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Abstract—We develop an analytical framework for queueing
and delay analysis in the case of a number of distinct flows
arriving at a network node, where Asynchronous Partial Network
Coding (APNC) is applied for an efficient packet transmission.
In order to perfectly model and analyze the practical communi-
cation networks, the arriving flows are assumed to be general
Markovian Arrival Processes (MAPs). As a key example, we
apply the proposed model to the problem of coded caching in
single bottleneck caching networks. In addition, we verify the
accuracy of the proposed model through simulations and real
trace-driven experiments.

Index Terms—Markovian arrival process, queueing analysis,
delay, network coding, caching.

I. INTRODUCTION

NETWORK coding (NC) was initially introduced and
shown to increase efficiency of multicast networks in

[1]. Network coding can be used to improve throughput
and robustness of such networks by means of algebraically
combining packets that belong to different information flows
passing through an intermediate network node. As a key
motivating example, recently in caching networks, network
coding is applied to reduce transmission load on the multicast
links [2], and improve system performance [3], [4].

Delay is an important quality of service (QoS) metric in
recent communication networks, such as 5G cellular networks
and vehicular networks. The traffic of user requests plays an
important role in delay analysis of the networks. In contrast to
common independent and identically distributed (i.i.d) traffic
models, such as Independent Reference Model (IRM) [5],
[6], Markovian Arrival Processes (MAPs) [7] can model the
requests traffic in practical networks much more accurately.
In this paper, we study delay analysis of network coding in
multicast networks by considering MAP traffic flows.

A. Related Works

Delay in multicast networks that apply network coding has
been studied from different perspectives. For instance, the
average decoding delay at receivers of a broadcast network,

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was supported by the Iran National Science Foundation under
Grant 95824827.

F. Rezaei and B. H. Khalaj are with the Department of Electrical En-
gineering, Sharif University of Technology, Tehran, Iran. A. Momeni is
with the Department of Electrical Engineering, Stanford University, USA. e-
mails:(f_rezaei@ee.sharif.edu, khalaj@sharif.edu, amomenis@stanford.edu.)

applying random linear network coding, is studied in [8].
The authors in [9] study a context-aware network coding and
scheduling in wireless networks by considering two types of
delay-sensitive and delay-tolerant network traffic. Minimizing
the total transmission cost of network coded multicasting in
cognitive radio networks, by considering a delay constraint, is
studied in [10]. The authors in [11] propose a general frame-
work to develop optimal and adaptive joint network coding
and scheduling schemes and study the mean packet delay as a
function of the throughput. Video-aware opportunistic network
coding schemes that take into account the decodability of
network codes by several receivers and deadlines of video
packets are also studied in [12] and [13].

A key question arising in a number of problems relates
to the amount of delay packets of different information
flows experience in average while crossing a certain node
in the network that adopts network coding approaches. Such
problem has been addressed under various network scenarios
and network coding schemes [14]−[18]. The work in [14]
analyzes the queueing delay at a single node in a network
at which inter-session network coding is performed over the
flows entering the node under two different schemes referred
to as synchronous and asynchronous partial NC (SNC and
APNC, respectively), where the inputs are assumed to be of
the renewal model. In the synchronous case, the encoding
node requires each packet in every flow to be encoded with
a packet of all other flows that pass through a given node.
In the asynchronous case, at the beginning of an encoding
process, the node picks the packets of the flows whose buffers
are not empty, then combines and sends them out. Through
the analysis of these two different schemes, it is shown that
the synchronization requirement leads to a detrimental effect
on delay. In [15], the authors analyze the queueing delay
at a node at which packets arrive according to a Bernoulli
process and are stored in an infinite-capacity buffer. Packets
are then removed in blocks to be transmitted to multiple
destinations each of which receiving the coded packets through
an independent erasure channel. The transmission process for
each coded packet continues until all destinations receive the
packet correctly. In [16], it is shown that in a serial network
with geometric input, the total transmission delay for a block
of K packets is upper bounded by a constant plus K divided
by the capacity of the worst-case or bottleneck link.

The aforementioned works on network coding perform
their analysis under the assumption that information flows
correspond to renewal arrival processes [19] in which the
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inter-arrival times of packets are i.i.d. random variables (e.g.,
geometric processes in the case of slotted networks or Poisson
arrivals otherwise). It should be noted that such processes
cannot effectively model packet flows in practical networks
[5], [6]. Therefore, the effect of network coding on packet
delay should be explored for the case of more practical arrival
processes. The Markovian arrival process, and its subrandom
processes (e.g., Markov-Modulated Poisson Process (MMPP)
[20]−[23]) are good candidates for modeling such flows. In
[24] and [25], a single-server queue with a Markovian arrival
process is studied. Also, the authors of [17] explore the achiev-
able rate region in a butterfly scenario when the two sources
generate packets according to a two-state Markov-modulated
fluid process, demonstrating that network coding outperforms
traditional routing unless the network is asymmetric. Finally,
in [18], the energy-delay tradeoff is investigated in a two-way
relay channel where packet flows are assumed to be Markovian
arrival discrete processes.

B. Contributions
In this paper, we analyze a practical multicast network

where the arrival flows are independent general Markovian
arrival processes and asynchronous partial network coding is
applied to transmit the arrival packets. As a key motivating
example, we apply this model to the case of caching networks,
where some packets are cached locally in order to create
coded multicast opportunities and simple packet decodablity,
as will be discussed in section IV. In [2], we studied coded
caching schemes in single bottleneck caching networks, by
assuming IRM traffic model. Subsequently in [26], we studied
heteregeneous cellular caching networks, without network
coding, by considering IRM traffic. Since, the IRM traffic
model is a memoryless process and ignores all temporal
correlations in the stream of requests, it cannot effectively
model the packet flows in practical networks [5], [6]. It should
be noted that in recent communication networks, the user
experienced delay is an important QoS metric and should
be perfectly analyzed. However, the delay analysis results
achieved under IRM traffic model cannot accurately reflect
the results in an operational network. Therefore, in order to
take into account a realistic traffic model, leading to reasonable
analytic results, we consider the MAP model. In this paper,
we analyze single bottleneck caching networks by considering
MAP traffic flows and APNC, leading to a more accurate and
comprehensive analysis in the case of practical scenarios. The
main contributions of this paper can be summarized as follows:
• We analyze asynchronous partial network coding under

Markovian arrival process flows, using matrix geometric
methods [27], in order to perfectly model the practical
multicast networks.

• We derive the steady-state queue lengths of the flows at
arbitrary time t and present delay analysis of applying
asynchronous partial network coding in a network with
distinct MAP flows.

• We apply the proposed model and analysis to single
bottleneck caching networks and analyze such networks
by considering the practical models of MAP traffic flows
and APNC.

Fig. 1. A network node with F input MAP flows, applying asynchronous
partial network coding.

• We show that the proposed analyis based on the MAP
flows can significantly improve traffic modeling in prac-
tical networks, by running real trace-driven experiments.

The rest of the paper is organized as follows. Section II
describes the system model. In section III, the main analytic
approach is presented. Applying the proposed model to single
bottleneck caching networks is discussed in section IV. In sec-
tion V, the performance evaluation through numerical results
is presented. Finally, section VI concludes the paper.

