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Abstract: Despite appropriate design of girder under bending and shear, the deflection of long steel girders usually 
exceeds the allowable range, and therefore the structural designers encounter challenges in this regard. Considering 
significant features of the cables, namely, low weight, small cross section, and high tensile strength, they are used in this 
research so as to control the deflection of long girder bridges, rather than increasing their heights. In this study, 
theoretical relations are developed to calculate the increase in pre-tensioning force of V-shaped steel cables under 
external loading as well as the deflection of steel girder bridges with V-shaped cables and different support conditions. 
To verify the theoretical relations, the steel girder bridge is modeled in the finite element ABAQUS software with 
different support conditions without cable and with V-shaped cables. The obtained results show that the theoretical 
relations can appropriately predict the deflection of girder bridge with V-shaped cables and different support conditions. 
In this study, the effects of the distance from support on the deflection of mid span are studied in both simply supported 
and fixed supported girder bridge so as to obtain the appropriate distance from support causing the minimum deflection. 
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1 Introduction 
 

Reckoned as important components of a 

structure, cables are materials which can tolerate 

tensile force, and generally increase the stiffness 

and bearing capacity of a structure [1]. Nowadays, 

cables are increasingly used in structures. HOU   

et al [2] applied cable-cylinder bracing in the 

seismic retrofitting of steel flexural frames. From 

their view point, through this retrofitting method, 

the lateral strength of the storey augments without 

decreasing the ductility of flexural frame. FANAIE 

et al [3] presented theoretical relations for the cable- 

cylinder bracing system using a rigid cylinder like 

steel cylinder. They verified the results by finite 

element ABAQUS software. They also studied 

seismic behavior of steel flexural frames 

strengthened with cable-cylinder bracing and 

obtained reasonable results [4]. GIACCU [5] 

investigated the non-linear dynamic behavior of 

pre-tensioned-cable cross-braced structures in the 

presence of slackening in the braces. They 

concluded that there is a direct correlation between 

equivalent frequency and slackening in the braces. 

Pre-tensioning of steel beams through high strength 

cables is one of the most efficient methods so as to 

decrease the required steel and increase their 

bearing capacity. The pre-tensioning technique was 

primarily used in reinforced concrete structures; 

however, for the first time, it was utilized by 

DISCHINGER and MAGNEL in steel beams. Pre- 

tensioned steel structures are constructed all over 

the world, especially in America, Russia, and 
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Germany. This fact shows the structural and 

economic merits of pre-stressed steel beams 

compared to non-prestressed ones. The 

pre-tensioning technique is appropriate to construct 

new structures as well as strengthening the existing 

ones [6]. 

    Some researchers have studied pre-stressed 

composite beams using steel cable. AYYUB et al  

[7, 8] assessed pre-stressed steel-concrete 

composite beams experimentally as well as 

analytically using steel cable in the regions of 

positive and negative bending moments. They 

concluded that pre-tensioning increases the ultimate 

strength. NIE et al [9] presented theoretical 

relations to calculate the deflection as well as yield 

and ultimate moments of simply supported 

pre-stressed steel-concrete composite beam 

considering the slip effect. They verified the 

suggested formulas with the experimental results. 

