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Abstract

For a graph G, let S(G) be the Seidel matrix of G and θ1(G), . . . , θn(G) be the

eigenvalues of S(G). The Seidel energy of G is defined as |θ1(G)| + · · · + |θn(G)|.
Willem Haemers conjectured that the Seidel energy of any graph with n vertices is at

least 2n − 2, the Seidel energy of the complete graph with n vertices. Motivated by

this conjecture, we prove that for any α with 0 < α < 2, |θ1(G)|α + · · ·+ |θn(G)|α >
(n − 1)α + n − 1 if and only if |detS(G)| > n − 1. This, in particular, implies the

Haemers’ conjecture for all graphs G with |detS(G)| > n− 1. A computation on the

fraction of graphs with |detS(G)| < n−1 is reported. Motivated by that, we conjecture

that almost all graphs G of order n satisfy |detS(G)| > n − 1. In connection with

this conjecture, we note that almost all graphs of order n have a Seidel energy of

Θ(n3/2). Finally, we prove that self-complementary graphs G of order n ≡ 1 (mod 4)

have detS(G) = 0.
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1 Introduction

Let G be a simple graph with vertex set {v1, . . . , vn}. The Seidel matrix of G is an n× n
matrix S = S(G) where S11 = · · · = Snn = 0 and for i 6= j, Sij is −1 if vi and vj

are adjacent, and is 1 otherwise. The adjacency matrix of G denoted by A = A(G) is

defined similarly by Aij = 1 if vi and vj are adjacent, and Aij = 0 otherwise. Clearly,

S(G) = A(G) − A(G) where G denotes the complement of G. The Seidel energy of G,

denoted by S(G), is defined as the sum of the absolute values of the eigenvalues of S(G).

Considering the complete graph Kn, its Seidel matrix is I − J . Hence the eigenvalues

of S(Kn) are 1−n and 1 (the latter with multiplicity n−1). So S(Kn) = 2n−2. Haemers

conjectured that this is the smallest Seidel energy of an n-vertex graph:

Conjecture (Haemers [6]). For any graph G on n vertices, S(G) > S(Kn).

We show that the conjecture is true if |detS(G)| > |detS(Kn)| = n − 1. To be more

precise, we prove the following more general statement which makes the main result of the

present paper.

Theorem 1. Let G be a graph with n vertices and let θ1, . . . , θn be the eigenvalues of

S(G). Then the following are equivalent:

(i) |detS(G)| > n− 1;

(ii) for any 0 < α < 2,

|θ1|α + · · ·+ |θn|α > (n− 1)α + (n− 1). (1)

The implication ‘(ii)⇒(i)’ is straightforward in view of the fact that

lim
α→0+

(
|θ1|α + · · ·+ |θn|α

n

) 1
α

= |θ1 · · · θn|
1
n ,

which can be verified by taking the natural log and then applying L’Hôpital’s rule. We

prove the implication ‘(i)⇒(ii)’ in Section 3. The proof is based on KKT method in

nonlinear programming. We briefly explain this method in Section 2.
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For more results of the same flavor as (1) on Laplacian and signless Laplacian eigen-

values of graphs see [1, 2].

Remark 2. A referee asked whether in Theorem 1, equality in (i) implies equality in (ii).

In fact, this is not the case in general. For instance, consider the graph with Seidel matrix

S =



0 1 1 1 1 1

1 0 −1 −1 −1 −1

1 −1 0 −1 −1 1

1 −1 −1 0 1 −1

1 −1 −1 1 0 1

1 −1 1 −1 1 0


.

The eigenvalues of S are −3.49,−2.23,−.10, 1, 2.23, 2.60, for which the equality does not

hold in (ii) with α = 1.

2 Karush–Kuhn–Tucker (KKT) conditions

In nonlinear programming, the Karush–Kuhn–Tucker (KKT) conditions are necessary for

a local solution to a minimization problem provided that some regularity conditions are

satisfied. Allowing inequality constraints, the KKT approach to nonlinear programming

generalizes the method of Lagrange multipliers, which allows only equality constraints.