II. SYSTEM MODEL

We consider a network node that receives packets from
F distinct MAP flows. Received packets are then stored in
the corresponding buffers and asynchronous partial network
coding is applied at each node, as illustrated in Fig. 1. It
should be noted that since synchronous network coding leads
to an unstable system [2], [14], we will focus on the more
practical asynchronous partial network coding case. We use
the matrix geometric methods proposed in [24] and [25],
where the authors studied a single-server queue with a single
Markovian arrival process, in order to analyze our network
of interest with F distinct MAP flows arriving at a network
node where asynchronous partial network coding is applied to
transmit the packets of these MAP flows.

A. Arrival Processes

The arrival process of each flow is assumed to be a
general Markovian arrival process [24], described by stochastic
matrices C̃f and D̃ f of size m f × m f . More specifically, for
the f th flow, we consider a continuous time Markov process
with m f transient states, where the infinitesimal generator
is given by Q̃ f = C̃f + D̃ f . Assuming that the underlying
Markov process of the f th flow is in a transient state i,
at the end of the sojourn time in that state, there occurs a
transition to another (or possibly the same) state, and the
transition may or may not correspond to an arrival epoch.
The rate at which the corresponding process transits from
state i to state j with a packet arrival is given by (D̃ f )i j .
Similarly, the rate at which the corresponding process transits
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TABLE I
OBTAINING THE TOTAL ARRIVAL STATE, Jtot (t), BASED ON THE
INDIVIDUAL ARRIVAL STATES, IN AN EXAMPLE WITH F = 2 AND

m1 = m2 = 2.

J1(t) J2(t) Jtot (t)
1 1 1 + (1 − 1) ×m2 + (1 − 1) = 1
1 2 1 + (1 − 1) ×m2 + (2 − 1) = 2
2 1 1 + (2 − 1) ×m2 + (1 − 1) = 3
2 2 1 + (2 − 1) ×m2 + (2 − 1) = 4

from state i to state j with no packet arrival is given by
(C̃f )i j, i , j. The diagonal elements of C̃f are also given
by (C̃f )ii = −(

∑m f

j=1,i,j(C̃f )i j +
∑m f

j=1(D̃ f )i j).
According to the model, the f th MAP flow has m f states.

The state of the f th flow at time t, which is independent of
the other flows’ states, is denoted by Jf (t), 1 ≤ Jf (t) ≤ m f . In
order to have a unique scalar state at time t, representing the
states of all of the F flows at time t, we define the total arrival
state at time t as Jtot (t) := 1+

∑F−1
f=1

(
(Jf (t) − 1)∏F

k= f+1 mk

)
+

(JF (t) − 1). In fact, in order to derive the scalar total arrival
state at time t, we define a numerical system, in which each
place is a multiplication of the number of states of the lower
places. For example, the lowest place is 1, the second place is
mF , the third place is (mF−1 × mF ), and so on. Based on the
definition, it is clear that the number of the total arrival states
is mtot =

∏F
f=1 m f . For example, in the case that F = 2 and

m1 = m2 = 2, Jtot (t) is obtained according to Table I.
For the purpose of expressing the system model in terms of

the total arrival states, we define matrices
Cf = I1 ⊗ I2 ⊗ · · · ⊗ I f−1 ⊗ C̃f ⊗ I f+1 ⊗ · · · ⊗ IF ,
D f = I1 ⊗ I2 ⊗ · · · ⊗ I f−1 ⊗ D̃ f ⊗ I f+1 ⊗ · · · ⊗ IF ,

where I f stands for the identity matrix of size m f ×m f , and ⊗
is the Kronecker product [28] of the matrices. In fact, Cf and
D f denote the corresponding transition rates (as described in
the definition of C̃f and D̃ f ) of the Markov arrival process of
the f th flow, in terms of the total arrival states.

For notational simplicity, we also define two other matrices
Ctot =

∑F
f=1 Cf and Dtot =

∑F
f=1 D f . It should be noted

that there is an underlying Markov process describing the
transitions among the total arrival states {1, · · · ,mtot }. The
matrix Qtot = Ctot + Dtot is the infinitesimal generator of
this underlying Markov process. Without loss of generality,
we assume that Qtot is irreducible. The steady-state vector
πtot of this Markov process satisfies equations

πtotQtot = 000, πtoteee = 1, (1)

where eee is a column vector of 1’s. It should be noted that
by definitions, the mean arrival rate of the f th MAP flow is
characterized by λ f = πtotD f eee.

B. Service Process

We employ the asynchronous partial network coding
scheme, which opportunistically encodes the packets from
distinct flows present in the queues, by linear coding (through
bitwise XOR). If only one of the flows has at least one packet
in its queue, then just that uncoded packet will be forwarded.
On the other hand, if more than one of the flows have at least

TABLE II
KEY NOTATIONS

Notation Semantics

F Number of the arrival flows at a network node

m f Number of the transient states of the f th MAP flow

C̃ f , D̃ f Transition rate matrices of the f th MAP flow

Q̃ f Infinitesimal generator of the f th Markov process

Jf (t) Arrival state of the f th MAP flow at time t

Jtot (t) Total arrival state of the F flows at time t

mtot Number of the total arrival states

C f , D f Transition rate matrices of the f th flow in terms of the total
arrival states

Ctot Sum of C f matrices of all of the F flows

Dtot Sum of D f matrices of all of the F flows

Qtot Infinitesimal generator of the total Markov process

πtot Steady-state vector of the total Markov process

λ f Mean arrival rate of the f th MAP flow

H(·) CDF of the encoded packets service time

h Mean service time

τk Epoch of the kth daparture from the system

®ξk Queue lengths at τ+
k

Jtot,k Total arrival state at τ+
k

Ã ®n(x) Probability matrix of arrivng ®n packets during a service
given that the system is nonempty

B̃ ®n(x) Probability matrix of arrivng ®n packets during a service
given that the system is empty

P̃(®n, t) Probability matrix of the number of arrivals in (0, t]
x ®n Steady-state queue lengths distribution at departures

y ®n Steady-state queue lengths distribution at an arbitrary time

one packet present in their queues, then the service packet
will include coded packets from these flows. The CDF of
the encoded packets service time is denoted by H(·), with
mean service time h. Different network coding schemes can
be simply analyzed by obtaining the service time distribution
of the encoded packets. We will discuss it more and provide
an example in section IV.

III. MAIN ANALYSIS

In this section, we analyze the system model described in
section II and derive the steady-state queue lengths at departure
epochs and subsequently at arbitrary time t, and finally, we
present the average packet delays of the F flows in the studied
network. Table II shows key notations adopted for the system
model and analysis presented in this paper.

