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Concepts

§ Being fault tolerant is strongly related to what is called a dependable system
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• How easy a failed system 
can be repaired

• If a system temporarily 
fails to operate correctly, 
nothing catastrophic 
happens

A highly-reliable system is 
one that will most likely 
continue to work without 
interruption during a 
relatively long period of 
time

• A system is said to be 
highly available if it will 
be most likely working at 
a given instant in time

Availability Reliability

Maintainabilit
ySafety

A Dependable System
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Concepts

▸Reliability is defined in terms of a time interval instead of an 
instant in time

▸A system goes down randomly 1ms every hour
▸System is not reliable
▸System is available 99.999% of times

▸A system is shutdown two weeks a year
▸System is reliable
▸System is available for 96%

12/28/22 Distributed Systems, KNTU 3

▸Fault Tolerant Systems



Concepts

▸A system is said to fail when it cannot meet its promises
▸If a distributed system is designed to provide a number of services, it 

has failed when one or more services cannot be (completely) provided

▸An error is a part of a system’s state that may lead to a failure
▸Example: receiver receives a erroneous packet
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Concepts

▸The cause of an error is called a fault. 
▸A crashed software is a failure which is crashes because of 

programming error. An uninitialized pointer is the fault of this error

▸Building dependable systems relates to controlling faults
▸Preventing
▸Tolerating
▸Removing
▸Forecasting
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Concepts

▸Fault tolerance
▸A system can provide its services even in the presence of faults

▸For erroneous packet, receiver can
▸Request the correct packet from sender
▸Use coding techniques to recover errors

▸Fault Types
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Concepts

▸Transient faults 
▸Occur once and then disappear. If the operation is repeated, the fault 

goes away
▸Example: losing packet, but sending it again works fine

▸Intermittent fault 
▸Randomly repeating faults, difficult to diagnose
▸Example: concurrency and thread-interleave issues

▸Permanent fault
▸Continues to exist until the faulty component is replaced
▸Example: Burnt-out chips, software bugs
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Concepts

▸Partial failures
▸Specific for distributed systems
▸A partial failure may happen when a component in a distributed system 

fails

▸An overall goal in distributed systems is to construct a system in
such a way that it can automatically recover from partial failures
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Failure Models

▸Crash failure
▸Server prematurely halts, but was working correctly until it stopped
▸First solution is reboot!

▸Omission failure
▸When a server fails to respond to a request
▸Two types
▸Receive-omission failure: Fail to receive incoming messages
▸Send-omission failure: Fail to send outgoing messages

▸Omission failure: fails to take an action that it should have taken
▸Commission failure: takes an action that it should not have taken.
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Failure Models

▸Timing failure 
▸When the response lies outside a specified real-time interval

▸Sending data faster than what the client can absorb
▸Server responds too late to a request due to overload known as performance 

failure

▸Response failure
▸Server response is incorrect, A serious failure 

▸Value failure: a server simply provides the wrong reply to a request. 
▸A search engine systematically returns web pages not related to any of the search terms

▸State-transition failure: when the server reacts unexpectedly to an incoming 
request 
▸ If a server receives an unknown message, a state-transition failure happens if no measures 

have been taken to handle such messages. 
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Failure Models

▸Arbitrary failures (Byzantine failures)
▸Produce arbitrary responses at arbitrary times
▸The most serious failure
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Failure Models

▸Many of failure models deal with the situation that a process P 
no longer perceives any actions from another process Q

▸Can P conclude that Q has indeed come to a halt?
▸It depends to the type of the distributed system: Synchronous, 

Asynchronous or Partial-Synchronous
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Halting Failures

▸Fail-stop
▸Crash failures that can be reliably detected
▸This may occur when assuming non-faulty communication links and 

when the failure-detecting process P can place a worst-case delay on 
responses from Q

▸Fail-noisy
▸Like fail-stop, but P eventually come to the correct conclusion that Q 

has crashed
▸Some unknown time in which P’s detections of the behavior of Q are 

unreliable
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Halting Failures

▸Fail-silent
▸Communication links are nonfaulty, but process P cannot distinguish 

crash failures from omission failures

▸Fail-safe
▸Dealing with arbitrary failures by a process, but these failures are kind: 

they cannot do any harm

▸Fail-arbitrary
▸Q may fail in any possible way; failures may be unobservable in addition 

to being harmful
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Redundancy

▸The key technique for masking faults is to use redundancy
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Redundancy

