12/28/22

Replication & Consistency

Slide set 5
Distributed Systems

Graduate Level

K. N. Toosi Institute of Technology
Dr. H. Khanmirza

U?’d‘)'/;‘.‘v?bi’}:'&%)
.%&mi&s&sw

:“}V L/ i
/G'U 1

Distributed Systems, KNTU

\YeY

mailto:h.khanmirza@kntu.ac.ir

Consistency

> In distributed systems we need replication (= repeat) of data for
> Reliability
» We discuss later

> Performance
» Is important for scaling in size or geographical span

12/28/22 Distributed Systems, KNTU

Consistency

» Consistency
> Keeping the same content in all replicas

> When a replica is updated we must ensure this update is propagated to
other replicas

> A read operation performed at any copy will always return the same
data

> \When and how determines the price of consistency problem

12/28/22 Distributed Systems, KNTU

» Consistency

Consistency Problem Example

> User needs a web page from a far remote site
> Far means: delay ~ multi-seconds
» How access time can be improved?

> Approach 1.
> Browser can keep a copy of that page in cache (client-side replication)
> What if the content of the page is modified

> Browser can always talk with server and prefetches the latest content >
If read_count << modification_count the browser wastes the bandwidth!

> Cache has a invalidation time, If read_period > validation_period
caching is useless

12/28/22 Distributed Systems, KNTU

» Consistency

Consistency Problem Example

> Approach 2:

> Remote server keeps the track of caches and updates cache contents
when they modified

> Implies server processing load & state maintenance

» Server bandwidth
» If read count << modification_count it is a clear waste of the bandwidth!

12/28/22 Distributed Systems, KNTU

Consistency Problem

» Replication solves scalability problems
> Keeping all replicas tightly-consistent needs global synchronization
» Another costly scalability problem!

» Consistency problems cannot be solved efficiently
> There is no best solution to replicating data

> We have to relax the atomic operation condition to avoid global
synchronization and find an efficient solution

> There are also no general rules for relaxing
» Exactly what can be tolerated is highly dependent on applications

> We should define the access and update patterns of the
replicated data

12/28/22 Distributed Systems, KNTU

» Consistency

Consistency Problem

» Tight Consistency

> Informally, the update should be propagated to all copies before a
subsequent operation takes place

> Note that this is an imprecise definition

> The key idea is that an update is performed at all copies as a single
atomic operation, or a transaction.

12/28/22 Distributed Systems, KNTU

» Consistency

Consistency Model

> System Model

» Data is physically distributed and replicated across multiple processes
» Assume any shared data like shared memory, shared database, shared file system, ---
» Each process has a local copy of data

» Write Op: Every action on data that modifies it
» Write operations are propagated to other copies

» Read Op: Non-write operation

Process Process Process

==

=
\

Distributed data store

Local copy

12/28/22 Distributed Systems, KNTU

» Consistency

Consistency Model

> A contract between processes and the data store that says that if
processes agree to obey certain rules, the store promises to work
correctly

12/28/22 Distributed Systems, KNTU

» Consistency

Data-Centric Consistency Models
> An important class of models comes from the field of parallel
programming

> In parallel and distributed computing multiple processes will
need to share resources and access these resources
simultaneously

» In such conditions, there is need for consistent ordering of
operations

> All replicas first need to reach agreement on when exactly an update is
to be performed locally

12/28/22 Distributed Systems, KNTU 10

Hierarchy of Consistency Models

Serializability

Strict

Serializable

Linearizable

Sequential

Processor

Causal

.
-

Eventual

Weak Order

|/ Synchronized Models \

Distributed Systems, KNTU

11

> Consistency » Data-Centric Consistency Models

Strict Serializability Consistency

» A write to a variable by any process needs to be seen
instantaneously by all other processes

» Instantaneously: implies having a global time and only one
update operation is executed in a predefined time period

12/28/22 Distributed Systems, KNTU 12

> Consistency » Data-Centric Consistency Models

Serializability Consistency

> Is a transactional model where each operation takes place
atomically

» Transactions have total order

> Mostly discussed in database field

> Database guarantees that transactions have the same effect as if
they ran serially

» Read Committed, Read Uncommitted, Repeatable Reads

12/28/22 Distributed Systems, KNTU 13

> Consistency » Data-Centric Consistency Models

Linearizable Consistency

> Also known as Strong Consistency, Atomic Consistency,
Immediate Consistency

> Make a system appear as if there were only one copy of the data,
and all operations are atomic

> This is recency guarantee and has not notion of transactions

12/28/22 Distributed Systems, KNTU 20

> Consistency » Data-Centric Consistency Models

Linearizable Consistency

insert into final_scores
(player1, scorel, player2, score2)

values(‘Germany; 1, Argentina; 0) time

Referee % ------------------------------------ >
ok

Leader Ej --- >

insert...

insert...