We begin by defining the embeded Markov renewal process
at departure epochs as follows. Define τk to be the epoch
of the kth daparture from the system, with τ0 = 0. Let
®ξk =

(
ξ1
k

ξ2
k
· · · ξF

k

)T
denote the vector whose elements

represent the number of packets in the corresponding buffers,
i.e., queue lengths, at τ+

k
. We also define Jtot,k to be the

total arrival state of the MAP flows at τ+
k

. By considering the
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queue lengths and total arrival state at departure epochs, i.e.,
( ®ξk, Jtot,k), the embeded Markov renewal process at departure
epochs is obtained. Consequently, ( ®ξk, Jtot,k, τk+1 − τk) is a
semi-Markov process (SMP) on the state space {(®n, j) : ®n ≥
ooo, 1 ≤ j ≤ mtot }, where ooo is a column vector of 0’s. (By
definition, an inequality symbol between two vectors states
that the inequality holds for all of the corresponding elements
of these vectors.) In this paper, we assume that for each flow,
we have ρ f = λ f h < 1, meaning that the semi-Markov process
is positive recurrent.

We define two matrices Ã®n(x) and B̃®n(x) of size mtot ×
mtot as follows. (It should be noted that we define these two
matrices as the vector extensions of the block elements of
the transition probability matrix of the SMP in a single flow
network [24].)

(Ã®n(x))i j = P{ given a departure at time 0, where at least
one packet remains in one of the buffers and
the total arrival state is i, the next departure
occurs no later than time x, at which the total
arrival state is j, and during that service there
were ®n arrivals},

(B̃®n(x))i j = P{ given a departure at time 0, which left all
buffers empty and the total arrival state is i,
the next departure occurs no later than time

x, at which the total arrival state is j, leaving
®n packets in the system}.

In order to derive closed form equations for Ã®n(x) and
B̃®n(x), we consider the following definitions. Let Nf (t) be the
number of arrivals of the f th queue in (0, t]. We consider the
matrix P̃(®n, t) such that its (i, j) entry is defined as

P̃i j(®n, t) = P{ ®N(t) = ®n, Jtot (t) = j | ®N(0) = ooo, Jtot (0) = i}, (2)

where ®N(t) =
(
N1(t) N2(t) · · · NF (t)

)T
. The matrices

P̃(®n, t) satisfy the (forward) Chapman-Kolmogorov equations
[29]

d
dt

P̃(®n, t) =

P̃(®n, t)Ctot +

F∑
f=1, n f ,0

P̃(®n − eee f , t)D f , ®n ≥ ooo, t ≥ 0, (3a)

P̃(ooo, 0) = I, (3b)

where I is the identity matrix of size mtot × mtot , and
eee f is a column vector with entries 0 except for the f th
element which is 1. In addition, the multi-variable matrix gen-
erating function P(®z, t) = ∑∞

n1=0 · · ·
∑∞

nF=0 P̃(®n, t)zn1
1 · · · z

nF

F ,

®z =
(
z1 z2 · · · zF

)T
, is explicitly given by

P(®z, t) = exp
[
(Ctot +

F∑
f=1

D f z f )t
]
, |®z | ≤ 1, t ≥ 0. (4)

Now, from the definition of P̃(®n, t), it is clear that

Ã®n(x) =
∫ x

0
P̃(®n, t) dH(t), (5)

B̃®n(x) =
∫ x

0
eCtot tDtot Ã®n(x − t) dt. (6)

We define the transform matrices of Ã®n(x) as

A®n(s) =
∫ ∞

0
e−sx d Ã®n(x), (7)

A(®z, s) =
∞∑

n1=0
· · ·

∞∑
nF=0

A®n(s)zn1
1 · · · z

nF

F . (8)

Analogous definitions hold for the transforms of B̃®n(x).
Using the properties of P̃(®n, t), it can be shown that

A(®z, s) =
∫ ∞

0
exp

[
(−sI + Ctot +

F∑
f=1

D f z f )x
]

dH(x), (9)

B(®z, s) = (sI − Ctot )−1Dtot A(®z, s). (10)

For notational simplicity, we define the matrices A®n = A®n(0) =
Ã®n(∞), A(®z) = A(®z, 0), and A = A(eee, 0), and also the
corresponding definitions for B̃®n(x).

Using the framework described so far, we will derive the
steady-state queue lengths of the F flows at the departure
epochs in the next part.

A. Steady-State Queue Lengths at Departures

Let us define the elements of the vector x®n =(
x®n,1 x®n,2 · · · x®n,mtot

)
, ®n ≥ ooo as follows: x®n, j, 1 ≤ j ≤

mtot, is the steady-state probability that after the departure
epochs, there are ®n packets in the buffers and the total
arrival state is j. According to the definitions, by applying
asynchronous partial network coding in the service process,
the steady-state probability vector x®n is obtained from

x®n = xoooB®n+
n1+1∑
k1=0
· · ·

nF+1∑
kF=0

(
x∑F

f =1 k f eee f
A∑F

f =1 min(n f ,n f −k f +1)eee f

)
− xoooA®n. (11)

The min operator in the subscript of A(·) arises due to the
fact that if the f th buffer is empty at a departure, we need n f

arrivals to reach n f packets. However, if it is not empty, we
need as many arrivals as the difference between the desired
number of packets (n f ) and the number of existing packets in
the buffer (k f ) plus one another arrival to replace the packet
sent during the transmission process.

Given xooo, the vectors x®n, ®n , ooo are obtained according to
(11). In order to derive xooo, we define the marginal probabilities
xxx[q]0 =

(
x[q]0,1 x[q]0,2 · · · x[q]0,mtot

)
, 1 ≤ q ≤ F, where the

element x[q]0, j is the probability that the qth queue at a departure
epoch is empty, and the total arrival state is j. (Note that
the qth queue may have had no packets to participate in
the encoding process of the transmitted packet at the given
departure epoch.)
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In order to compute xxx[q]0 , we will introduce matrix G[q] as
follows. First, we define the level l for the qth queue to be the

set of states
{(∑F

f=1, f,q n f eee f + leeeq, j
)
|n f ≥ 0, 1 ≤ j ≤ mtot

}
.

Let s1 represent a state belonging to level nq + r of the qth
queue with total arrival state i, i.e.,

s1 =

( (
n1, · · · , nq−1, nq + r, nq+1, · · · , nF

)T
, i
)
. Simi-

larly, s2 represents a state belonging to level nq of
the qth queue with total arrival state j, i.e., s2 =( (

n′1, · · · , n′
q−1, nq, n′

q+1, · · · , n
′
F

)T
, j

)
, where nq ≥ 0, r ≥

1, 1 ≤ i, j ≤ mtot .
Define matrix G̃[r,q](k, x) with elements G̃[r,q]i j (k, x) to denote
the probability that the first passage from state s1 to state s2
occurs in exactly k transitions no later than time x, and s2 is
the first state visited at level nq of the qth queue.
Let us consider the matrix transform G[q](zq, s) =∑∞

k=1
∫ ∞
0 e−sx dG̃[1,q](k, x)zkq, |zq | ≤ 1, Re(s) ≥ 0. In the rest

of the paper, we will use the positive stochastic matrices
G[q] := G[q](1, 0), with invariant probability vectors ggg[q]

satisfying
ggg[q]G[q] = ggg[q], ggg[q]eee = 1. (12)

Now, we define E [q] as a diagonal matrix with elements
Ej
[q] denoting the conditional probability that if the qth queue

is empty and the total arrival state is j, then all other queues
are empty. In other words

Ej
[q] =

xooo, j

x[q]0, j

. (13)

Proposition 1: The vectors xxx[q]0 are given by

xxx[q]0 =

ggg[q]
(
−E [q]Ctot

−1Dtot + (I − E [q])
)−1

ggg[q]
(
I − A + (eee − β[q])ggg[q]

)−1
eee

, (14)

where β[q] = d
dzq

A(®z)|®z=eeeeee.
Proof: The proof is provided in the Appendix.
The only unknown part of (14) is E [q]. In what follows,

we will introduce an approximate decoupling approach for
calculating E [q].