ZHOU et al [10] presented the experimental study 

as well as numerical model of prestressed 

composite beams subjected to fire and positive 

moment. They observed that the fire resistance of 

composite beams prestressed with external tendons 

was highly influenced by the stress in the cable 

strands. Pre-stressed steel beams equipped with 

steel cables have been investigated by some 

researchers. TROITSKY [6] evaluated the behavior 

of pre-stressed steel beam using cables, and 

observed the increase in the stiffness and decrease 

in the deformation of the beam. BELLETTI et al 

[11] studied the behavior of pre-stressed simply 

supported steel I-shaped beams by tendons with 

focusing on two parameters, namely, the number of 

deviators and the value of prestressing force. PARK 

et al [12] analytically and experimentally evaluated 

the flexural behavior of steel I-beam pre-stressed 

with externally unbonded tendons. They figured out 

considerable increase in the yielding and ultimate 

bearing capacity of steel I-beam. KAMBAL et al 

[13] derived a finite-element formulation to 

investigate the effectiveness of applying the 

prestressing technique with respect to the flexural 

behavior of a simply supported steel box girder and 

they verified it by experimental results. ZHANG 

[14] examined the analytical solutions of the 

symmetric and antisymmetric elastic lateral- 

torsional buckling (LTB) of prestressed steel 

I-beams, with rectilinear tendons, under equal end 

moments and verified the correctness of the 

analytical solutions by those simulated by using 

ANSYS. A number of researchers have investigated 

the dynamic behavior of pre-tensioned. NOBLE  

et al [15] studied the results of dynamic impact 

testing on externally axially loaded steel rectangular 

hollow sections (RHSs) and compared the response 

to that of externally post-tensioned steel RHSs. As 

well as, they tested the validity of the 

“compression-softening” effect for post-tensioned 

sections. They concluded that the “compression- 

softening” theory is not valid for pre- or post- 

tensioned sections. CAO et al [16] investigated the 

vibration performance of the arch prestressed 

concrete truss (APT) girder subjected to the on-site 

heel-drop and jumping impact tests and performed 

theoretical analyses. They concluded the theoretical 

fundamental natural frequency is in general 

agreement with the experimental result. 

MIYAMOTO et al [17] have studied the dynamic 

behavior of the pre-tensioned simply supported 

composite beam with external tendon. They derived 

the natural frequency equation of pre-tensioned 

beam based on the flexural vibration equation and 

verified the predicted equation by comparing it with 

the results of the dynamic experiment. PARK et al 

[18] analytically and experimentally studied the 

strengthening effect of bridges using external 

pre-tensioned tendons and concluded that 

strengthening reduces the mid span deflection by 

10%−24%. REN et al [19] proposed the empirical 

formulas to estimate cable tension based on the 

solutions using energy method and fitting the exact 

solutions of cable vibration equations. They 

considered the cable sag and bending stiffness and 

verified the proposed formulas by the experimental 

results. Despite appropriate design of girders under 

bending and shear, their deflection usually exceeds 

the allowable range. In this research, the V-shaped 

steel cables are used so as to control the deflection 

of steel I-shaped girder bridges with various support 

conditions, rather than increasing their heights. The 

increase of pre-tensioning force of V-shaped steel 

cables subjected to external loading is determined 

by method of least work. Then, the method of 

virtual work is applied to developing the deflection 

relations of steel girder equipped with cables. In 

order to validate the obtained deflection relations, 

the results of theoretical relations are compared 

with those of finite element model of the girders. 
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2 Pre-tensioning symmetric I-shaped 
steel girder bridges with V-shaped 
steel cables 

 

    Symmetric I-shaped steel girder bridges have 

been intended with different support conditions, 

based on two different types, simply supported and 

fixed supported girder. As shown in Figure 1, 

pre-stressed V-shaped cables have been used in both 

sides of girder web, and subjected to external 

loading. As observed in the figure, the cable is fixed 

at both ends to the top flange of the girder in both 

sides of the web, and then, it passes through the 

deviators on the bottom flange causing the pattern 

with two inclined cables. 

 

 
Figure 1 Pre-stressed symmetric I-shaped steel girder 

bridges with two V-shaped steel cable under external 

loading: (a) Simply supported girder bridge along with 

V-shaped cables; (b) Fixed supported girder bridge along 

with V-shaped cables 

 

    The following assumptions are taken into 

account to analyze pre-stressed symmetric I-shaped 

steel girders with steel cable: 

    1) The materials of steel girder and cable are 

linearly elastic; 

    2) The deformations are small; 

    3) Shear deformation is not considered; 

    4) The friction loss in the region of cable 

deformation and the relaxation of steel cable are 

ignored; 

    5) Steel girder section is rolled; therefore, it is 

compact. 

 

3 Increase of pre-tensioning force of 
V-shaped steel cable in a girder bridge 
under external loading 

 

    The cable length increased by ∆L, and its 

pre-tensioning force, Fpt, increased by ∆F, under 

uniform distributed loading. The static equilibrium 

equations are not sufficient to calculate ∆F, because 

the structure is statically indeterminate. So, the 

increase of the force in the cable can be calculated 

using the method of least work. 

    To calculate the increase in pre-tensioning 

force of each cable through the method of least 

work, the total strain energy of the girder caused by 

its bending moment and axial force in different 

support conditions as well as the strain energy of 

each cable owing to its axial force are determined. 