For details see [11].

Consider the following optimization problem:

Minimize f(x)

subject to:

gj(x) = 0, for j ∈ J ,

hi(x) 6 0, for i ∈ I,

where I and J are finite sets of indices. Suppose that the objective function f : Rn → R
and the constraint functions gj : Rn → R and hi : Rn → R are continuously differentiable
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at a point x∗. If x∗ is a local minimum that satisfies some regularity conditions, then

there exist constants µi and λj , called KKT multipliers, such that

∇f(x∗) +
∑
j∈J

µj∇gj(x∗) +
∑
i∈I

λi∇hi(x∗) = 0

gj(x
∗) = 0, for all j ∈ J,

hi(x
∗) 6 0, for all i ∈ I,

λi > 0, for all i ∈ I,

λihi(x
∗) = 0, for all i ∈ I.

In order for a minimum point to satisfy the above KKT conditions, it should satisfy

some regularity conditions (or constraint qualifications). The one which suits our problem

is the Mangasarian–Fromovitz constraint qualification (MFCQ). Let I(x∗) be the set of

indices of active inequality constraints at x∗, i.e. I(x∗) = {i ∈ I | hi(x∗) = 0}. We say

that MFCQ holds at a feasible point x∗ if the set of gradient vectors {∇gj(x∗) | j ∈ J} is

linearly independent and that there exists w ∈ Rn such that

∇gj(x∗)w> = 0, for all j ∈ J,

∇hi(x∗)w> < 0, for all i ∈ I(x∗).

Theorem 3. ([8], see also [11, Section 12.6]) If a local minimum x∗ of the function f(x)

subject to the constraints gj(x) = 0, for j ∈ J , and hi(x) = 0, for i ∈ I, satisfies MFCQ,

then it satisfies the KKT conditions.

3 Proof of Theorem 1

In this section we prove the non-trivial part of Theorem 1, that is the implication ‘(i)⇒(ii)’.

We formulate this as an optimization problem. To this end, we need to come up with

appropriate constraints. The main constraint is made by the assumption |detS(G)| >
n− 1. The other ones are obtained by the following straightforward lemma.
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Lemma 4. For any graph G with n vertices, we have

(i) θ1(G)2 + · · ·+ θn(G)2 = (n− 1)2 + n− 1;

(ii) θ1(G)4 + · · ·+ θn(G)4 6 θ1(Kn)4 + · · ·+ θn(Kn)4 = (n− 1)4 + n− 1;

(iii) max
16i6n

θi(G)2 6 max
16i6n

θi(Kn)2 = (n− 1)2.

Now, we can describe our problem as the minimization of the function

f(x) := xp1 + · · ·+ xpn, x = (x1, . . . , xn) ∈ Rn,

with fixed 0 < p < 1, subject to the constraints:

g(x) := x1 + · · ·+ xn − n(n− 1) = 0, (2)

h(x) := x21 + · · ·+ x2n − (n− 1)4 − (n− 1) 6 0, (3)

d(x) := (n− 1)2 −
∏n
i=1 xi 6 0, (4)

ki(x) := xi − (n− 1)2 6 0, for i = 1, . . . , n, (5)

li(x) := ξ − xi 6 0, for i = 1, . . . , n, (6)

where ξ > 0 is fixed so that if for some i, xi = ξ, then
∏n
i=1 xi < (n− 1)2.

Theorem 1 now follows if we prove that the minimum of f(x) subject to (2)–(6) is

(n− 1)2p + n− 1.

Lemma 5. Let e be a local minimum of f(x) subject to the constraints (2)–(6). Then e

satisfies MFCQ.

Proof. Let e = (e1, . . . , en). With no loss of generality assume that e1 > · · · > en. If

e1 = en, then, in view of (2), all ei are equal to n−1. In this case, in none of the inequality

constraints (3)–(6) equality occurs for e and so we are done. If e1 > en, then MFCQ is

fulfilled by setting w = (−1, 0, . . . , 0, 1). �
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Lemma 6. ([3]) Suppose α, β, ν, ω, a, b, c, d are positive numbers and that

α+ β = ν + ω,

αa+ βb = νc+ ωd,

max{a, b} 6 max{c, d},

aαbβ > cνdω.