Information

Hardware

Time

Software

Usually, extra bits are added to allow recovery from garbled bits

Usually, an action is performed, and then, if required, it is performed again

Usually, extra  
equipment are added  
to allow tolerating  
failed hardware  
components

Usually, extra  
processes are added  
to allow tolerating  
failed processes
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Triple Modular Redundancy Sample
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A circuit with signals passing through devices A, B, and C, in sequence

Each device is replicated 3 times and after each stage is a triplicated voter

If one is faulty, the 
final result will be 

incorrect

If 2 or 3 of the inputs are 
the same, the output is 

equal to that input
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Process Fault Tolerance

§Use Process Redundancy
§ Organize several identical processes into a group

§ Messages received by all members of the group
§ Failure of one to several processes in the group does not halt the whole system

§ Notes:
§ A process can join a group or leave one during system operation
§ A process can be a member of several groups at the same time
§ Mechanisms are needed for managing groups and group membership.
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P P ü
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Process Redundancy Models

§An important distinction between groups is their internal
structure
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Flat Group:

(+) Symmetrical
(+) No single point of failure
(-) Decision making is 
complicated

Hierarchical Group:

(+) Decision making is simple
(-) Asymmetrical 
(-) Single point of failure

To decide anything, 
a vote often has to 
be taken, incurring 
some delay and 
overhead

Coordinator
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Group Membership Management

▸Central group membership server
▸Easy to implement
▸Has single point of failure problem

▸Distributed membership management
- Servers are added to a multicast group 
- For join, a process can send a membership request to the whole group
- To leave send a goodbye message to all members
- In failures, member cannot commit a polite goodbye, other members 

will have to detect and report to other member groups
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Replication Protocols

▸Primary-based protocols

▸Replicated-write protocols
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Replication Protocols

▸Primary-based replication
▸Hierarchical group
▸Primary-backup coordinates write operations
▸Needs election algorithms when primary backup fails

▸Replicated-write protocols
▸Organize identical processes into a flat group
▸Needs voting for decision (quorum-based)
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Replication Protocols

▸How much replication is sufficient?

k-fault-tolerant system 
If a system can survive faults in k components and still meet its 
specifications

Masking k-failures (k-fault tolerancy)
▸If faults are crash or omission, then k+1 components is enough

▸If faults are arbitrary, 2k+1 components is needed. (Why?) 
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Consensus Problems

Also known as Agreement Problems
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Consensus Problem

▸In a fault-tolerant process group, all non-faulty processes 
execute the same commands, in the same order

▸This means group members need to reach consensus on which 
command to execute

▸Reaching consensus is easy when no failure happen
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Flooding Consensus

▸Assumes Fail-Stop failures
▸Algorithm operates in rounds

▸Clients send their proposals to a group of processes P={P1, P2,...}
▸At each round 

▸Processes send their list of commands to all members

▸All processes merge all lists
▸All processes run a similar sorting algorithm, then all processes select the same 

command

▸Processes received commands from all others, broadcast their decision 
to others
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Flooding Consensus Example

▸P1 crashes, but before crash it sends its list. 𝑃! receives the list but 𝑃", 𝑃# do 
not receive the list

▸𝑃" detects 𝑃$ failure but does not know if others have detected the failure 
or not

▸𝑃" knows that if other process has received 𝑃$ list it will decide and send 
the decision to all

▸𝑃", 𝑃# do nothing, but 𝑃! do the decision and its decision to all
▸In the next round, 𝑃" 𝑎𝑛𝑑 𝑃# can decide based on 𝑃! list
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Flooding Consensus

▸This model works for fail-stop failures even with only one 
working process

▸What if 𝑃! could not detect the failure of the 𝑃" for sure?
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Distributed Commit
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Distributed System Algorithms Properties

▸Liveness
▸In all conditions algorithms reaches a steady state

▸Safety
▸In all conditions with any input, algorithm does not violate initial 

assumptions
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Distributed Commit

▸A set of operations should be performed by all group members 
or none at all
▸All processes should execute operations in the same order
▸The problem first was encountered in database systems

▸Suppose a database system is updating some complicated data 
structures that include parts residing on more than one machine.