1) Decoupling the Queues: Let S = {1, 2, · · · , F}. We
assume that for any queue q, 1 ≤ q ≤ F, and for each choice
of the set Z∗, Z∗ ⊆ S \ {q}, the event that after a departure, the
qth queue becomes empty and the total arrival state is j, is
independent from the event that after a departure, each queue
belonging to the set Z∗ becomes empty and the total arrival
state is j. This assumption implies that

xooo, j =
F∏
q=1

x[q]0, j . (15)

We call the above assumption the decoupling assumption and
will exploit it in what follows. It should be noted that we are
not assuming that the flows are fully decoupled. In fact, the
decoupling assumption in this paper is much less strict than
fully decoupling of the flows, and it is only about the time

steps that a queue is empty. This assumption simplifies the
computations and will be verified through numerical results in
section V. We note that (15) and (13) lead to the following
simplification:

E [q] =
F∏

f=1, f,q
diag(xxx[ f ]0 ). (16)

Considering (14) and (16), we have a system of nonlinear
matrix equations, which is solved by fixed point iteration
method [30]. Based on our simulations, the iterations converge
very fast starting from xxx[q]0 = πtot, 1 ≤ q ≤ F.

So far, we have obtained xxx[q]0 , representing the vector
probability that after a departure epoch, the qth queue is empty.
Subsequently, xooo is given by (15).

Finally in this part, we will obtain the steady-state queue
length of the qth queue at departure epochs. We begin
by defining xxx[q]nq =

(
x[q]
nq,1 x[q]

nq,2 · · · x[q]nq,mtot

)
, where

x[q]nq, j
, 1 ≤ j ≤ mtot , is the steady-state probability that after a

departure, there will be nq packets in the qth queue and the
total arrival state will be j. It should be noted that according
to the definitions, the relationship between xxx[q]nq and x®n is given
by

xxx[q]nq =

∞∑
n1=0
· · ·

∞∑
nq−1=0

∞∑
nq+1=0

· · ·
∞∑

nF=0
x(∑F

f =1, f ,q (n f eee f )+nqeeeq
) .
(17)

Moreover, the vector generating function of xxx[q]nq , that is
XXX [q](zq) =

∑∞
nq=0 xxx[q]nq znqq , is related to the vector generat-

ing function of x®n, i.e., X®z =
∑∞

n1=0 · · ·
∑∞

nF=0 x®nzn1
1 · · · z

nF

F ,
according to the following equation:

XXX [q](zq) = XXX (eee+(zq−1)eeeq ). (18)

In the following lemma, we derive the vector generating
function of xxx[q]nq .

Lemma 1: The vector generating function XXX [q](zq) satifies
the following equation:

XXX [q](zq)(zq I − A[q](zq)) =
zqxooo(B[q](zq) − A[q](zq)) + xxx0

[q](zq − 1)A[q](zq), (19)

where A[q](zq) and B[q](zq) are defined similar to (18).
Proof: The proof is provided in the Appendix.
Having equations describing the vector generating functions

XXX [q](zq) by Lemma 1, the vectors xxx[q]nq are readily obtained.
Finally, the mean queue length of the qth queue at depar-

tures is presented in Lemma 2.
Lemma 2: The mean queue length of the qth queue at

departures is obtained from

XXX ′[q](1)eee = 1
2(1 − πtot β[q])

[
XXX [q](1)A′′[q](1)eee + u′′[q](1)eee

+ 2
(
u′[q](1) − XXX [q](1)(I − A′[q](1))

)
(I − A + eeeπtot )−1β[q]

]
,

(20)
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where for the simplicity of notations,
u[q](zq) = zqxooo(B[q](zq) − A[q](zq)) + xxx[q]0 (zq − 1)A[q](zq)
denotes the RHS of (19).

Proof: The proof is provided in the Appendix.

B. Steady-State Queue Lengths at an Arbitrary Time

In this section, we explore the relationship between the
steady-state queue lengths at an arbitrary time and the steady-
state queue lengths at departures.

Let ®ξ(t) =
(
ξ1(t) ξ2(t) · · · ξF (t)

)T
denote the queue

lengths at time t. We consider the continuous-parameter pro-
cess {( ®ξ(t), Jtot (t)), t ≥ 0}. The time-dependent joint distribu-
tion of the queue lengths and the total arrival state is given by
the conditional probabilities

Y (®n, j; t) = P{ ®ξ(t) = ®n, Jtot (t) = j | ®ξ0 = ®n0, Jtot,0 = j0}, (21)

for ®n ≥ ooo, 1 ≤ j ≤ mtot, t ≥ 0. We define

yyy ®n = {y®n,1, y®n,2, · · · , y®n,mtot
}, (22)

where

y®n, j = lim
t→∞

Y (®n, j; t), ®n ≥ o, 1 ≤ j ≤ mtot . (23)

In what follows, we will derive yyy ®n. For this purpose, we first
introduce and derive the fundamental mean, denoted by E∗, of
the Markov renewal process. E∗ is the sum of the products of
the invariant probabilities x®n, j of each state and the sum of its
mean transition times to all other possible states. In the steady-
state version of the system, E∗ is the average time between an
arbitrary transition (e.g., departure from the system) and the
next transition. Lemma 3 presents the closed form expression
of E∗.

Lemma 3: The fundamental mean E∗ is given by

E∗ = h − xoooC−1
toteee. (24)

Proof: The proof is provided in the Appendix.
Finally, in the following lemma and proposition, we obtain

the steady-state queue lengths distribution at an arbitrary time,
i.e., yyy ®n.

Lemma 4: The vector yoyoyo is given by yoyoyo =
−1
E∗ xoooC−1

tot .