Alice % ------------ SRNNUTOTUTRY, ORI TSR >
select * from final_scores

oty A S TS S -t)
select * from final_scores

Hey, Germany
has won the
World Cup!

Really? The
website says they're
still playing.

12/28/22 Distributed Systems, KNTU

21

> Consistency » Data-Centric Consistency Models

Linearizable Consistency

> There must be some point in time (between the start and end of
the write operation) at which the value of x atomically flips from
old to new.

> After that point all clients must see the new value, reading from
any data store

12/28/22 Distributed Systems, KNTU 23

> Consistency » Data-Centric Consistency Models

Sequential Consistency

> Defined by Lamport in the context of shared memory for multi-
processor systems

> A data store is sequentially consistent if

> When processes run concurrently on (possibly) different machines, any
valid interleaving of read and write operations is acceptable behavior

> However, all processes must see the same interleaving (order) of
operations

12/28/22 Distributed Systems, KNTU 24

> Consistency » Data-Centric Consistency Models

Sequential Consistency

> The following notation is used to demonstrate behavior of two
processes operating on a shared data item

> The horizontal axis is time which increases from left to right

» Process P1 Writes value ato variable x

P1: W(x)a
P2: R(X)NIL R(x)a

» Process P2 Reads N/ from xfirst and then a

12/28/22 Distributed Systems, KNTU

> Consistency » Data-Centric Consistency Models

Sequential Consistency

» P1 writes ato variable x

> P2 reads data but value ais not propagated to the second
replica (process)

» P2 after some time reads the written data

P1: W(x)a
P2: R(X)NIL R(x)a

» According to sequential consistency this behavior is acceptable

12/28/22 Distributed Systems, KNTU

26

» Consistency

Sequential Consistency

P1: W(x)a

» Data-Centric Consistency Models

P2: W(x)b

P3: R(x)b R(x)a

P4: R(x)b R(x)a
(@)

(a) A sequentially consistent data
store.

P1: W(x)a

P2: W(x)b

P3: R(x)b R(x)a
P4 R(x)a R(x)b

(b)
(b) A data store that is not sequentially
consistent.

12/28/22 Distributed Systems, KNTU

> Consistency » Data-Centric Consistency Models

Sequential Consistency

» Example: Three concurrently-executing processes.

Process P1 Process P2 Process P3
xoe— 1 y&<—1; Z "=
print(y, z); print(x, z); print(x, y);

» Assuming each line is indivisible, statements can be executed in
720 (= 6!) different orderings

» Some of them are not correct: print(y,z) can not be executed before x
<1
> Totally 90 correct mutations exists

12/28/22 Distributed Systems, KNTU

28

» Consistency

Sequential Consistency

> Example

12/28/22

» Data-Centric Consistency Models

the consistency model all of them are correct.

X < 1;
print(y, z);
y < 1;
print(x, z);
z<— 1;
print(x, y);

Prints: 001011
Signature: 001011

(@)

X< 1;
y<1;
print(x, z);
print(y, z);
z<— 1;
print(x, y);

Prints: 101011
Signature: 101011

(b)

y < 1;
z<—1;

print(x, y);
print(x, z);
X €& 1;

print(y, z);

Prints: 010111
Signature: 110101

()

Distributed Systems, KNTU

> The vertical axis is time = 64 unique answers is produced and based on

y<1;
X< 1;
z< 1;
print(x, z);
print(y, z);
print(x, y);

Prints: 111111
Signature: 111111

(d)

29

> Consistency » Data-Centric Consistency Models

Causal Consistency

> Makes a distinction between events that are potentially causally
related and those that are not

> If event bis caused or influenced by an earlier event g, causality
requires that everyone else first see g, then see b.