▸Assumptions:
▸Concurrent processes and uncertainty of timing, order of events and 

inputs (asynchronous systems)

▸Failure and recovery of machines/processors, of communication 
channels 
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One-phase Distributed Commit

▸A coordinator (= primary) sends an operation(s) to all 
participants (= backups)

▸Each participant executes the operation

▸The simplest Solution

▸Problem:
▸No way to report back the failure of execution to coordinator!
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Two-Phase Commit (2PC)

▸Phase 1: prepare phase

▸Phase 2: commit phase
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Two-Phase Commit (2PC)

▸Phase 1: prepare (voting) phase

▸A: Coordinator asks participants if they can execute the operation (VOTE-
REQUEST)

▸B: Participants reply

▸VOTE-COMMIT: if they can execute operation

▸VOTE-ABORT: if they cannot execute the operation
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Two-Phase Commit (2PC)

▸Phase 2: commit (decision) phase

▸A: coordinator collects all votes
▸Sends GLOBAL-COMMIT: if all participants agree.

▸Sends GLOBAL-ABORT: if even one participant not agree.

▸B: Each participant 

▸Commits locally if receive GLOBAL-COMMIT

▸Aborts transaction locally if receive GLOBAL-ABORT
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Two-Phase Commit (2PC)
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INIT

WAIT

COMMITABORT

Commit
Vote-request

Vote-abort
Global-abort

Vote-commit
Global-commit

INIT

READY

COMMITABORT

Vote-request
Vote-commit

Global-abort
ACK

Global-commit
ACK

Vote-request
Vote-abort

The finite state machine for the 
coordinator in 2PC

The finite state machine for a
participant in 2PC

• Looking to finite state machine of coordinator and participants, they have 
three waiting states.

• To avoid forever blocking, both use timeouts



Two-Phase Commit (2PC)

▸Blocking 1: participants waiting for receiving VOTE-REQUEST
▸After timeout, participants send VOTE-ABORT message

▸Blocking 2: coordinator waits for vote replies
▸After some time if not all votes collected, it sends GLOBAL-ABORT

message.
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Distributed Commit – 2PC

▸Blocking 3: participants in ready state wait for coordinator reply
▸Participants cannot decide by themselves!

▸Simple Solution: Block until coordinator reboot and recover

▸Cooperative protocol: ask other participants
▸If the other is in COMMIT state à do commit
▸If the other is in ABORT state à do abort
▸If the other is in INIT state à do abort

▸The other node didn’t receive vote-request message, or coordinator has crashed before 
sending to it

▸If the other is in READY state à contact another participant! (may block)
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Distributed Commit – 2PC

▸Blocking 3: participants in ready state wait for coordinator reply 
(cont.)
▸Cooperative protocol: ask other participants (cont.)

▸If the other is in READY state à contact another participant! (may block)
▸If all are ready:

▸Since some of participants may crash which was received COMMIT/ABORT command
▸ If it reboots and it will be in commit state 

• Other participants must wait for coordinator or this participant, but how long should 
they wait?

▸ If it never restarted?
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Distributed Commit – 2PC

▸To ensure recovery, coordinator and participants must log their 
state in disk.

▸2PC is blocking commit protocol
▸Blocking 3 scenario
▸If one or more machines fail (we need all to reply)

▸2PC is safe but not live.
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Three-Phase Commit (3PC)

▸Avoids blocking processes in the presence of fail-stop crashes

▸It is not applied often in practice as the conditions under which 
2PC blocks occur rarely

▸Phase 1: prepare phase
▸Phase 2: pre-commit phase
▸Phase 3: commit phase
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Three-Phase Commit (3PC)

▸Phase 1: prepare phase

▸A: Coordinator asks participants if they can execute the operation 
VOTE-REQUEST

▸B: Participants reply

▸VOTE-COMMIT: if they can execute operation

▸VOTE-ABORT: if they cannot execute the operation
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Three-Phase Commit (3PC)