Then, the relation of total strain energy is 

differentiated with respect to ∆F and the result is 

equated to zero to obtain the relation to increase the 

pre-tensioning force of the cable (∆F). 

 

3.1 Calculating increase in pre-tensioning force 

of V-shaped steel cables in simply supported 

girder bridge along with cables 

    Concerning the simply supported girder with 

the V-shaped cables, as shown in Figure 2, the 

horizontal component of the force of first inclined 

cable from the left side (C1) should be equal to the 

horizontal component of the force of second 

inclined cable from the left side (C2) to keep the 

bending moment continuous in the slope change 

region of cable. Therefore, if the increase in 

pre-tensioning force of steel cable is assumed as ∆F 

in the first slope part (C1), then it will be equal to  

1

2

cos

cos

F 




in the second slope part (C2); hence, the 

axial force of the girder is equal to 2∆Fcosθ1. 
 

 
Figure 2 Simply supported girder bridge along with two 

V-shaped steel cables (N.S.−Neutral surface) 

 

    Considering the symmetry of structure and 

loading (Figure 2), the bending moment diagram 

plotted for right half of the girder is exactly the 

same as that of its left one. Therefore, the strain 

energy caused by bending moment can be 

determined for half of the girder and duplicated to 

calculate the bending strain energy for the whole 
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girder. In what follows, bending moment is 

obtained for simply supported girder along with 

V-shaped steel cables under uniform distributed 

loading for half of the girder to calculate the strain 

energy caused by bending moment: 

    For 0≤x≤a, 
 

 1 0 1 1 1 22 cos sin cos tanM x Fy F F   
      


 

    
2

2 2
bql qx

x




                           (1) 

 

    For 
2
bla x  , 

 

 
2

2 1 2cos tan
2 2
bql x qx

M x Fa              (2) 

 
    Considering the symmetry of structure and 

loading, the total strain energy equation is written 

as follows: 
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    In order to calculate the increase in 

pre-tensioning force of each cable (∆F) through the 

method of least work, the relation of total strain 

energy is differentiated with respect to ∆F and the 

obtained result is equated to zero: 
 

0
( )

U

F




 
                                (4) 

 
    The relation for calculating the increase of 

pre-tensioning force of each cable (∆F) is obtained 

as follows: 
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   (5) 

 
where q is the intensity of uniform distributed load; 

lb, lC1 and lC2 are the lengths of girder, first inclined 

cable (C1) and second inclined cable (C2), 

respectively; Ab and Ac are the cross sections of the 

girder and cable at both sides of the web, 

respectively; Eb and Ec are modulus of elasticity of 

the girder and cables, respectively; Ib is the moment 

of inertia of steel section; y0 is the distance of 

neutral surface to the connection point of steel cable 

to the girder flanges (half of the height of girder 

web); and θ1 and θ2 are the angles between the first 

and second inclined cable and horizontal axis, 

respectively; a is the distance between the support 

and slope change region of the cable (horizontal 

projection of first inclined cable). 

 

3.2 Calculating increase in pre-tensioning force 

of V-shaped steel cables in fixed supported 

girder bridge along with cable 

    In the fixed supported girder with V-shaped 

steel cables, as shown in Figure 3, assuming the 

increase in pre-tensioning force of steel cable to be 

equal to ∆F in the first slope part (C1), the increase 

of pre-tensioning force of cable in the second slope 

part (C2) is 1

2

cos
.

cos

F 




 Therefore, axial force of the 

girder is equal to 2∆Fcosθ1. It should also be 
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mentioned that the fixed supported girder with the 

cables has two degrees of indeterminacy, the 

increase in pre-tensioning force of the cable (∆F), 

and the moment at fixed end (M). To calculate the 

increase of pre-tensioning force of the cables as 

well as the moment at fixed end through the method 

of least work, the relation of total strain energy is 

differentiated with respect to each of them and the 

result is equated to zero resulting in the desired 

relations. Hence, bending moment of fixed 

supported girder along with V-shaped steel cables 

under uniform distributed loading is obtained for 

half of the girder so as to calculate the strain energy 

caused by bending as follows: 

 

  
Figure 3 Fixed supported girder bridge along with 

V-shaped steel cables 
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    Considering the symmetry of structure and 

loading, the total strain energy equation is written 

as follows: 
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    In order to calculate the moment at fixed end 