» Operations not causally related are concurrent

12/28/22 Distributed Systems, KNTU

30

> Consistency » Data-Centric Consistency Models

Causal Consistency

» Casually related writes must be seen by all processes in the same
order

» Concurrent writes, may be seen in a different order on different
machines

12/28/22 Distributed Systems, KNTU

31

» Consistency » Data-Centric Consistency Models

Causal Consistency

P1. W(x)a, W(x)c

P2: N RX)Ja—WNXx)bo—"

P3: R(x)a R(x)c R(x)b
P4. R(x)a Concurrent R(x)b R(x)c

. Proqessgs may see
writes in different order

» WH(x)b € Ry(x)a € W;(x)a : causal dependency - all processes must see
them in the same order.

> W (x)c and W(x)b are concurrent, it is not required that all processes see
them in the same order

12/28/22 Distributed Systems, KNTU 32

» Consistency » Data-Centric Consistency Models

Causal Consistency

P1: W(x)a

P2: R(x)a W(x)b

P3. R(x)b R(x)a
P4. R(x)a R(x)b

» Writing b depends on reading value of a, then they are casually dependent

> Violation has been occurred P3 and P4 must see equal value for X

12/28/22 Distributed Systems, KNTU 33

» Consistency » Data-Centric Consistency Models

Causal Consistency

P1: W(x)a

P2: W(x)b

P3: R(x)b R(x)a
P4. R(x)a R(x)b -

» Store is causally consistent, because W(x)a and W(x)b are concurrent

> Note that the store is not sequentially consistent

12/28/22 Distributed Systems, KNTU

34

» Consistency » Data-Centric Consistency Models

Causal Consistency

P1: W(x)a

P2: R(x)a W(y)b

P3. R(y)b R(x)?
P4: R(x)a R(y)?

> R3(X)?
» W(X)a happened before W(y)b (W(x)a = R(x)a 2> W(y)b) =» R3(x)a

> Ra(y)?
> Trivially Rq4(y)b is correct
» But R4(y)NIL is also correct!

12/28/22 Distributed Systems, KNTU

35

Hierarchy of Consistency Models

Serializability

Strict

Serializable

Linearizable

Sequential

Processor

Casual

.
-

Eventual

Weak Order

|/ Synchronized Models \

Distributed Systems, KNTU

36

> Consistency » Data-Centric Consistency Models

Processor Consistency

> All writes to the same memory location must be seen in the
same sequential order by all other processes.

12/28/22 Distributed Systems, KNTU

37

> Consistency » Data-Centric Consistency Models

Weak Order Consistency

» Write operations before critical section must be globally
performed

> All operations in all processors need to be visible before critical
section

> Write operations inside the critical section performed only after
the critical section completes

> All other operations can be reordered

12/28/22 Distributed Systems, KNTU 39

> Consistency » Data-Centric Consistency Models

Release Consistency

> During the entry to a critical section, all operations with respect
to the local memory variables need to be completed.

12/28/22 Distributed Systems, KNTU

40

> Consistency » Data-Centric Consistency Models

Entry Consistency

> Every shared variable is assigned a synchronization variable
specific to it.

> Before critical section all operations related to x need to be
completed with respect to that process

12/28/22 Distributed Systems, KNTU

41

» Consistency » Data-Centric Consistency Models

Entry Consistency

P1: L(x) W(x)a L(y) W(y)b U(x) Uly)

P2: L(x) R(x)a

P3: L(y) R(y)b

> It Is associated with lock/unlock operations

» L(x) = Lock(x)

> U(x) » Unlock(x)

» Each process has its own copy of variables

» When they read variables as usual, they may read their own copy

> Acquiring locks means, underlying distributed system must
synchronize the copies of the variable

12/28/22 Distributed Systems, KNTU

» Consistency » Data-Centric Consistency Models

Eventual Consistency

> Observed in practice
> Only few processes do update operation
> Chance of write-write conflict is very rare
> Most of the operations is read

» Examples

> DNS record: only the authority updates, write-write conflict never
occurs!

> Web pages: only the admin updates a page, write-write conflict never
occurs!