▸Phase 2: pre-commit phase

▸A: coordinator collects all votes
▸Sends PREPARE-COMMIT: if all participants agree
▸Sends GLOBAL-ABORT: if even one participant not agree

▸B: Each participant 
▸Send READY-COMMIT if receive PREPARE-COMMIT
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Three-Phase Commit (3PC)

▸Phase 3: commit phase

▸A: coordinator collects all READY-COMMIT messages
▸Sends GLOBAL-COMMIT: if all participants are prepared

▸B: Each participant 
▸Commit locally if receive GLOBAL-COMMIT
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Three-Phase Commit (3PC)
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INIT

WAIT

PRE-COMMITABORT

Commit
Vote-request

Vote-abort
Global-abort

Vote-commit
Prepare-commit

INIT

READY

PRE-COMMITABORT

Vote-request
Vote-commit

Global-abort
ACK

Prepare-commit
Ready-commit

Vote-request
Vote-abort

The finite state machine for the 
coordinator in 3PC

The finite state machine for a
participant in 3PC

COMMIT COMMIT

Ready-commit
Global-commit

Global-commit
Ack



Three-Phase Commit (3PC)

▸We skip the blocking scenarios similar to 2PC

▸Blocking 1: coordinator is blocked in PRE-COMMIT
▸One or more processes have crashed, but they have voted for commit 
à coordinator sends GLOBAL-COMMIT

▸Crashed participator can be recovered by a recovery protocol, later.
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Three-Phase Commit (3PC)

▸Blocking 2: Participant blocked in READY or PRE-COMMIT.
▸This means coordinator has failed, then contacts with other participants

▸If in COMMIT à commit
▸If in PRE-COMMIT à commit
▸If in INIT à abort (because no participant reached to PRE-COMMIT)
▸If (majority) in READY à abort

▸A participant is crashed but no one knows what was the state of the crashed participant
▸ If it recovers to INIT then it was aborted
▸ If it was recovered to PRE-COMMIT, nothing harmful may be done

▸This situation is the major difference with 2PC. In 3PC no crashed participant 
may recover to COMMIT, thus they can come to agreement
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Three-Phase Commit (3PC)

▸Liveness: it always makes progress

▸Safety: No! 
▸3PC results in inconsistent state between replicas when network 

is partitioned.

▸3PC trades safety for liveness
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Three-Phase Commit (3PC)

▸Safety:
▸C after sending prepare-commit, crashes and network is partitioned 
▸A1 commits but, A2 and A3 will abort 
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C

A1

A2

A3

C

A1

A2

A3

Prepare-commit

Network Partitioned



FLP Impossibility

▸Impossibility of distributed consensus with one faulty process
▸FLP Fischer-Lynch-Paterson (FLP) • M.J. Fischer, N.A. Lynch, and M.S. 

Paterson, Journal of the ACM, 1985.

▸What FLP says: you cannot guarantee both safety and progress 
when there is even a single fault at an inopportune moment to 
reach a consensus.

▸What FLP does not say: in practice, how close can you get to the 
ideal.
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Paxos
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Paxos

▸Solving 2PC Problems
▸We should not rely on all participants à we can use majority vote

▸Having one coordinator is a real issue à Add more coordinators
▸This makes Paxos algorithm!
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Paxos

▸1979, 2PC, Gray
▸1981, 3PC, Stonebraker
▸1989, 42-page tech report
▸1990, “Part-time Parliament” 

▸Paper rejected, ACM Transactions on Computer Systems 
▸It was not considered a useful algorithm

▸1996, First implementation
▸1997, Used in Frangipani Distributed Lock
▸1998, Paper resubmitted and accepted TOCS

▸Won ACM SIGOPS Hall of Fame Award in 2012!
▸2001, ”Paxos Made Simple”, Lamport
▸2007, “Paxos Made Live”, Chandra 
▸2014 RAFT appears 
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Paxos

▸Paxos is everywhere
▸Yahoo’s ZooKeeper (Now an Apache project)
▸Google’s Chubby (Distributed Lock)
▸Frangipani (Distributed lock service)
▸Amazon Web Services uses Paxos
▸Windows Fabric, used by many of the Azure services, make use of the 

Paxos algorithm for replication between nodes in a cluster 
▸Neo4j HA graph database implements Paxos, replacing Apache 

ZooKeeper used in previous versions. 
▸Apache Mesos uses Paxos algorithm for its replicated log coordination 
▸...
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Paxos

▸Assumptions
▸The distributed system is partially synchronous

▸Communication is unreliable, messages may be lost, duplicated, or 
reordered

▸Corrupted messages can be detected

▸All operations are deterministic, once an execution is started, it is 
known exactly what it will do.