Then the inequality

αap + βbp > νcp + ωdp

holds for 0 6 p 6 1.

Theorem 7. Let e ∈ Rn satisfy the constraints (2)–(6). Then f(e) > (n− 1)2p + n− 1.

Proof. It suffices to prove the assertion for local minima. So assume that e = (e1, . . . , en)

is a local minimum of f(x) subject to the constraints (2)–(6). Suppose that e1 > · · · > en.

By Lemma 5, e satisfies KKT conditions, namely

∇f(e) + µ∇g(e) + λ∇h(e) + δ∇d(e) +
n∑
i=1

(ρi∇ki(e) + γi∇li(e)) = 0, (7)

e1 + · · ·+ en − n(n− 1) = 0, (8)

λ > 0, λh(e) = 0, (9)

δ > 0, δd(e) = 0,

ρi > 0, ρiki(e) = 0, for i = 1, . . . , n, (10)

γi > 0, γili(e) = 0, for i = 1, . . . , n. (11)

By the choice of ξ we have li(e) < 0 for i = 1, . . . , n and hence by (11), γ1 = · · · = γn = 0.

If we let D =
∏n
i=1 ei, then (7) can be written as

pep−1i + µ+ 2λei −
δD

ei
+ ρi = 0, for i = 1, . . . , n.

We consider the following two cases.
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Case 1. e1 = (n− 1)2. Then by (8) and since e satisfies (4), we have

1 =
e2 + · · ·+ en

n− 1
> (e2 · · · en)

1
n−1 > 1.

It turns out that e2 = · · · = en = 1 and we are done.

Case 2. e1 < (n− 1)2. So, by (10), ρ1 = · · · = ρn = 0. It turns out that e1, . . . , en must

satisfy the following equation:

pxp = δD − µx− 2λx2. (12)

The curves of y = pxp and y = δD − µx − 2λx2 intersect in at most two points in x > 0

and so (12) has at most two positive roots. If it has one positive root, then by (8),

e1 = · · · = en = n − 1. Hence f(e) = n(n − 1)p which is greater than (n − 1)2p + n − 1

for n > 3. Next assume that (12) has two positive roots, say a and b. These two together

with c = (n − 1)2 and d = 1 satisfy the conditions of Lemma 6. This implies that

f(e) > (n− 1)2p + n− 1, completing the proof. �

4 On Seidel matrices with small determinant

We proved that Haemers’ conjecture holds for graphs G of order n satisfying |detS(G)| >
n − 1. In order to have an intuition on what fraction of graphs does not satisfy this

condition, we performed a computation on Seidel matrices up to order n = 12. Based

on the computation results, we conjecture that this fraction goes to 0 as n → ∞. In

connection with this conjecture, we note that almost all graphs of order n have a Seidel

energy of Θ(n3/2). As an explicit family of graphs with |detS(G)| < n− 1, we prove that

self-complementary graphs G of order n ≡ 1 (mod 4) have detS(G) = 0.

We used the databases of non-equivalent Seidel matrices of small orders for our compu-

tation. Recall that the switching class of a Seidel matrix S is the set of all Seidel matrices

PDSDP> where P is a permutation matrix and D is a ±1 diagonal matrix. Two Seidel

matrices, S1 and S2, are called switching equivalent, if S2 = PDS1DP
> holds for some

P and D. For n 6 10, we made use of the database of Spence [13], for n = 11 we used
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n 1 2 3 4 5 6 7 8 9 10 11 12

Total 1 1 2 3 7 16 54 243 2038 33120 1, 182, 004 87, 723, 296

# with |det| < n− 1 0 0 0 0 1 0 4 6 74 294 3918 89546

Table 1: Numbers of non-equivalent Seidel matrices and those with |det| < n− 1 of orders n 6 12

Mckay’s database of Euler graphs on 11 vertices [9] (note that for odd n, each Seidel

switching class contains a unique Euler graph [12], the property which fails for even n [7]),

and for n = 12 we used the classification given in [5], the database of which is available in

[14]. The computation results are summarized in Table 1.