Proof: The proof is provided in the Appendix.
Proposition 2: The steady-state queue lengths distribution

at an arbitrary time, yyy ®n, ®n , ooo, is obtained from

E∗yyy ®n =

xooo
∫ ∞

0

∫ ∞

0
eCtot vdv

F∑
f=1,n f ,0

D f P̃(®n − eee f , t)(1 − H(t))dt

+

n1∑
k1=0
· · ·

nF∑
kF=0

xxx∑F
f =1 k f eee f

∫ ∞

0
P̃(®n −

F∑
f=1

k f eee f , t)(1 − H(t))dt

− xooo
∫ ∞

0
P̃(®n, t)(1 − H(t))dt, (25)

and the vector generating function YYY ®z of yyy ®n satisfies the
following equation:

E∗YYY ®z

(
Ctot +

F∑
f=1

z f D f

)
=

XXX ®z(A(®z) − I) − xoooCtot
−1

(
Ctot +

F∑
f=1

z f D f

)
A(®z). (26)

Proof: The proof is provided in the Appendix.
The steady-state vector probability that there will be nq

packets in the qth queue at an arbitrary time, denoted by yyy
[q]
nq ,

and its vector generating function, YYY [q](zq), are defined similar
to (17) and (18). Therefore, putting the vector ®z = eee+(zq−1)eeeq
in (26), simply leads to

E∗YYY [q](zq)(Qtot + Dq(zq − 1)) =
XXX [q](1)(A[q](zq) − I) − xoooCtot

−1(Qtot + Dq(zq − 1))A[q](zq),
(27)

and subsequently, the vectors yyy
[q]
nq for 0 ≤ nq < +∞, are

computed.
Finally, the mean queue length of the qth queue at an arbitrary
time is given by YYY ′[q](1)eee, which is obtained in the proof of
Proposition 3.

C. Average Packet Delay

So far, we have presented the steady-state queue lengths
at departure epochs and subsequently, at an arbitrary time.
We conclude this section by presenting delay analysis as an
important QoS metric. The average packet delay of the qth
flow, denoted by wq , is defined as the average time that a
packet belonging to the qth flow stays in the network node. In
the following proposition, we derive the average packet delay
in each of the F MAP flows in the desired network, where
asynchronous partial network coding is applied.

Proposition 3: The average packet delay of the qth flow,
wq , is obtained from

wq =
1

λq
2E∗[

XXX ′[q](1)eee− 1
2

u′′[q](1)eee−xoooC−1
tot (Dq A′[q](1)+ 1

2
Qtot A′′[q](1))eee

+

(
XXX ′[q](1)(A−I)+XXX [q](1)AAA′[q](1)−xoooC−1

tot (Dq A+QtotAAA′[q](1))

− E∗πtotDq

)
(eeeπtot −Qtot )−1Dqeee

]
. (28)

Proof: The proof is provided in the Appendix.
Therefore, by applying the derivd equations in this section,

the average packet delay of each of the flows in the network
is obtained using the network parameters.

D. Discussion

In this section, we have presented new fundamental results
for queuing analysis in networks where network coding is
applied on a number of MAP flows. These results pave the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVT.2018.2830111

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



way to obtain many performance measures of interest. For
example, expressions for the moments of the queue lengths at
departures and at an arbitrary time can be simply obtained
by differentiating (19) and (27), respectively. Moreover, it
should be noted that MAP is a wide class of arrival processes
and contains as special cases many processes studied in the
literature. For example, we can simply obtain the results for
MMPP arrival flows, by setting D̃ f = Λ̃ f and C̃f = Q̃ f − Λ̃ f ,
where Λ̃ f is the diagonal rate matrix of the f th MMPP
flow. As another example, if we consider D̃ f = λ f and
C̃f = −λ f , then the MAP reduces to a Poisson process
of rate λ f . Therefore, the presented analysis in this paper
provides a general framework for applying network coding
in communication networks.

The fact that packet flows arriving at internet routers (both
edge and backbone) cannot be accurately modeled by Poisson
processes is widely accepted, and has been discussed in the
literature. It is shown that traffic traces captured on both
LANs and WANs exhibit Long Range Dependence (LRD)
properties, and self-similar characteristics at different time
scales [5],[6]. Since the long-term correlation of data traffic
beyond a certain threshold does not influence the performance
of a system, Markovian arrival models can be successfully
employed in packet networks [31]-[33]. The MMPP models
are shown to provide good matches of LRD properties and fit-
ting procedures are proposed to match the covariance function
of the Markovian model to that of second order self-similar
processes over several time scales [20], [21]. Moreover, it is
shown that the queuing behavior of the traffic generated by
the MMPP model is consistent with the one produced by real
traces collected at edge routers under several different traffic
loads.Therefore, the Markovian arrival models match very well
the characteristic of data traffic [22]. It will also be validated
through numerical results in section V.

Subsequently, we discuss the case of limited buffer lengths.
If the f th buffer can store at most a total of L f packets, any
further arriving packets will be refused entry to the system
and will depart immediately without service and will be lost.
Considering the limited buffer lengths constraints, i.e., LLL =
(L1, · · · , LF ), the steady-state queue lengths distributions at
departures, x®n, and at an arbitrary time, y®n,ooo ≤ ®n ≤ LLL, are
given by (11) and (25), respectively. Moreover, we have

yyy
[q]
nq =

L1∑
n1=0
· · ·

Lq−1∑
nq−1=0

Lq+1∑
nq+1=0

· · ·
LF∑

nF=0
y(∑F

f =1, f ,q (n f eee f )+nqeeeq
),
(29)

where 0 ≤ nq ≤ Lq . By Little’s Law and similar to the
approach in [34], the average packet delay of the qth queue
is obtained from

wq =
Nq

λq(1 − Plossq)
, (30)

where the mean queue length of the qth queue is obtained
from Nq =

∑Lq

nq=0 nqy[q]nq eee, and the loss probability of the qth
queue is

Plossq =
y[q]Lq

Dqeee∑Lq

nq=0 y[q]nq Dqeee
. (31)

It should be also noted that according to [35], in a MAP/G/1/L
queue, queue length distribution tends to its limiting value for
L → ∞ at a geometric rate. As a consequence, the empty
buffer probability and the loss probability (and many other
performance parameters) exhibit a geometric decay towards
the corresponding limiting values.

IV. APPLYING THE PROPOSED MODEL IN SINGLE
BOTTLENECK CACHING NETWORKS

In this section, we apply the proposed queuing analysis of
network coding with Markovian arrival processes to caching
networks. We consider a single bottleneck caching network
with one content server, F stations equipped with caches
(i.e., caching nodes), and one-hop multicast transmission from
the server to the stations, with an average transmission rate
denoted by r0 [bps], as illustrated in Fig. 2. It should be noted
that the content server can be a macro base station in a 5G
cellular network, where the stations can be caching helpers,
such as micro base stations. We assume that the users requests,
arriving at the stations, are drawn from a specific same-size file
library MMM = {mi, i = 1, · · · , M} of size B bits, for notational
convenience, similar to [2], [36]. This assumption can be easily
removed by dividing the content items into multiple smaller
files of the same length. The caching nodes are capable of
storing C whole files (i.e., CB bits).

In [2], we studied such networks by considering the IRM
traffic model generating an i.i.d sequence of requests. The IRM
traffic model ignores all temporal correlations in the stream
of requests and similar to other memoryless processes cannot
effectively model packet flows in practical networks [5], [6].
The Markovian arrival process is an appropriate candidate for
traffic modeling in communication networks. Therefore, in
order to take into account a realistic traffic model, we consider
the MAP model.

We consider F queues at the content server for the requests
of F stations sent to the server. Based on such a framework,
at the server, the requested files of different caching nodes
enter their corresponding queues and are merged together
to construct the coded packets to be transmitted. Therefore,
the described model in section II is applicable to the server
functionality in single bottleneck caching networks. It should
be noted that by means of the cache content of the stations, the
coded packets are appropriately decoded as will be disscussed
in what follows.

