
Graduate Level

K. N. Toosi Institute of Technology
Dr. H. Khanmirza

h.khanmirza@kntu.ac.ir

Fault Tolerant Systems - 1

Slide set 6
Distributed Systems

mailto:h.khanmirza@kntu.ac.ir

Concepts

§ Being fault tolerant is strongly related to what is called a dependable system

Distributed Systems, KNTU 2

▸Fault Tolerant Systems

• How easy a failed system
can be repaired

• If a system temporarily
fails to operate correctly,
nothing catastrophic
happens

A highly-reliable system is
one that will most likely
continue to work without
interruption during a
relatively long period of
time

• A system is said to be
highly available if it will
be most likely working at
a given instant in time

Availability Reliability

Maintainabilit
ySafety

A Dependable System

12/28/22

Concepts

▸Reliability is defined in terms of a time interval instead of an
instant in time

▸A system goes down randomly 1ms every hour
▸System is not reliable
▸System is available 99.999% of times

▸A system is shutdown two weeks a year
▸System is reliable
▸System is available for 96%

12/28/22 Distributed Systems, KNTU 3

▸Fault Tolerant Systems

Concepts

▸A system is said to fail when it cannot meet its promises
▸If a distributed system is designed to provide a number of services, it

has failed when one or more services cannot be (completely) provided

▸An error is a part of a system’s state that may lead to a failure
▸Example: receiver receives a erroneous packet

Distributed Systems, KNTU 4

▸Fault Tolerant Systems

12/28/22

Concepts

▸The cause of an error is called a fault.
▸A crashed software is a failure which is crashes because of

programming error. An uninitialized pointer is the fault of this error

▸Building dependable systems relates to controlling faults
▸Preventing
▸Tolerating
▸Removing
▸Forecasting

Distributed Systems, KNTU 5

▸Fault Tolerant Systems

12/28/22

Concepts

▸Fault tolerance
▸A system can provide its services even in the presence of faults

▸For erroneous packet, receiver can
▸Request the correct packet from sender
▸Use coding techniques to recover errors

▸Fault Types

Distributed Systems, KNTU 6

▸Fault Tolerant Systems

12/28/22

Concepts

▸Transient faults
▸Occur once and then disappear. If the operation is repeated, the fault

goes away
▸Example: losing packet, but sending it again works fine

▸Intermittent fault
▸Randomly repeating faults, difficult to diagnose
▸Example: concurrency and thread-interleave issues

▸Permanent fault
▸Continues to exist until the faulty component is replaced
▸Example: Burnt-out chips, software bugs

12/28/22 Distributed Systems, KNTU 7

▸Fault Tolerant Systems

Concepts

▸Partial failures
▸Specific for distributed systems
▸A partial failure may happen when a component in a distributed system

fails

▸An overall goal in distributed systems is to construct a system in
such a way that it can automatically recover from partial failures

12/28/22 Distributed Systems, KNTU 8

▸Fault Tolerant Systems

Failure Models

▸Crash failure
▸Server prematurely halts, but was working correctly until it stopped
▸First solution is reboot!

▸Omission failure
▸When a server fails to respond to a request
▸Two types
▸Receive-omission failure: Fail to receive incoming messages
▸Send-omission failure: Fail to send outgoing messages

▸Omission failure: fails to take an action that it should have taken
▸Commission failure: takes an action that it should not have taken.

12/28/22 Distributed Systems, KNTU 9

▸Fault Tolerant Systems

Failure Models

▸Timing failure
▸When the response lies outside a specified real-time interval

▸Sending data faster than what the client can absorb
▸Server responds too late to a request due to overload known as performance

failure

▸Response failure
▸Server response is incorrect, A serious failure

▸Value failure: a server simply provides the wrong reply to a request.
▸A search engine systematically returns web pages not related to any of the search terms

▸State-transition failure: when the server reacts unexpectedly to an incoming
request
▸ If a server receives an unknown message, a state-transition failure happens if no measures

have been taken to handle such messages.

12/28/22 Distributed Systems, KNTU 10

▸Fault Tolerant Systems

Failure Models

▸Arbitrary failures (Byzantine failures)
▸Produce arbitrary responses at arbitrary times
▸The most serious failure

12/28/22 Distributed Systems, KNTU 11

▸Fault Tolerant Systems

Failure Models

▸Many of failure models deal with the situation that a process P
no longer perceives any actions from another process Q

▸Can P conclude that Q has indeed come to a halt?
▸It depends to the type of the distributed system: Synchronous,

Asynchronous or Partial-Synchronous

12/28/22 Distributed Systems, KNTU 12

▸Fault Tolerant Systems

Halting Failures

▸Fail-stop
▸Crash failures that can be reliably detected
▸This may occur when assuming non-faulty communication links and

when the failure-detecting process P can place a worst-case delay on
responses from Q