▸Processes may exhibit fail-noisy failures, but not arbitrary failures, nor 
do processes collude
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Paxos

▸Paxos lets all nodes agree on an operation despite node failures, 
network failures and delays

▸Paxos works correctly when less than N/2 nodes fail
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Paxos

▸A single machine (server) has three
components

▸Proposer
▸Handles clients’ request
▸Suggest proposals for acceptors

▸Acceptor
▸Receives proposals
▸Accepts or reject proposals

▸Learner
▸Learns the operation chosen by majority

▸When one of these components crashes, 
server is considered as crashed
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Paxos

▸A clients requests an operation

▸Proposers receive and handle requests of clients one at a time

▸A Proposer creates a proposal and sends to acceptors

▸If majority of acceptors accept the same proposal, it is said to be 
chosen.
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Paxos

▸Multiple proposers and Multiple acceptors
▸It is possible proposers never get the vote of majority

▸Solution:  Let several proposals is accepted by acceptors

▸How acceptors distinguish proposals from each other?
▸Tag each proposals with a unique number (=N)

▸Each proposer generates a unique number never has generated before

▸Proposals are tagged with (proposerID, N) pair as Proposal 
Number
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Paxos

▸The proposer with the highest proposal number is the leader
proposer
▸Paxos embeds a Distributed Leader Election process with proposal 

numbers that are, in fact, Lamport logical clock

▸The proposal with the highest proposal number will have the 
majority

▸Or
▸Acceptors always choose (agree with) the operation with the 

highest proposal number

▸If another proposer transmit a proposal with any higher number 
than the current chosen proposal, becomes the leader or its 
proposal is chosen.
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Paxos

▸Detailed Algorithm
▸Phase 1a - prepare phase   
▸Phase 1b - promise phase   
▸Phase 2a - accept phase
▸Phase 2b - accepted phase
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Paxos

▸Phase 1a - prepare phase

▸A proposer, P selects a proposal number N and sends a prepare
request with number (Ni, Pi) to majority of acceptors
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Paxos

P1

P2

P3

A1

A2

A3

prepare([N1,P1]) L1

L2

L3

Machine 1

Machine 2

Machine 3
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Paxos

▸Phase 1b - promise phase
▸If an acceptor receives (Ni,Pi)

▸If this is the first proposal, sends promise to the proposer

▸Has promised to proposal (Nj,Pj)

▸If (Ni,Pi) < (Nj,Pj), acceptor sends promise with number (Nj,Pj), the
highest-numbered proposal it has accepted so far

▸For optimization no of messages, acceptor may not reply

▸If (Ni,Pi) > (Nj,Pj), acceptor promises Pi, sends a promise with number 
(Ni, Pi)

▸It promises not to accept any proposal with number less than (Ni, Pi)
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Paxos

▸Phase 1b - promise phase
▸There is no accepted operation to be announced, they return null.
▸P1 is leader
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P1

P2

P3

A1

A3

L1

L2

L3

A2



Paxos

▸N2 > N1 è Now P2 is Leader
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P1

P2

P3

A1

A2

A3

L1

L2

L3

P1

P2

P3

A1

A3

promise([N2,P2],null)

L1

L2

L3

prepare([N2,P2]) A2



Paxos

▸N3 < N2
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P1

P2

P3

A1

A2

A3

L1

L2

L3

P1

P2

P3

A1 L1

L2

L3
promise([N2,P2],null)

A2

A3



Paxos

▸Phase 2a - accept phase

▸If a proposer receives corresponding promises from a majority of 
acceptors:
▸It sends an accept request to each of those acceptors for a proposal 

numbered (Ni,Pi) with operation P, which is the operation of the 
highest-numbered proposal among the responses