(M) through the method of least work, the relation 

of total strain energy is differentiated with respect 

to M and the obtained result is equated to zero: 
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    The calculated bending moment at the fixed 

end (M) is obtained as follows: 
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    In order to calculate the increase of pre- 

tensioning force of each cable (∆F) through the 

method of least work, the relation of total strain 

energy is differentiated with respect to ∆F and the 

obtained result is equated to zero: 
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    The calculated increase of pre-tensioning force 

of cables (∆F) is obtained using Eq. (10) as follows: 
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    If 0
1

2 2
0

2
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4

y

a y
 


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2 2
0

cos
4

a
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and 0
2

2
tan

b

y

l a
 


(as shown in Figure 3) are 

replaced in Eq. (10), the moment at fixed end (M) is 
2

.
12

bql
 This value is the moment at fixed end in 

girder without cable. 

 

4 Deflection of girder bridge 
 

    The deflection of girder with different support 

conditions without cable and with V-shaped cables 

can be calculated by ignoring the effects of shear 

and axial forces using virtual work method. 

 

4.1 Maximum deflection of simply supported 

and fixed supported girder bridges without 

cable under uniform distributed loading 

    If the length and flexural rigidity of the girder 

are lb and (EI)b, respectively, the maximum 

deflection of simply supported and fixed supported 

girders without cable under uniform distributed 

loading q are calculated as follows: 

    The deflection of the mid span of simply 

supported girder without cable: 
 

 

4

mid

5

384
b

b

ql

EI
                           (13) 

 
    The deflection of the mid span of fixed 

supported girder without cable: 

 

4

mid
384

b

b

ql

EI
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4.2 Calculating maximum deflection of simply 

supported girder bridge along with 

V-shaped cables 

    Assuming the force of steel cable to be equal 

to F in the first inclined part (C1), the force of cable  

in the second inclined part (C2) is 1

2

cos
.

cos

F 


 

Considering the symmetry of structure and loading 

(Figure 2), bending moment of simply supported 

girder along with V-shaped cables is obtained under 

real loading for the half of girder as follows: 

    For 0≤x≤a,  

 1 1 0 12 cos sinM x F y F 
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    For 
2
bla x  , 

 

 
2

2 1 2cos tan
2 2
bql x qx

M x F a             (16) 

 
where F=Fpt+∆F is the total force of the cable; Fpt 

is the initial pre-tensioning force of the cable; ∆F is 

the increase of pre-tensioning force of the cable. 

    In analyzing the structure under virtual loading, 

if the structure is indeterminate, its constraints can 

be eliminated up to being converted to a stable 

determinate structure. In the girder and cable 

system, the cable is a redundancy and can be 

omitted in analyzing the structure under virtual 

loading. The bending moment of simply supported 

girder is obtained under unit virtual load on mid 

span for half of the girder as follows: 

    For 0
2
blx  , 

 

 
2

x
m x                                (17) 
 
    Considering the symmetry of structure and 

loading, the deflection of the mid span of simply 

supported girder along with V-shaped cables is 

calculated as follows:  
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4.3 Calculating maximum deflection of fixed 

supported girder bridge along with 

V-shaped cables 

    Assuming the force of steel cable to be equal 

to F in the first inclined part (C1), the force of cable  

in the second inclined part (C2) is 1

2

cos
.

cos

F 


 The 

moment at fixed end (M) is obtained as follows (as 

shown in Section 3.2): 
 

2

12
bql

M                                (19) 

 
    The bending moment of fixed supported girder 

along with cable under real loading (Figure 3) is 

obtained for half of the girder as follows: 

    For 0≤x≤a, 
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    The bending moment of fixed supported girder 

under unit virtual loading on mid span is obtained 

for half of the girder as follows: 

    For 0
2
blx  , 
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2 8
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    The deflection of mid span of fixed supported 

girder along with cable is calculated as follows: 
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               (23) 

 

5 Finite element modeling of steel girder 
bridges pre-stressed with two V-shaped 
steel cables for calculating deflection 

 

    Simply supported and fixed supported girders 

have been designed based on load and resistance 

factor design (LRFD) method using AISC360-10 

code [20]. Simply supported girder has been 

designed in such a way that the maximum 

deflection under dead and live loads is greater than 

the allowable deflection (1/240 of the girder length). 