As described in section II, we employ asynchronous partial
network coding for the service process. As an example of
asynchronous partial network coding in caching networks,
we present Asynchronous Partition Coded Caching (APCC)
scheme, which is an asynchronous extension of Partition
Coded Caching Scheme (PCCS) studied in [2] and [37].
These schemes consist of two phases, namely, cache place-
ment phase, which is done during the off-peak hours of the
networks, and delivery phase in which the users requests are
served. The cache placement phase of APCC is similar to
PCCS, in which variable γ = F C

M is defined based on the
network parameters. (It should be noted that this scheme is
proposed for cache sizes C such that γ is an integer less
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than F.) Subsequently, each file is partitioned into µ0 =
(F
γ

)
subfiles of equal size. In the cache placement phase, each
station caches an equal number of subfiles of all of the M
files. The cache placement is designed in order to create
coded multicasting opportunities for any γ + 1 stations even
with different requests. The main idea of this scheme is to
enable subfiles exhchanges between the stations, given their
cache contents and the recieved coded packets, such that
the stations can appropriatley decode their required subfiles.
It should be noted that in PCCS, stochastic arrival time of
user requests is not considered, and it is assumed that the
requests of all caching nodes are simultaneusly present at the
server. In contrast in APCC, we consider the stochastic request
arrivals. Therefore, at each service round in the delivery phase
of APCC, the server creates coded small packets by linear
coding (through XOR) of the required subfiles of those stations
that their corresponding queues are not empty, and sends the
service packet. Subsequently, at the stations, the corresponding
requested subfiles are obtained by decoding the recieved coded
small packets given the cache content.

As an example, we consider a simple network with three
stations and a library of three files, namely A, B, C, and
caches of size one, as shown in Fig. 2. Therefore, the network
parameters are F = M = 3, C = 1, and consequently, we have
γ = 1 and µ0 = 3. According to APCC, each file is split into
µ0 equal size subfiles. i.e., A = (A1, A2, A3), B = (B1, B2, B3)
and C = (C1,C2,C3). The cache placement is done such that
the cache content of station f is Z f = (Af , Bf ,Cf ). In the
delivery phase, if for example station one requests file A,
station two requests file B, and station three requests file C,
the missing subfiles are A2 and A3 for station one, B1 and
B3 for station two, and C1 and C2 for station three, which
enter the corresponding queues as shown in Fig. 2. Given
the cache contents, stations one and two aim to exchange
the missing subfiles A2 and B1, stations one and three aim
to exchange A3 and C1, and stations two and three aim to
exchange B3 and C2. By sending the coded small packets
(A2 ⊕ B1, A3 ⊕ C1, B3 ⊕ C2), the server enables all of these
exchanges between the stations. Therefore, the server creates
and sends a service packet consists of three coded small
packets of size one third of a whole file. The length of the
service packet which serves the requests of the three stations
is then one whole file. It should be noted that the mentioned
example in the delivery phase is the extreme case, where
all of the stations have requested files or in other words,
all of the queues have packets to send. If for example only
station one requests file A and station two requests file B
and the corresponding queue of station three is empty, the
transmitted service packet will be (A2 ⊕ B1, A3, B3). Another
example is also provided in Fig. 2. For other values of the
network parameters, the cache placement and delivery phases
are obtained according to the basic model explained in [2] and
[37].

In APCC, for any requested file from a given station, its
cache does not contain the whole file and only contains a
subset of the required subfiles. Consequently, each station
needs to submit each request to the server. Therefore, the
arrival processes of the queues at the server are the same as the
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B1

B3

A3 B3

Content Server

Caching Nodes

Q1 Q2
C1

C2Q3

C3A2 B2 C2A1 B1 C1
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A2

Requests
A

B

B
A
C

A2 B1 A3 C1 C2 B3

A1 B3 B2 A2

Service Packets

Fig. 2. An example of network coding in a single bottleneck caching network
with 3 caching nodes.

requests arrival processes at the stations, which are modeled
by MAP. It should be noted that a station may need to serve
different users requesting the same file in different moments.
In order to improve the efficiency considering this situation,
we can apply a control unit at the entrance of each queue
which ensures that multiple requests for each file enter at most
once in the corresponding queue. It should be noted that the
class of MAPs is closed under random thinning. A random
thinning of a MAP (C; D), that is a MAP where an event
is kept with probability p, is itself a MAP with parameter
matrices (C + (1 − p)D; pD) [38]. Therefore, by applying the
control units, the arrival of the queues are still MAPs and
the analysis provided in section III is applied. On the other
hand, the service time of APCC is obtained as follows. The
maximum number of stations that can be served by each coded
small packet is γ+1. Since at most the subfiles of γ+1 queues
are combined by linear coding before transmission, the number
of transmittable coded small packets at each service round is( F
γ+1

)
. Morever, the size of each coded smal packet is 1

µ0
= 1
(Fγ )

of a whole file, according to the explained model of APCC.
Therefore, the length of the service packets is designed to be
( Fγ+1)
(Fγ )

B bits. Since the transmission rate of the multicast link

for serving the requested contents is varying over time, due to
the random channel conditions, the service time is random and

is modeled by an arbitrary distribution, with mean h =
B( Fγ+1)
r0(Fγ )

.

Therefore as explained in this section, by applying the
service process of the desired coded caching scheme to the
derived equations in section III, the performance metrics in
caching networks, such as the average packet delay, can be
derived.

V. NUMERICAL RESULTS

In this section, the analytic expressions derived in this paper
are validated through simulation results and real trace-driven
experiments. First, we have run a trace-driven experiment,
using a real trace of video clips requests from a campus
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Fig. 3. Comparison of the mean packet delays of the real trace driven
experiment, proposed analytic expression and traditional IRM traffic model.
F = 2, two-state MAPs, i.e., m f = 2, f ∈ {1, 2}.

network measurement on YouTube traffic in 2009 [39], with
a total 123.3k requests for 78.9k videos.

Fig. 3 compares the average delay in the real trace-driven
experiment with the derived equations for the MAP traffic
model and the results of the IRM traffic model. In this
figure, we study a network with F = 2 arrival flows, and
for MAP traffic modeling, we consider a two-state MAP
for each flow, i.e., m f = 2, f ∈ {1, 2}. We estimate the matrices

C̃1 =


−0.8 0.2

0.01 −0.14

 , D̃1 =


0.6 0

0 0.13

 ,
C̃2 =


−0.43 0.21

0.15 −0.61

 , D̃2 =


0.22 0

0 0.46

 ,

for modeling the real traffic. We observe that the proposed
model based on the MAP traffic can properly model the
real traffic of an operational network, while the IRM model
cannot. In addition, it is illustrated that by increasing the
average service rate, i.e., 1

h , the average delay decreases.
Fig. 4 shows the average delay of each flow in a network

with F = 4 arrival flows. In this figure, the arrival flows are
assumed two-state MAPs, i.e., m f = 2, f ∈ {1, 2, 3, 4}, with
mean arrival rates λ1 = λ, λ2 = 1.25λ, λ3 = 1.5λ, λ4 = 1.75λ.
The service time distribution is exponential with the mean
h = 1 [s]. It is illustrated that the proposed MAP equations
yield very accurate results, specially by increasing λ. This
result might be due to the fact that the decoupling assumption
holds when the network node is relatively loaded by each of
the flows.