▸Otherwise, aborts and starts again with a new proposal number
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Paxos

▸Phase 2a - accept phase
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P1

P2

P3

A1

A2

A3
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Paxos

▸Phase 2b - accepted phase
▸An acceptor has promised to proposal (Ni,Pi)

▸If receives an accept request numbered (Ni,Pi) sends accepted message

▸If receives an accept request numbered (Nj,Pj) sends accepted with the 
accepted number and its operation

▸Acceptor accepts the accept request if its proposal no. is the 
highest proposal no. it have agreed to
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Paxos

▸Phase 2b - accepted phase
▸Acceptors tell P1, they have accepted another proposer
▸P1 may retry
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Paxos

▸Phase 2b - accepted phase
▸After sending accepted, acceptors talk with learners about their 

decision
▸Learners commit if they receive the same operation from majority of 

acceptors
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Paxos

▸Phase 2b - accepted phase
▸Learners acknowledge acceptors about their commit
▸When Acceptors received enough committed, start a new cycle
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Paxos

▸Phase 2b - accepted phase

▸What if a new proposal received with higher number than what 
has accepted, before learn?

▸The proposal is accepted if the operation is the same as any 
previously accepted proposal!
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Paxos

▸Once a proposal with operation P is chosen by majority, 
▸No new operation will accepted, until the chosen operation get 

completed
▸If the operation on the highest-numbered proposal has not completed, 

no new operation can be proposed

▸Every higher-numbered proposal that is chosen also must propose P

▸The goal is reaching a consensus, it is not important which value 
is eventually accepted.
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Paxos

▸Phase 2b - accepted phase
▸What if new proposal received by acceptors before completion of learn 

with higher proposal no.?
▸N4>N2
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Paxos

▸Phase 2b - accepted phase
▸What if new proposal received by acceptors before completion of learn 

with higher proposal no.?
▸N4>N2
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Paxos

▸A faulty scenario (1)
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Paxos

▸A faulty scenario (2)
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Paxos

▸A faulty scenario (3) 
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Paxos

▸A faulty scenario (4)
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N5>N4

A2 reboots and sends accepted. Now 
we have two simultaneous commits!
Something is wrong!
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Paxos

▸A faulty scenario (3-2)
▸correct version

▸After a while A1 reboots and sends accepted and operation 
continues
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N5>N4

A3 never sends promise if O4 has not been committed.
(step 3 is wrong)

No new operation will accepted, until the chosen
operation get completed
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Paxos

▸A faulty scenario
▸What if A1 crash and does not reboot again or it doesn’t 

remember its previous choice?
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Paxos

▸A faulty scenario
▸P1 retries with the O4 operation!!
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Paxos

Think about other bad conditions:
▸What if leader fails 

▸Before sending accept
▸After sending accept
▸To send accept to majority of acceptors
▸To send accept to some of acceptors (not majority)

▸What if a node fails after receiving accept?
▸If it doesn’t restart …
▸If it reboots …

▸What if a node fails after sending promise?
▸If it reboots …
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Paxos

▸Safety Property

▸Only an operation that has been proposed may be accepted.

▸Only a single operation is chosen

▸An learner learns an operation that has been chosen
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Paxos

▸Liveness Property (= Termination)
▸If two or more proposers race to propose new values, they might step on each 

other toes all the time.
▸P1: prepare(n1 ) 
▸P2: prepare(n2 ) 
▸P1: accept(n1 , v1 ) 
▸P1: prepare(n3 ) 
▸P2: accept(n2 , v2 ) 
▸P2: prepare(n4 ) , ….