> An important issue in these scenarios is when (how fast) the
update is propagated into other replicas or local caches

> When browser caches, or local DNS servers get the updated content

12/28/22 Distributed Systems, KNTU

43

> Consistency » Data-Centric Consistency Models

Eventual Consistency

» There are large-scale distributed and replicated systems that
tolerate a relatively high degree of inconsistency

> Reading stale data for a period of time is acceptable, updates
can be lazily propagated

> If no updates take place for a long time, all replicas will gradually
become consistent, sometime in future

> Eventual consistency essentially requires only updates are
guaranteed to propagate to all replicas

> Eventual consistency relaxes the consistency, with in write-write
conflicts

> It is used in IPhone sync, Dropbox, git, Amazon Dynamo, Cassandra,
ONOS, ..

12/28/22 Distributed Systems, KNTU 44

» Consistency

Client-Centric Consistency

» Special class of distributed data stores

> Mostly read, updated by one admin
> No shared data

> Provides guarantees for a single client concerning the
consistency of accesses to a data store by that client

12/28/22 Distributed Systems, KNTU

45

» Consistency

Client-Centric Consistency

Client moves to other location
and (transparently) connects to

other replica

...................................

.

-———————————————————————

Read and write operations
Portable computer

12/28/22 Distributed Systems, KNTU

> L

Replicas need to maintain
client-centric consistency

T ———————————————————————

Distributed and replicated database

46

» Consistency

Client-Centric Consistency
> Eventual consistency works fine as long as user accesses one
replica

> If a user is mobile and accesses several replicas in a short time,
eventual consistency is no longer held

» Consider a mobile user that modifies data in an store then
disconnects and moves, after a while connects to another store
and modifies some data, which creates write-write conflict!

12/28/22 Distributed Systems, KNTU

47

Hierarchy of Consistency Models

Sequential

Eventual Processor Causal

"
Weak Order / Pipelined Random Access Memory Wril’;ceeggllow
(PRAM)
J

Release

Monotonic Monotonic Read Your

Read

Entry \\ Client Centric Consistery

Write Write

g

» Consistency > Client-Centric Consistency

PRAM Consistency

> Pipelined Random Access Memory
> Also known as FIFO consistency

> Writes executed by a single process are observed by other
processes in the order the process executed them as if they were
in the pipeline.

> Writes from processes may be seen in a different order
by different processes

» PRAM is a combination of the next three consistencies

12/28/22 Distributed Systems, KNTU

49

» Consistency > Client-Centric Consistency

PRAM Consistency

> Implementation:
> Force a process always write to one particular data store
> or

> Before each write ensure the previous write is propagated to all
other stores

12/28/22 Distributed Systems, KNTU

50

» Consistency > Client-Centric Consistency

Client-Centric Consistency Notations

» Notations
» X: data item

> Xi: ith version of x

» WS(x;): A series of writes has leaded to x; (it" version of x)

> WS(x;; x;): By appending series of writes on x;, version x; is obtained
> WS(x;]|x;): We don't know if x; follows from x;

> W, (x;)a. process P1 wrote value ato xand produces version 1 of x

> R(x,) simply means that P; reads version x,

> L;: ith data store

12/28/22 Distributed Systems, KNTU

51

» Consistency > Client-Centric Consistency

Monotonic-Read Consistency

> If a process reads the value of a data item x, any successive read
operation on x by that process will always return that same value
or a more recent value

> This guarantees once a process has seen a value of x, it will never
see an older version of x

12/28/22 Distributed Systems, KNTU

52

» Consistency > Client-Centric Consistency

Monotonic-Read Consistency

insert into comments
(author, reply_to, message)

insert ok

insert into

12/28/22

comments...
Follower 1 ‘ --- >
insertinto
1 result
comments...
Follower 2 ‘ -- il o
no results!
User 2345 % -------------------- - - -
select * from comments select * from comments
where reply_to = 55555 where reply_to = 55555
[4]

Distributed Systems, KNTU

» Consistency > Client-Centric Consistency

Monotonic-Read Consistency

L1: W,(x,) R,(X,)
L2: W,(X,:X,) R,(x;)

()

> You open the mailbox you see some unread emails

> From then you should always see at least the same unread messages from
every where

> You may see newer emails or not

12/28/22 Distributed Systems, KNTU

54

» Consistency > Client-Centric Consistency

Monotonic-Read Consistency

L1: W (x) R,(x,)
L2: Wa(X[x;) Ri(X;)

(b)

> You've registered in a multi-branch sport club

> First you enroll for swimming

> Later you decide to enroll for body-building in an another branch
> In that branch, they say you've not enrolled for swimming!

> The process (you) reads the most recent data, does it implies monotonic
read?