▸Fail-noisy
▸Like fail-stop, but P eventually come to the correct conclusion that Q

has crashed
▸Some unknown time in which P’s detections of the behavior of Q are

unreliable

12/28/22 Distributed Systems, KNTU 14

▸Fault Tolerant Systems

Halting Failures

▸Fail-silent
▸Communication links are nonfaulty, but process P cannot distinguish

crash failures from omission failures

▸Fail-safe
▸Dealing with arbitrary failures by a process, but these failures are kind:

they cannot do any harm

▸Fail-arbitrary
▸Q may fail in any possible way; failures may be unobservable in addition

to being harmful

12/28/22 Distributed Systems, KNTU 15

▸Fault Tolerant Systems

Redundancy

▸The key technique for masking faults is to use redundancy

12/28/22 Distributed Systems, KNTU 16

▸Fault Tolerant Systems

Redundancy

Information

Hardware

Time

Software

Usually, extra bits are added to allow recovery from garbled bits

Usually, an action is performed, and then, if required, it is performed again

Usually, extra
equipment are added
to allow tolerating
failed hardware
components

Usually, extra
processes are added
to allow tolerating
failed processes

16

Triple Modular Redundancy Sample

12/28/22 Distributed Systems, KNTU 17

▸Fault Tolerant Systems ▸Redundancy

A circuit with signals passing through devices A, B, and C, in sequence

Each device is replicated 3 times and after each stage is a triplicated voter

If one is faulty, the
final result will be

incorrect

If 2 or 3 of the inputs are
the same, the output is

equal to that input

17

Process Fault Tolerance

§Use Process Redundancy
§ Organize several identical processes into a group

§ Messages received by all members of the group
§ Failure of one to several processes in the group does not halt the whole system

§ Notes:
§ A process can join a group or leave one during system operation
§ A process can be a member of several groups at the same time
§ Mechanisms are needed for managing groups and group membership.

12/28/22 Distributed Systems, KNTU 19

▸Fault Tolerant Systems

P P ü

19

Process Redundancy Models

§An important distinction between groups is their internal
structure

12/28/22 Distributed Systems, KNTU 20

▸Fault Tolerant Systems ▸Process Fault Tolerance

Flat Group:

(+) Symmetrical
(+) No single point of failure
(-) Decision making is
complicated

Hierarchical Group:

(+) Decision making is simple
(-) Asymmetrical
(-) Single point of failure

To decide anything,
a vote often has to
be taken, incurring
some delay and
overhead

Coordinator

20

Group Membership Management

▸Central group membership server
▸Easy to implement
▸Has single point of failure problem

▸Distributed membership management
- Servers are added to a multicast group
- For join, a process can send a membership request to the whole group
- To leave send a goodbye message to all members
- In failures, member cannot commit a polite goodbye, other members

will have to detect and report to other member groups

12/28/22 Distributed Systems, KNTU 21

▸Fault Tolerant Systems ▸Process Fault Tolerance

Replication Protocols

▸Primary-based protocols

▸Replicated-write protocols

12/28/22 Distributed Systems, KNTU 22

▸Fault Tolerant Systems ▸Process Fault Tolerance

Replication Protocols

▸Primary-based replication
▸Hierarchical group
▸Primary-backup coordinates write operations
▸Needs election algorithms when primary backup fails

▸Replicated-write protocols
▸Organize identical processes into a flat group
▸Needs voting for decision (quorum-based)

12/28/22 Distributed Systems, KNTU 23

▸Fault Tolerant Systems ▸Process Fault Tolerance

Replication Protocols

▸How much replication is sufficient?

k-fault-tolerant system
If a system can survive faults in k components and still meet its
specifications

Masking k-failures (k-fault tolerancy)
▸If faults are crash or omission, then k+1 components is enough

▸If faults are arbitrary, 2k+1 components is needed. (Why?)

12/28/22 Distributed Systems, KNTU 24

▸Fault Tolerant Systems ▸Process Fault Tolerance

Consensus Problems

Also known as Agreement Problems

Distributed Systems, KNTU 2512/28/22

Consensus Problem

▸In a fault-tolerant process group, all non-faulty processes
execute the same commands, in the same order

▸This means group members need to reach consensus on which
command to execute

▸Reaching consensus is easy when no failure happen

12/28/22 Distributed Systems, KNTU 26

▸Fault Tolerant Systems

Flooding Consensus

▸Assumes Fail-Stop failures
▸Algorithm operates in rounds

▸Clients send their proposals to a group of processes P={P1, P2,...}
▸At each round

▸Processes send their list of commands to all members

▸All processes merge all lists
▸All processes run a similar sorting algorithm, then all processes select the same

command

▸Processes received commands from all others, broadcast their decision
to others

12/28/22 Distributed Systems, KNTU 27

▸Fault Tolerant Systems ▸Consensus Problem

Flooding Consensus Example

▸P1 crashes, but before crash it sends its list. 𝑃! receives the list but 𝑃", 𝑃# do
not receive the list

▸𝑃" detects 𝑃$ failure but does not know if others have detected the failure
or not

▸𝑃" knows that if other process has received 𝑃$ list it will decide and send
the decision to all

▸𝑃", 𝑃# do nothing, but 𝑃! do the decision and its decision to all
▸In the next round, 𝑃" 𝑎𝑛𝑑 𝑃# can decide based on 𝑃! list

12/28/22 Distributed Systems, KNTU 28

▸Fault Tolerant Systems ▸Consensus Problem

Flooding Consensus

▸This model works for fail-stop failures even with only one
working process

▸What if 𝑃! could not detect the failure of the 𝑃" for sure?

