy3 | _c41 c42_ )

Notations in a product AB = C




Transposition of Matrices and Vectors

The transpose of an m X n matrix A = [aj] is the n X m matrix A’ (read A
transpose) that has the first row of A as its first column, the second row of A as its
second column, and so on. Thus the transpose of A in (2) is A" = [ay;], written out

apy a2y adm1
T ai2 a4z Am2

) A" = [ay] =
_aln asan amn_

As a special case, transposition converts row vectors to column vectors and conversely.

AHT = A AT = A (thus ag; = aj),
(A + B)T = A" + BT Symmetric Matrix
T _ AT
(el = AT = —A  (thus ax; = —ajy, hence a;; = 0).

(AB)" = BTA".

Skew-Symmetric Matrix




Linear Independence and Dependence of Vectors

Given any set of m vectors a¢yy,* * *, auy)

c1aq) + cae) t 0+ cpam) = 0.

all ¢;’s zero —— If this is the only m-tuple of scalars

ac1), ", Ay are said to form a linearly independent set

Linear Dependence of Vectors

Consider p vectors each having n components. If n < p, then these vectors are
linearly dependent.




Rank of a Matrix

The rank of a matrix A is the maximum number of linearly independent row vectors
of A. It is denoted by rank A.

Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent

column vectors of A.
Hence A and its transpose AT have the same rank.




A determinant of second order is denoted and defined by

ey

D =detA =

aii

azi

ais

azz

A determinant of third order can be defined by

4) D=

M . is called the minor of aji. in D,

a1l

asi

asi

ai

as2

ass

ais

asz| —

ass

n
D= > (—1) " FayMj

k=1

— d1i1d22 — A412d21.

ais
4 asi

as3s
1,2,---,0rn)




The inverse of an n X n matrix A = [a;;] is denoted by A™" and is an n X n matrix
such that

1) AAT' =ATTA =1

where I i1s the n X » unit matrix (see Sec. 7.2).

If A has an inverse, then A is called a nonsingular matrix. If A has no inverse, then
A is called a singular matrix.

Existence of the Inverse

The inverse A~* of an n X n matrix A exists if and only if rank A = n, thus (by
Theorem 3, Sec. 7.7) if and only if det A # 0. Hence A is nonsingular ifrank A = n,
and is singular if rank A < n.

The proof will also show that Ax =b implies x = A" p



Inverse of a Matrix by Determinants

The inverse of a nonsingular n X n matrix A =

1
4) ATl = [Cite]" =

Cit. = (— 1) " *My,

In particular, the inverse of

dilx a1z .
A

a1 422

A =

Cii Co1
Ci2 Cap

laji] is given by

Cnl
Cn2

—ai2
aii



MATLAB Approach to Obtain the Inverse of a Square Matrix. The inverse of
a square matrix A can be obtained with the command

inv(A)

For example, if matrix A is given by

>
I
L N
N B =
whnh © N

then the inverse of matrix A is obtained as follows:

A=[11 2;3 4 0;1 2 5];
inv(A)

ans =

2.2222 —0.1111 —0.8889
—1.6667 0.3333 0.6667
0.2222 —0.1111 0.1111




AB # BA.

A~ H™1 = A,

(AC)"! = Cc 1AL

det (AB) = det (BA) = det A det B.

Ifrank A = n and AB = AC, then B = C.



Eigenvalues and Eigenvectors

Consider the following vector equation:
AX = AX. (A — ADx = 0.

Eigenvalues

The eigenvalues of a square matrix A are the roots of the characteristic equation
(4) of A.

Hence an n X n matrix has at least one eigenvalue and at most n numerically
different eigenvalues.

ail — A ais e ain

asy agg — A - don
4) D(A) = det(A — AI) = = 0.




Eigenvalue Problem

Find the eigenvalues and eigenvectors of the matrix A =

—4.0 4.0
—1.6 1.2

Solution. The characteristic equation is the quadratic equation

—4-1 4

det |A — AI| = =X +28)\+1.6=0.

—1.6 1.2 — A

It has the solutions A; = —2 and A, = —0.8. These are the eigenvalues of A.

For A=A = —2wehave (=40 + 2.0)x; + 40xy =0
—1.6x1 + (12 + 2.0).7(?2 = 0.

A solution of the first equation is x1 = 2, x2 = 1.

2 1
Eigenvectors are xP = { ] Similarly, x@ = { ]
1 0.8