However, due to the high stiffness of fixed 

supported girders, usually the maximum deflection 

is less than the allowable limit. Therefore, a fixed 

supported girder has been merely designed to show 

the effects of cable. Table 1 presents the properties 

of the girders with various support conditions as 

well as related allowable and the maximum 

deflections under service load. It should be noted 

that the length of loading span is 1.5 m for the 

girders with different support conditions; dead and 

live loads are 450 and 200 kg/m2, respectively. 

    The girders are modeled in the finite element 

ABAQUS software under uniform distributed loads, 

considering different support conditions without 

cable and with V-shaped steel cables. Figure 4  
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Table 1 Properties and deflections of girders with 

different support conditions 

Type of 
girder 

Girder span 
length/m 

Cross- 
section of 

girder 

Maximum 
deflection/ 

cm 

Allowable 
deflection/ 

cm 

Simply 
supported 

girder 
12 IPE400 5.691 5 

Fixed 
supported 

girder 
12 IPE330 2.237 5 

 

 
Figure 4 Finite element model of girder along with 

V-shaped cables: (a) Simply supported girder along with 

cables; (b) Fixed supported girder along with cables 

 

presents finite element model of the girder along 

with the cable. The girders and cables have been 

modeled in 3-dimensional coordinate with shell and 

truss elements (as wire) respectively. The weld’s 

connector is used to connect the cable to the top 

flange of the girder at two ends providing a perfect 

connection between two nodes. Moreover, coupling 

constraint is used to connect the cables to the 

bottom flange of the girder so as to model the 

deviator’s behavior. Uniform distributed load is 

applied as a surface traction type on the top flange. 

Predefined field tool is used to create the initial 

pre-tensioning stress in the cables as well. The 

initial pre-tensioning stress is applied to the cable in 

ABAQUS software and uniform distributed loading 

is applied. Because the steel girder is not rigid and 

the cable creates the compression force and the steel 

girder length is decreased. So, a part of the initial 

pre-tensioning stress of cable is lost. Therefore, the 

amount of the initial pre-tensioning stress is 

considered to be greater in ABAQUS software to 

reach the desired pre-stressing value after its loss. 

Figure 5 presents the locations of cables in the 

girders with different support conditions. 

 

 
Figure 5 Locations of two V-shaped steel cables in 

girders: (a) Simply supported girder along with cable;  

(b) Fixed supported girder along with cable 

 

    For better presenting the behavior of girder 

with V-shaped cables and different support 

conditions, first it has been modeled in the software 

without cable, and then with cables; and the 

obtained results have been compared with each 

other. The materials of girder and cables are defined 

as linearly elastic in the software. The steel material 

of girders considered in this research is ST-37; yield 

stress is 240 MPa; modulus of elasticity of steel is 

200 GPa; Poisson ratio is 0.3; density of steel is 

7850 kg/m3. The material of steel cable is in 

accordance with ASTM A416M standard [21]. 

7-wire strand is considered for steel cable with low 

relaxation, elasticity module of 28.5×106 psi 

(196501.8  MPa) and Poisson ratio of 0.3. 

 

6 Verification of theoretical relations of 
deflection with results of ABAQUS 
models 

 

    Static general analysis of ABAQUS software 

has been used to analyze the girders with different 

support conditions (Table 1), without cable and with 

cables.The cross-sectional area of steel cables is 

considered 7-wire strand with low relaxation for 

simply supported and fixed supported girders with 

equal numbers of cables at both sides of the webs 

with the cross section areas of 140 mm2 and   

98.71 mm2, for each cable, respectively. These 
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values are considered according to ASTM A416 

standard and presented in Table 2. Pre-tensioning of 

the steel cable is considered 600 MPa. Controlling 

the accuracy of theoretical relations, the maximum 

deflections obtained from modeling are compared 

to those of the theoretical relations for the girders 

with V-shaped cables and with different support 

conditions. 

 

Table 2 Cross-sectional area of V-shaped steel cables for 

girders with different support conditions 

Type of girder 
Total cross-section area of 

steel cable/mm2 

Simply supported girder 560 

Fixed supported girder 395 

 

    The results of the maximum deflection 

obtained from modeling are compared with those of 

Eqs. (13) and (18) for simply supported girders 

without cable and with cable and with those of Eqs. 

(14) and (23) for fixed supported girders without 

cable and with cable, as listed in Table 3. 