Based on this empirical result, we put forward the following conjecture.

Conjecture. The fraction of graphs G on n vertices with |detS(G)| < n− 1 goes to zero

as n tends to infinity.

Note that the conjecture implies that Haermers’ conjecture is true for almost all graphs.

However, as it is shown below, this can be proved independently based on known results.

Recall that, the energy of a Hermitian matrix M , denoted by E(M), is sum of the absolute

values of eigenvalues of M .

Theorem 8. For almost all graphs G of order n, S(G) =
(

8
3π + o(1)

)
n3/2.

Proof. For any n× n complex matrices A,B, by the singular-value inequality of K. Fan

[4], we have
n∑
i=1

si(A+B) 6
n∑
i=1

si(A) +
n∑
i=1

si(B),

where the singular values of A is denoted by s1(A), . . . , sn(A), etc. Since the singular values

of a Hermitian matrix coincides with the absolute values of its eigenvalues, it follows that

for Hermitian matrices A,B,

E(A+B) 6 E(A) + E(B).
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As 2A(G) = Jn − In − S(G), we see that

2E(A(G)) 6 E(Jn − In) + E(S(G)) = 2(n− 1) + S(G). (13)

Similarly we have

S(G) 6 2(n− 1) + 2E(A(G)). (14)

On the other hand, as noted in [10], Wigner’s semicircle law [15] implies that for almost

all graphs G of order n, E(A(G)) =
(

4
3π + o(1)

)
n3/2. This together with (13) and (14)

complete the proof. �

We remark that if n is odd and G is a (n − 1)/2-regular graph then detS(G) = 0

as clearly the all 1’s vector is a null vector for S(G). As the final result of the paper,

we give another explicit family of graphs G with |detS(G)| < n − 1. Recall that a self-

complementary graph is a graph isomorphic to its complement. Such graphs can only have

orders congruent to 0 or 1 modulo 4.

Theorem 9. Self-complementary graphs G of order congruent to 1 modulo 4 have detS(G) =

0.

Proof. Let G be a self-complementary graph with vertex set V := {1, . . . , n} where n ≡ 1

(mod 4) . Also, let A,A be the adjacency matrices of G,G, respectively, and S := S(G).

As G is self-complementary, there exists a permutation ρ on V such that Ai,j = 1 if and

only if Aρi,ρj = 1. To prove the assertion, it suffices to show that in the expansion

detS =
∑

σ∈Sym(V )

sgn(σ)
n∏
i=1

Si,σi, (15)

for any σ, the terms corresponding to σ and ρ−1σρ have opposite signs.

Let σ be a permutation with no fixed elements, hence Si,σi = ±1 for i ∈ V . Note that

{(i, σi) | i ∈ V } = {(ρj, σρj) | j ∈ V }.

Suppose that {V1, V2} and {V ′1 , V ′2} are two partitions of V so that Si,σi = −1 for i ∈ V1
and Si,σi = 1 for i ∈ V2, and ρ(V ′1) = V1, ρ(V ′2) = V2. For i ∈ V1 we have Si,σi = −1, so
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Sρj,σρj = −1 for j ∈ V ′1 . That means, for j ∈ V ′1 , Aρj,σρj = 1, and hence Aρ−1ρj,ρ−1σρj = 1

which implies that Sj,ρ−1σρj = 1. Similarly, for j ∈ V ′2 we have Sj,ρ−1σρj = −1. As n is odd,

one of |V1| = |V ′1 | or |V2| = |V ′2 | is odd and the other one is even. It follows that
∏n
i=1 Si,σi =

−
∏n
i=1 Si,ρ−1σρi. As sgn(σ) = sgn(ρ−1σρ), the two terms of (15) corresponding to σ and

ρ−1σρ are of opposite signs. This completes the proof. �
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