▸n1 < n2 < n3 < n4 <···  

▸With randomness, this occurs exceedingly rarely.
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Paxos

▸To read a client must ask several nodes and choose the value of 
majority
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Paxos Issues

▸Difficult to understand
▸“The dirty little secret of the NSDI* community is that at most 

five people really, truly understand every part of Paxos ;-).”– NSDI 
viewer

▸Very difficult to implement
▸“There are significant gaps between the description of the Paxos 

algorithm and the needs of a real-world system...the final system 
will be based on an unproven protocol.” – Chubby Authors
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Designing for Understandability: 
The Raft Consensus Algorithm
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Replicated State Machine

▸Each command from a client changes the state of a replica
▸Each replica maintains a log of events 
▸Replicas apply events in the log to update their state

▸Log Consensus
▸All replicas must agree on the order of events in the log 
▸Consensus algorithm (i.e. Paxos) ensures that all logs contain the 

same commands in the same order

▸Replicated log => Replicated State Machine
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Distributed Log

▸State machines always execute commands in the log order
▸They will remain consistent as long as command executions have 

deterministic results
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Overview

▸Client sends a command to one of the servers
▸Server adds the command to its log
▸Server forwards the new log entry to the other servers
▸Once a consensus has been reached, each server state machine 

process the command and sends it reply to the client

12/28/22 Distributed Systems, KNTU 96

▸RAFT

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

Servers

Clients

shl



Leader Election

▸RAFT assumes starts with electing one leader

▸Each server can be in one of three states
▸Leader
▸Follower
▸Candidate (to be the new leader)

▸Raft guarantees at a given time only one leader exists
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Leader Election
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▸Leader transmits heartbeats
▸If Election-Timeout elapses followers start the election process



Leader Election
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▸Time is divided into Terms
▸A term may has 

▸no leader à election / split vote
▸one leader à normal operation

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote



Leader Election
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▸Term is like logical clock
▸Followers 

▸maintain current Term, to identify obsolete info
▸include in all messages
▸update the term if receive a higher value

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote



Leader Election Process
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▸When a follower starts an election, it
▸Increments its current term
▸Transitions to candidate state
▸Votes for itself 
▸Issues RequestVote RPCs to all the other servers in the cluster.

▸A candidate remains in that state until
▸It wins the election
▸Another server becomes the new leader
▸A period of time goes by with no winner, backs off with random interval

▸Candidate receive the majority of votes become leader
▸Each server will vote for at most one candidate in one term
▸Winner sends heartbeat messages to all others



Log Replication
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▸Leaders
▸Accept client commands
▸Append them to their log (new entry)
▸Issue AppendEntry RPCs in parallel to all followers

▸Followers record the log and acknowledge the leader

▸Leader commits (updates the state machine) if majority
acknowledged
▸Re-issue the command for slow servers, no problem!

▸Heartbeats and subsequent messages include the index of last 
committed log
▸Committing an entry also commits all previous entries



Log Structure
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▸Log entry = { index, term, command }
▸Log stored on stable storage (disk); survives crashes

▸Entry committed if known to be stored on majority of servers
▸Durable & stable, will eventually be executed by state machines
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Log Structure
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▸Raft commits entries in strictly sequential order
▸No gap is accepted

▸If log entries on different server have same index and term:
▸Store the same command
▸Logs are identical in all preceding entries

▸Entry committed if known to be stored on majority of servers
▸Durable & stable, will eventually be executed by state machines



Handling Leader Crash
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▸Can leave the cluster in a inconsistent state if the old leader had 
not fully replicated a previous entry

▸Some followers may have in their logs entries that the new 
leader does not have

▸Other followers may miss entries that the new leader has



Handling Leader Crash
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▸RAFT

▸Elect candidate most likely to contain all committed entries

▸In RequestVote, candidates include {index,term} of last log entry
▸Vote for candidate unless

▸Their own log is more "up to date” (higher term-longer log)
▸They have already voted for another server

▸Leader will have “most complete” log among electing majority

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2 Unavailable during 
leader transition

Committed?
Can’t tell 

which entries 
committed!

s1

s2



Handling Leader Crash
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▸New leader forces followers' log to duplicate its own
▸Conflicting entries in followers' logs will be overwritten

▸New leader sets its nextIndex to the index just after its last log 
entry (11 in the example)
▸Broadcasts it to all its followers



Handling Leader Crash
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▸Leader maintains a nextIndex for each follower
▸Index of entry it will send to that follower

▸Followers that have missed some AppendEntry calls will refuse all 
further AppendEntry calls
▸Leader will decrement its nextIndex for that follower and redo 

the previous AppendEntry call

1 41 1 4 5 5 6 6 6Leader for term 7

1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1
Followers

2 2 33 3 3 32

(a)

(b)

nextIndex
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