The effect of APNC and caching is illustrated in Fig. 5, in
a network with F = 2 flows, when the arrivals are two-state
MAPs, m f = 2, f ∈ {1, 2}. Fig. 5 shows that by increasing
the ratio of r0

B , which increases the average service rate,
the average delay decreases. We observe that by applying
APNC, the average delay decreases in comparison to the case
that no network coding is applied. Moreover, it is illustrated
that applying APNC and caching in the network reduces the

Fig. 4. Mean packet delays of APNC with F = 4, two-state MAPs with rates
λ1 = λ, λ2 = 1.25λ, λ3 = 1.5λ, λ4 = 1.75λ and exponential service time
distribution with h = 1 [s].

1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

r
0
 / B [packets/s]

A
v

er
ag

e 
D

el
ay

 [
s]

Flow 1 APNC & Caching Sim.

Flow 1 APNC & Caching Eq.

Flow 2 APNC & Caching Sim.

Flow 2 APNC & Caching Eq.

Flow 1 APNC Sim.

Flow 1 APNC Eq.

Flow 2 APNC Sim.

Flow 2 APNC Eq.

No NC No Caching Sim.

No NC No Caching Eq.

Fig. 5. Mean packet delays of APNC with F = 2, two-state MAPs and
exponential service time distribution, compared to the systems with caching
and without network coding.

average delay significantly.
Furthermore, we have provided the numerical results based

on the MAP models of the real trace of internet traffic [20]-
[22], in Figs. 6 and 7. The average delay of each flow
performing network coding has been plotted in comparison
with the performance without network coding in these figures.
We have provided the results in a network with 4 MAP flows
and the results in a network with 8 MAP flows in Figs.
6 and 7, respectively. Moreover, the average delay of each
flow performing network coding in a network with 10 MAP
flows has been plotted in comparison with the performance
without network coding in Fig. 8. As shown in the figures,
the results hold for different traffic types, different requests
arrival rates and different number of flows. It is also illustrated
that by increasing the number of data flows, the network
coding gain increases. This fact shows the importance of using
asynchronous network coding specially in large networks.

In Fig. 9, we have compared the average delay as a function
of the number of flows in the network, for different values of
the service rate. As shown in this figure, for small values of
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Fig. 7. Mean packet delays of APNC with F = 8, compared to the systems
without network coding. Two-state MAPs with rates λ1 = 1.74, λ2 = 1.71,
λ3 = 2.09, λ4 = 0.63, λ5 = 0.71, λ6 = 0.47, λ7 = 1.13, λ8 = 0.37,
λtot = 8.86.

the service rate, such as 1/h = 1[packets/s], by increasing
the number of flows, which increases the total arrival rate,
the average delay increases. However, for larger values of the
service rate, the average delay slightly changes by increasing
the number of flows. It should be noted that since packets of
different flows are served together using asynchronous network
coding, when the service rate is sufficient in comparison to
the arrival rate, the average delay in the network does not
significantly change by increasing the number of arrival flows.
This fact illustrates the significant gain of using asynchronous
network coding in communication networks.

VI. CONCLUSION

In this paper, we presented new fundamental results for
queuing analysis in networks where asynchronous network
coding is applied on a number of MAP flows. These results
pave the way to obtain many performance measures of interest.
Through the analysis carried out using matrix geometric
methods, we provided queue lengths at departures and at an
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Fig. 8. Mean packet delays of APNC with F = 10, compared to the systems
without network coding. Two-state MAPs with rates λ1 = 0.15, λ2 = 0.36,
λ3 = 0.19, λ4 = 0.45, λ5 = 0.23, λ6 = 0.54, λ7 = 0.27, λ8 = 0.63,
λ9 = 0.30, λ10 = 0.72, λtot = 3.84.
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Fig. 9. Mean packet delays of APNC as a function of the number of flows.

arbitrary time and utilized the analysis to characterize the
mean packet delay. Since MAP is a wide class of arrival
processes and matches very well the characteristics of data
traffic, the presented analysis in this paper provides a general
framework for applying network coding in communication
networks. Furthermore, we applied the proposed analysis in
caching networks as a key motivating example. Finally, the
analytic results were validated through simulations and real
trace-driven experiments.

APPENDIX

Proof of Proposition 1: First, we define K̃ [q]i j (k, x), 1 ≤
i, j ≤ mtot, k ≥ 1, x ≥ 0, as the conditional prob-
ability that the Markov renewal process starting in the

state
( (

n1, · · · , nq−1, 0, nq+1, · · · , nF
)T
, i
)
, returns to a state( (

n′1, · · · , n′
q−1, 0, n′

q+1, · · · , n
′
F

)T
, j

)
, for the first time in ex-

actly k transitions, and no later than time x. K̃ [q](k, x) denotes
the matrix with elements K̃ [q]i j (k, x), and its transform matrix
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is denoted by K [q](zq, s) = ∑∞
k=1

∫ ∞
0 e−sx dK̃ [q](k, x)zkq, |zq | ≤

1, Re(s) ≥ 0. In the interest of brevity, a first-passage argument
similar to the proofs given in [40] is used to obtain the
following equations:

K [q](zq, s) = zq
∞∑

k1=0
· · ·

∞∑
kF=0[(

E [q]B∑F
f =1 k f eee f

(s)+(I−E [q])A∑F
f =1 k f eee f

(s)
) (

G[q](zq, s)
)kq ]

,

(A.1)

where

G[q](zq, s) = zq
∞∑

k1=0
· · ·

∞∑
kF=0

[
A∑F

f =1 k f eee f
(s)

(
G[q](zq, s)

)kq ]
,

(A.2)

G[q](zq, s) = zq

∫ ∞

0
e−sx exp

[ (
Ctot + Dtot

+ Dq(G[q](zq, s) − I)
)
x
]

dH(x). (A.3)

Using (10) and (A.3) reduces (A.1) to

K [q](zq, s) =
(
E [q](sI − Ctot )−1Dtot + (I − E [q])

)
G[q](zq, s).

(A.4)
We define the invariant probability vector kkk[q] of K [q] :=

K [q](1, 0), which satisfies kkk[q]K [q] = kkk[q], kkk[q]eee = 1, and we
also define the vector kkk∗[q] = d

dzq
K [q](zq)|zq=1eee.

According to the theory of Markov renewal processes [41],
xxx[q]0 is expressed as

xxx[q]0 =
kkk[q]

kkk[q]kkk∗[q]
. (A.5)

From (A.4), it can be verified that

kkk[q] = ggg[q]
(
−E [q]Ctot

−1Dtot + (I − E [q])
)−1

. (A.6)

Subsequently, according to (A.4) we have

kkk∗[q] =
(
−E [q]Ctot

−1Dtot + (I − E [q])
)

d
dzq

G[q](zq)|zq=1eee.