12/28/22 Distributed Systems, KNTU

55

» Consistency > Client-Centric Consistency

Monotonic-Read Consistency

L1: W,(x,) R,(X,)
|0 W,(X,|x,) R,(x;)

(b)

» Remember monotonic read is descended from Causal

» Reading a recent value must include all of the writes led to this
value

12/28/22 Distributed Systems, KNTU

56

» Consistency > Client-Centric Consistency

Monotonic-Write Consistency

> A write operation by a process on a data item x is completed
before any successive write operation on x by the same process

> Write operation on a copy of item x is performed only if that
copy has been brought up to date.

> if a process performs write w;, then w,, then all processes
observe w; before w,.

> FIFO ordering of writes

12/28/22 Distributed Systems, KNTU 57

sConsteny . Clent-Centic Consisency

Monotonic-Write Consistency

make album with upload a photo
id 123" private success to album 123" success time

Primary A

]

Primary B

get photos for 1 result!

Client B album 1123

58

» Consistency > Client-Centric Consistency

Monotonic-Write Consistency

L1: W,(x,) L1 W,(x,)

L2: Wo(xixo) Wi(Xzix,) L2: Wa(xi[x2)

W, (X4[%5)

(a) (b)
L1: W,(x,) N L1: W,(x,) N
L2: W, [x;) Wi(Xz) L2: Woxix;) Wi(Xpix.)

(c) (d)

12/28/22 Distributed Systems, KNTU

59

» Consistency > Client-Centric Consistency

Read Your Write Consistency

> Also read-my-writes

> The effect of a write operation by a process on data item x will
always be seen by a operation on x by the same

process

> A write operation is always completed before a successive read
operation by the same process, no matter where that read
operation takes place

12/28/22 Distributed Systems, KNTU

61

sConsteny . Clent-Centic Consisency

Read Your Write Consistency

insert a comment comment read comments
for post withid "123" inserted for post withid "123" no resultsl!

Secondary

62

» Consistency > Client-Centric Consistency

Read Your Write Consistency

> Example

> You update your personal web-page

> You refresh the page but the most recent version is not shown
> Previous page is cached in browser

> With this consistency, all cached versions must be invalidated

12/28/22 Distributed Systems, KNTU

63

» Consistency

> Client-Centric Consistency

Read Your Write Consistency

12/28/22

LY
B

L
L2

W,(x,)
W, (X,;X,)

(a)

Wi (x,)
Wa(X,[x;)

(b)

Distributed Systems, KNTU

R,(X,)

R;(x,)

64

» Consistency > Client-Centric Consistency

Writes Follow Reads Consistency

> Also known as session causality

> If a process reads a value v, caused by write w, and later
performs write .,

> then 1w, must be visible after w;,.
> Once you've read something, you can’t change that read’s past.

12/28/22 Distributed Systems, KNTU

66

» Consistency > Client-Centric Consistency

Writes Follow Reads Consistency

> Example
> Assume a user first reads an article A.
> Then, reacts by posting a response B.

> By requiring writes-follow-reads consistency, B will be written to
any copy of the newsgroup only after A has been written as well

> Guarantees users of a group see a posting of a reaction to an
article only after they have seen the original article

12/28/22 Distributed Systems, KNTU

67

sConsteny . Clent-Centic Consisency

Writes Follow Reads Consistency

insert comment A

to post 123" success time
- ————————— - . . . - - - - - - - - - ’
read comments for reply to comment A
post 123" comment A with comment "B” success
--------------------- —: ------------ S
rolback
server fails hommean
R - @ --------------------------------------- >
~ Y
Server A ~ P\R[MARY SECONDARY
~ \Pep”'iﬁon Fails @
. G
Y
Server B SECONDARY
A
&
‘i’. get comments only comment "B’
ClientC for post "123° returned!

» Consistency > Client-Centric Consistency

Writes Follow Reads Consistency

L1: W1 (X,) Rz(x1) 3
L2: W;(X;5X,) W (Xz3X;)=

()

L1: W,(x,) R,(X,) N
L2: W,(X]x,) W, (X, Ixs)_f:. |

(b)

12/28/22 Distributed Systems, KNTU

69

» Consistency > Client-Centric Consistency

Writes Follow Reads Consistency

» Causal Consistency only for one process and W-R-W sequence

> Re-ordering of actions of other processes is possible

12/28/22 Distributed Systems, KNTU

70

» Consistenc > Replica Management
y g

Replica Server Location

» With the advent of the many large-scale data centers located
across the Internet and constant improvement of connectivity,
precisely locating servers is less critical.