    As shown in Table 3, the maximum deflection 

of the girder without cable obtained from modeling 

is slightly more than that of theoretical relations. 

The reason is that the girder has been modeled in 

ABAQUS software in the form of shell; and 

therefore girder haunch cannot be modeled. The 

maximum deflection of the girder along with 

V-shaped cables, obtained from modeling, is very 

close to that of theoretical equations. Considering 

the theoretical relations of increasing the 

pre-tensioning force of each cable, reducing the 

moment of inertia in ABAQUS software due to not 

modeling the girder haunch results in obtaining 

more increase in the pre-tensioning force in 

modeling than that of theoretical equations. 

Consequently, the steel girder deflection related to 

the increase in pre-tensioning force of the cables, 

obtained from modeling, is slightly more than that 

of theoretical relations. Therefore, in calculating the 

deflections of girders along with V-shaped steel 

cables and different support conditions, the errors 

arise from different deflections of the girders along 

with the cables, related to the status of increasing in 

pre-tensioning force of the cable, obtained from 

modeling and those of theoretical equations operate 

as opposed to that of the girder without cable 

related to the uniform distributed loading. 

Consequently, they cancel out the effects of each 

other. 

    Bending moment caused by cable force is in 

the opposite direction of bending moment due to 

uniform distributed loading. As presented in Table 3, 

the maximum deflection of the girder along with 

pre-stressed cables is less than that of the girder 

without cable. Moreover, the maximum deflection 

is less than allowable limit in simply supported 

girders. Therefore, using the cables satisfies the 

deflection criterion under service load. 

 

7 Effect of length a on maximum 
deflection of simply supported and 
fixed supported girder bridges along 
with V-shaped steel cables 

 

    Equations (18) and (23) are considered  to 

calculate the maximum deflections of simply 

supported and fixed supported girders along with 

the V-shaped cables according to Table 1 for simply 

supported and fixed supported, Table 2 for 

cross-section of steel cable, and a of Figures 2 and 

3 for different values of the distance from support. 

Figures 6 and 7 depict the curves of the maximum 

deflection for simply supported and fixed supported 

girders along with V-shaped steel cables for various 

distances from support (a) for half of the girder. 

    According to Figures 6 and 7, if a is zero in 

the simply supported as well as fixed supported 

girders along with the cables, their maximum 

deflections are 5.691 cm and 2.237 cm, respectively. 

These values are the results of the maximum 

 

Table 3 Maximum deflection values obtained from modeling and theoretical equations for girders with different support 

conditions without cable and with V-shaped steel cables 

Type of girder 
Maximum deflection of girder 
obtained from modeling/cm 

Maximum deflection of girder obtained 
from theoretical equations/cm 

Allowable 
deflection/cm 

Simply supported 
girder 

Without cable 5.877 5.691 
5 

With cable 4.270 4.302 

Fixed supported 
girder 

Without cable 2.381 2.237 
5 

With cable 0.521 0.622 
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Figure 6 Maximum deflection of simply supported 

girder along with V-shaped steel cables for different 

values of distance from support (a) for half of the girder 

 

 
Figure 7 Maximum deflection of fixed supported girder 

along with V-shaped steel cables for different values of 

distance from support (a) for half of the girder 

 

deflections of simply supported and fixed supported 

girders without cable (Table 3). The reason is that 

for keeping the bending moment in the slope 

change region of cable continuous, the horizontal 

component of the force of first inclined cable from 

the left side (C1) should be equal to the horizontal 

component of the force of second inclined cable 

from the left side (C2). Therefore, if the first 

inclined cable from the left side (C1) becomes 

vertical in its special status (in the case a is zero), 

the horizontal component of vertical cable force 

becomes equal to zero; and consequently, the 

horizontal component of the force of second 

inclined cable from the left side (C2) becomes zero. 

As the length of vertical cable which is equal to the 

distance between two flanges of the girder remains 

constant, no force is created in the length of cable. 

Therefore, the cable has no effect on the girder 

behavior; and the girder deflection is exactly the 

same as that of the girder without cable. Then, 

maximum deflection reduces with increasing in the 

distance from support (a). Finally, for half length of 

the girder, the maximum deflections are the 

minimum; 4.016 cm and 0.286 cm, respectively, in 

the simply supported and fixed supported girder 

along with the cable. 