(A.7)

Now, differentiating (A.2) yields

d
dzq

G[q](zq)|zq=1eee =(
I − G[q] + eeeggg[q]

) (
I − A + (eee − β[q])ggg[q]

)−1
eee. (A.8)

According to (A.5)-(A.8), the result follows.

Proof of Lemma 1: Writing the transform vector of each
side of (11), the vector generating function X®z satifies the
following equation:

X®z = xooo(B(®z)−A(®z))+z−1
1 · · · z

−1
F

[ ∑
Z1⊆S

( ∏
f ∈Z1

z f

) (
X®z |z f =0 if f ∈Z1

+
∑

Z2⊆S\Z1, Z2,�
(−1) |Z2 |X®z |z f =0 if f ∈Z1∪Z2

)]
A(®z), (A.9)

where X®z |z f =0 if f ∈Z is equal to X ®z′ in which ®z′ is the same as
®z except that for any f in Z , the f th element of ®z′ is zero.

In order to compute XXX [q](zq), we put the vector
®z = eee + (zq − 1)eeeq in (A.9) and note that for any choice
of Z∗, Z∗ ⊂ S, Z∗ , {q}, the coefficient of XXX ®z |z f =0 if f ∈Z∗

will be
∑ b |Z∗ |2 c

k=0
( |Z∗ |

2k
)
−∑ b |Z∗ |−1

2 c
k=0

( |Z∗ |
2k+1

)
= 0, which leads to (19).

Proof of Lemma 2: By setting zq = 1 in (19), adding
X [q](1)eeeπtot to both sides and observing that (I − A + eeeπtot )
is non-singular, we obtain

XXX [q](1) = πtot + u[q](1)(I − A + eeeπtot )−1. (A.10)

Now, differentiating (19) leads to

XXX ′[q](zq)(zq I − A[q](zq)) + XXX [q](zq)(I − A′[q](zq)) = u′[q](zq).
(A.11)

By setting zq = 1 in (A.11), adding X ′[q](1)eeeπtot to both sides
and noting that (I − A + eeeπtot ) is non-singular, we obtain

XXX ′[q](1) = (XXX ′[q](1)eee)πtot

+

(
u′[q](1) − XXX [q](1)(I − A′[q](1))

)
(I − A + eeeπtot )−1. (A.12)

By differentiating (A.11), setting zq = 1, multiplying by eee and
noting that A′[q](1)eee = β[q], we have

XXX ′[q](1)β[q] = XXX ′[q](1)eee − 1
2

(
XXX [q](1)A′′[q](1) + u′′[q](1)

)
eee.

(A.13)
Multiplying (A.12) by β[q] and substituting (A.13), the mean
queue length of the qth queue at departures, i.e., XXX ′[q](1)eee, is
obtained from (20).

Proof of Lemma 3: From the definition of E∗ it follows that

E∗ = −xooo
[
∂

∂s
B(®z, s)

]
®z=eee,s=0

eee

− [XeXeXe − xooo]
[
∂

∂s
A(®z, s)

]
®z=eee,s=0

eee. (A.14)

From (9) we have[
∂

∂s
A(®z, s)

]
®z=eee,s=0

eee = −heee, (A.15)

which in combination with (10) leads to[
∂

∂s
B(®z, s)

]
®z=eee,s=0

eee = hC−1
totDtoteee −

(
C−1
tot

)2
Dtoteee. (A.16)
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Next, we note that

C−1
totDtoteee = C−1

tot

(
Qtot − Ctot

)
eee = −eee, (A.17)

where the last equality follows from the fact that Qtoteee = ooo,
since Qtot is an infinitesimal generator matrix. Inserting
(A.15), (A.16), and (A.17) in (A.14), and noting that XeeXeeXee = 1,
the result is obtained.

Proof of Lemma 4: First, we define

Y(®n, t) = {Y (®n, 1; t),Y (®n, 2; t), · · · ,Y (®n,mtot ; t)}. (A.18)

We also define the vector renewal function M®n(.) =(
M ®n0, j0
®n,1 (.) M ®n0, j0

®n,2 (.) · · · M ®n0, j0
®n,mtot

(.)
)
, ®n ≥ ooo, of the

Markov renewal process, where its components M ®n0, j0
®n, j (t) are

the conditional expected number of visits to the state (®n, j)
in [0, t], given the initial conditions ®ξ0 = ®n0, Jtot,0 = j0. The
quantity dM ®n0, j0

®n, j (u) is then the conditional probability that the
Markov renewal process enters the state (®n, j), in the interval
(u, u + du).

Considering the state of the Markov renewal process at the
epoch of the last departure before time t, we have

YYY (ooo; t) =
∫ t

0
dMooo(u)eCtot (t−u). (A.19)

From the key renewal theorem [31], it follows that

yyyooo =
1

E∗
xooo

∫ ∞

0
eCtot tdt =

−1
E∗

xoooC−1
tot . (A.20)

Proof of Proposition 2: Writing the total probability con-
sidering two cases:
(a) t falls during the first service of a busy period, and
(b) t falls during the second or later services of a busy period,
we obtain

YYY (®n; t) =
∫ t

0

∫ t−u

0
dMooo(u)eCtot vdv

F∑
f=1,n f ,0

D f P̃(®n − eee f , t − u − v)(1 − H(t − u − v))

+

n1∑
k1=0
· · ·

nF∑
kF=0

∫ t

0
dM∑F

f =1 k f eee f
(u)P̃(®n−

F∑
f=1

k f eee f , t−u)(1−H(t−u))

−
∫ t

0
dMooo(u)P̃(®n, t − u)(1 − H(t − u)). (A.21)

By computing the limit of (A.21) as t →∞ and applying the
key renewal theorem, we obtain (25). Finally, computing the
transform vector of (25) results in (26).

Proof of Proposition 3: Let Nq denote the average number
of packets in queue q at an arbitrary time. It is readily seen
that

Nq =
dYYY [q](zq)

dzq
|zq=1eee. (A.22)

Using Little’s Law, the average packet delay in the qth queue
is given by

wq =
Nq

λq
. (A.23)

The final step is to find the mean queue lengths at an arbitrary
time, in order to obtain Nq .
By setting zq = 1 in (27) and (19), and using (10), we obtain
YYY [q](1) = πtot . By differentiating (27), setting zq = 1, adding
YYY ′[q](1)eeeπtot to both sides, and multiplying by Dqeee, we have

YYY ′[q](1)eee = 1
λq

YYY ′[q](1)Dqeee +
1

λqE∗

(
XXX ′[q](1)(A − I)

+ XXX [q](1)AAA′[q](1) − xoooC−1
tot (Dq A +QtotAAA′[q](1)) − E∗πtotDq

)
(eeeπtot −Qtot )−1Dqeee. (A.24)

By double differentiating (27) and setting zq = 1, we obtain

YYY ′[q](1)Dqeee =
1

E∗

(
XXX ′[q](1)eee − 1

2
u′′[q](1)eee

− xoooC−1
tot (Dq A′[q](1) + 1

2
Qtot A′′[q](1))eee

)
. (A.25)

Finally, by substituting (A.25) in (A.24), and using (A.22) and
(A.23), the result is obtained.
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