> It is more of a management and commercial issue than a
scientific problem

> This issue maybe a real concern in Wireless or Sensor Networks
> The problem become similar to choosing cluster head problems

12/28/22 Distributed Systems, KNTU 71

» Consistency » Replica Management

Content Replication & Placement

» Permanent Replicas
> Several servers in one location (cluster)
> Several servers in different locations (Site Mirroring)

- — - -
anee” TERsen
- -~
- -
- -
- -
-
- by

- -~

— Server-initiated replication
--39 Client-initiated replication

Permanent
replicas

Server-initiated replicas

Client-initiated replicas

-
-
-
-
-
.-
-

Clients

-

\~~
-
-
S~
-
Noies

12/28/22 Distributed Systems, KNTU

72

» Consistency » Replica Management

Content Replication & Placement

> Server-initiated Replicas
> Server-initiated replicas are copies of a data store that exist to enhance

performance, and created at the initiative of the owner of the data store

- — - -
nm— el T T
- -~
- S~
- -
- -~

- S
- -~

— Server-initiated replication
-~ Client-initiated replication

Permanent
replicas

Server-initiated replicas

Client-initiated replicas

-
-
-
-
-

bl S
-~
S~
S~
~~~~~
_________________

12/28/22 Distributed Systems, KNTU 73



» Consistency » Replica Management

Content Replication & Placement

> Client-initiated Replicas
» Local caches in client
» Local caches for a site (cache servers in a LAN)
> Best for mostly-read, static data

> Because of network connectivity improvements, nowadays, is less
attractive

e —————————
- ~——
- -~
e -~
- -
- -~
- -~
- -~
- -~

—>» Server-initiated replication
-~ Client-initiated replication

Permanent
replicas
Server-initiated replicas

Client-initiated replicas

-——
___________

12/28/22 Distributed Systems, KNTU

74



» Consistency » Replica Management

Content Distribution

> When an update is performed by a client? what should be
propagated?

» State vs. operation

> Propagate only a notification of an update
» Known as invalidation protocols
> Just notify some part of data is updated
> Use little bandwidth
» Useful when write_count >> read_count

» Otherwise, large updates are replicated throughout the network
without being read

12/28/22 Distributed Systems, KNTU

75



» Consistency

Content Distribution

> Transfer data from one copy to another

> Transfer the new data to other replicas
» Useful when write_count << read_count

> It is possible to send logs of changes instead of the data itself,
> increases chance of aggregating logs of several updates into one packet

> Propagate the update operation to other copies
» Send parameter values and the operation other replicas must do

12/28/22 Distributed Systems, KNTU

76



» Consistency

Content Distribution

> Push or Pull updates?

> Push-based (server-based protocols)
» Updates are propagated to other replicas without their asking
» Used between permanent and server-initiated replicas
» Need for strong consistency
» Efficient for high read-to-write ratio

> Pull-based (client-based protocols):
» A server or client requests another server to send it all updates up to now
» Mostly, used for client caches
» Efficient for low read-to-update conditions

> Hybrid protocols: Lease-based model

» Server pushes updates for a specific period of time
» When lease expires, client must poll the server

12/28/22 Distributed Systems, KNTU

77



» Consistency

Consistency Protocols

> A consistency protocol describes an implementation of a specific
consistency model

> Based on experience, simpler methods succeed even if the
complex methods have better performance

» Categories
> Primary-based Protocols
> Replicated-Write Protocols

12/28/22 Distributed Systems, KNTU

78



» Consistency » Consistency Protocols

Primary-based Protocols

» Each data item in the data store has an associated primary, which
Is responsible for coordinating write operations

12/28/22 Distributed Systems, KNTU

79



» Consistency » Consistency Protocols

Primary-based Protocols

» Remote-Write or Primary-Backup Protocol
» Updates forwarded to one server which is responsible for that data item

» When update is performed, it forwards the update to all backups
» Then, backups acknowledge the server, their reception

> All reads are done locally

> A straightforward implementation of sequential consistency
» As the primary can order all incoming writes in a globally unique time order.

> If update is implemented as blocking, processes will see the effects of