 

8 Comparison of bending moment 
diagrams of girder bridges without 
cable and with V-shaped steel cables 

 

    The bending moment diagrams of the girders 

with different support conditions without cable and 

with V-shaped steel cables are plotted and 

compared for the girders presented in Table 1. The 

total cross-section areas of steel cables are 

according to Table 2 and pre-tensioning stress of 

steel cables is assumed 600 MPa. 

 

8.1 Comparison of bending moment diagrams of 

simply supported girder bridge without cable 

and with V-shaped steel cables 

    The bending moment diagrams of simply 

supported girders without cable and with V-shaped 

cables are plotted based on Eqs. (15) and (16) and 

are depicted in Figure 8. 

 

 
Figure 8 Bending moment diagrams of simply supported 

girder without cable and with V-shaped cables 

 

    As shown in Figure 8, the bending moment of 

simply supported girder with cable is increased 

compared to that of simply supported girder without 

cable from each support to the location of the 

bending moment being equal in simply supported 

girder with V-shaped steel cables and without cable 

and then is decreased between two locations of the 

bending moment being equal in simply supported 
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girder with cables and without cable. 

 

8.2 Comparison of bending moment diagrams of 

fixed supported girder bridge without cable 

and with V-shaped steel cables 

    The bending moment diagrams of fixed 

supported girders without cable and with V-shaped 

cables are plotted based on Eqs. (20) and (21) and 

are depicted in Figure 9: 

 

 
Figure 9 Bending moment diagrams of fixed supported 

girder without cable and with V-shaped steel cables 

 

    As shown in Figure 9, the bending moment of 

fixed supported girder with V-shaped steel cables is 

decreased compared to that of fixed supported 

girder without cable. 

 

9 Conclusions 
 
    Cables, due to their low weights, small cross 

sections, and high tensile strengths, are reckoned as 

proper alternatives for pre-tensioning long steel 

girders subjected to uniform distributed loads. In 

this research, cables are employed to pre-stress the 

girder bridges with different support conditions in 

which the deflection is not within the allowable 

range, despite appropriate design under bending and 

shear. Theoretical equations have been derived to 

calculate the increase in pre-tensioning force of the 

V-shaped steel cables, the deflection of simply 

supported and fixed supported girders with and 

without cables. The results obtained from the finite 

element model and theoretical equations, are briefly 

summarized as follows: 

    1) The moment at fixed end in fixed supported 

girder along with V-shaped steel cables is 

independent of total force of the cables. 

    2) Adding cables to the girder results in 

reducing the deflection of girder with different 

support conditions. Comparing the results obtained 

from theoretical equations and those of finite 

element model demonstrates that the theoretical 

equations developed in this article can properly 

predict the deflection of simply supported and fixed 

supported without cable and with V-shaped steel 

cables. 

    3) The effects of length a, on the maximum 

deflection of simply supported and fixed supported 

girders along with the V-shaped cables have been 

studied. According to the obtained results, if a is 

equal to zero, the maximum deflection of girder 

without cable is obtained. If the distance from 

support (a) increases, maximum deflection 

decreases; and finally, for half length of the girder, 

maximum deflection is minimum. 

    4) The bending moment diagrams show that in 

simply and fixed supported girders along with 

V-shaped steel cables, cables reduce the bending 

moment of girder compared to those of simply and 

fixed supported girders without cable. 
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中文导读 
 

使用两个 V形预张紧电缆对长钢 I型梁桥的挠度控制 
 

摘要：尽管对梁在弯曲和剪切作用下的设计合理，钢梁的挠度往往超过允许范围，因此结构设计人员

在这方面遇到了挑战。考虑到拉索重量轻、截面小、抗拉强度高等特点，采用拉索来控制长梁桥的挠

度，而不是提高其高度。建立了计算 V 形钢索在外荷载作用下的预张力的理论关系式，并计算了 V

形索和不同支承条件下钢梁桥的挠度。为验证理论关系，采用 ABAQUS 有限元软件，在无索和有 V

形索的情况下，对钢梁桥进行有限元建模。结果表明，所建立的理论关系式能够较好地预测 V形索梁

桥在不同支护条件下的挠度。另外，还研究了简支梁桥和固定梁桥中跨间距对跨中挠度的影响，得出

了最小挠度与支座之间的适当距离。 

 

关键词：挠度；钢桥；I形梁；V形索；预张拉；最小功 
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