the most recent write.

12/28/22 Distributed Systems, KNTU 80



» Consistency

Primary-based Protocols

» Local-Write Protocols

Client

R1

A

R2

Old primary
for item x

\

» Consistency Protocols

Client

New primary

for item x

A
W3

Backup server

r

%

wll

e

W1. Write request
W2. Move item x to new primary
Wa3. Acknowledge write completed

W4. Tell backups to update
WS5. Acknowledge update

12/28/22

R1. Read request
R2. Response to read

Distributed Systems, KNTU

Data store



» Consistency » Consistency Protocols

Primary-based Protocols

» Local-Write Protocols

> When a process wants to update a data item, it locates the primary
copy of data, and moves it to its own location

» Advantage: multiple, successive write operations can be carried out
locally, while reading processes can still access their local copy

> It can be used for disconnected operations like mobile clients
» Before disconnecting a mobile system become primary
» Others can only read the data store
» After connecting, the system updates other backups

12/28/22 Distributed Systems, KNTU

82



» Consistency » Consistency Protocols

Primary-based Protocols

> Primary-backup protocols have poor response time

» Why we don't write updates to several copies? = Replicated
write protocols

12/28/22 Distributed Systems, KNTU

83



» Consistency » Consistency Protocols

Replicated-write Protocols

> Active Replication

> Write operation is sent to all replicas (not the updates)

> This scheme needs global ordering
» Totally-ordered multicast

» Practical implementations

» Updates are sent to a central sequencer, which assigns order and sends update to all
replicas

» For scalability, we can use several sequencers using Lamport’s total-ordering mechanism, a
group of processes work with a sequencer

12/28/22 Distributed Systems, KNTU

84



» Consistency » Consistency Protocols

Replicated-write Protocols

» Quorum-based protocols

> Replicated writes with voting!

> Clients must send their request and acquire the permission of multiple
servers before reading or writing a replicated data item

> To write a data, agreement of at least g + 1 replicas should be
achieved
> After update a new version number is assigned with the data

. N .
> To read a data, client contacts at least S+l replicas and asks for the
version number
» If all the version numbers are the same, this must be the most recent version

12/28/22 Distributed Systems, KNTU 85



» Consistency » Consistency Protocols

Replicated-write Protocols

» General Quorum-based protocols

> For reading, a client must assemble a collection of Ny replicas: read
quorum

> For writing, a client must assemble a collection of Ny, replicas: write
quorum

> The following conditions must be satisfied:

»Ng + Ny > N = prevents read-write conflicts
> Ny > g =» prevents write-write conflicts

12/28/22 Distributed Systems, KNTU

86



» Consistency

» Consistency Protocols

Replicated-write Protocols

» Quorum-based protocols

12/28/22

------------------------------

(A _B _© p: (A B (A B C D}
{E F G Hi{ |E F 'E ® G HI
i1 J Kk L3 (1 3 ok L U1 9 K L3
Ng=3, Ny, =10 Ng=7, Ny, =6 Ne=1, Ny =12
(a) (b) (c)

Figure 7.29: Three examples of the voting algorithm. The gray areas denote a
read quorum; the white ones a write quorum. Servers in the intersection are
denoted in boldface. (a) A correct choice of read and write set. (b) A choice
that may lead to write-write conflicts. (c) A correct choice, known as ROWA
(read one, write all).

Distributed Systems, KNTU

88



» Consistency

Coherence

» Consistency is concerned with a set of data items

> The copies of a data item are coherent when the various copies
conform to the rules as defined by its associated consistency
model

> Deals with only a single data item

> Mostly studied in caches of shared memory multi-processor/chip-multi-
processors context

> They have hardware support

12/28/22 Distributed Systems, KNTU

89



Other References

1.
2.

3. Viotti, Paolo, and Marko Vukoli¢. "Consistency in non-
transactional distributed storage systems." ACM Computing
Surveys (CSUR)49.1 (2016): 1-34.

4. Kleppmann, Martin. Designing data-intensive applications: The

big ideas behind reliable, scalable, and maintainable systems. "
O'Reilly Media, Inc.", 2017.

5. https://vkontech.com/causal-consistency-guarantees-case-
studies/

12/28/22 Distributed Systems, KNTU

92


https://jepsen.io/consistency
https://en.wikipedia.org/wiki/Consistency_model

The End!