12/28/22 Distributed Systems, KNTU 29

▸Fault Tolerant Systems ▸Consensus Problem

Distributed Commit

Distributed Systems, KNTU 3012/28/22

Distributed System Algorithms Properties

▸Liveness
▸In all conditions algorithms reaches a steady state

▸Safety
▸In all conditions with any input, algorithm does not violate initial

assumptions

12/28/22 Distributed Systems, KNTU 31

▸Fault Tolerant Systems ▸Distributed Commit

Distributed Commit

▸A set of operations should be performed by all group members
or none at all
▸All processes should execute operations in the same order
▸The problem first was encountered in database systems

▸Suppose a database system is updating some complicated data
structures that include parts residing on more than one machine.

▸Assumptions:
▸Concurrent processes and uncertainty of timing, order of events and

inputs (asynchronous systems)

▸Failure and recovery of machines/processors, of communication
channels

12/28/22 Distributed Systems, KNTU 32

▸Fault Tolerant Systems

One-phase Distributed Commit

▸A coordinator (= primary) sends an operation(s) to all
participants (= backups)

▸Each participant executes the operation

▸The simplest Solution

▸Problem:
▸No way to report back the failure of execution to coordinator!

12/28/22 Distributed Systems, KNTU 33

▸Fault Tolerant Systems ▸Distributed Commit

Two-Phase Commit (2PC)

▸Phase 1: prepare phase

▸Phase 2: commit phase

12/28/22 Distributed Systems, KNTU 35

▸Fault Tolerant Systems ▸Distributed Commit

Two-Phase Commit (2PC)

▸Phase 1: prepare (voting) phase

▸A: Coordinator asks participants if they can execute the operation (VOTE-
REQUEST)

▸B: Participants reply

▸VOTE-COMMIT: if they can execute operation

▸VOTE-ABORT: if they cannot execute the operation

12/28/22 Distributed Systems, KNTU 36

▸Fault Tolerant Systems ▸Distributed Commit

Two-Phase Commit (2PC)

▸Phase 2: commit (decision) phase

▸A: coordinator collects all votes
▸Sends GLOBAL-COMMIT: if all participants agree.

▸Sends GLOBAL-ABORT: if even one participant not agree.

▸B: Each participant

▸Commits locally if receive GLOBAL-COMMIT

▸Aborts transaction locally if receive GLOBAL-ABORT

12/28/22 Distributed Systems, KNTU 37

▸Fault Tolerant Systems ▸Distributed Commit

Two-Phase Commit (2PC)

12/28/22 Distributed Systems, KNTU 38

▸Fault Tolerant Systems ▸Distributed Commit

INIT

WAIT

COMMITABORT

Commit
Vote-request

Vote-abort
Global-abort

Vote-commit
Global-commit

INIT

READY

COMMITABORT

Vote-request
Vote-commit

Global-abort
ACK

Global-commit
ACK

Vote-request
Vote-abort

The finite state machine for the
coordinator in 2PC

The finite state machine for a
participant in 2PC

• Looking to finite state machine of coordinator and participants, they have
three waiting states.

• To avoid forever blocking, both use timeouts

Two-Phase Commit (2PC)

▸Blocking 1: participants waiting for receiving VOTE-REQUEST
▸After timeout, participants send VOTE-ABORT message

▸Blocking 2: coordinator waits for vote replies
▸After some time if not all votes collected, it sends GLOBAL-ABORT

message.

12/28/22 Distributed Systems, KNTU 39

▸Fault Tolerant Systems ▸Distributed Commit

Distributed Commit – 2PC

▸Blocking 3: participants in ready state wait for coordinator reply
▸Participants cannot decide by themselves!

▸Simple Solution: Block until coordinator reboot and recover

▸Cooperative protocol: ask other participants
▸If the other is in COMMIT state à do commit
▸If the other is in ABORT state à do abort
▸If the other is in INIT state à do abort

▸The other node didn’t receive vote-request message, or coordinator has crashed before
sending to it

▸If the other is in READY state à contact another participant! (may block)

12/28/22 Distributed Systems, KNTU 40

▸Fault Tolerant Systems ▸Distributed Commit

Distributed Commit – 2PC

▸Blocking 3: participants in ready state wait for coordinator reply
(cont.)
▸Cooperative protocol: ask other participants (cont.)

▸If the other is in READY state à contact another participant! (may block)
▸If all are ready:

▸Since some of participants may crash which was received COMMIT/ABORT command
▸ If it reboots and it will be in commit state

• Other participants must wait for coordinator or this participant, but how long should
they wait?

▸ If it never restarted?

12/28/22 Distributed Systems, KNTU 41

▸Fault Tolerant Systems ▸Distributed Commit

Distributed Commit – 2PC

▸To ensure recovery, coordinator and participants must log their
state in disk.

▸2PC is blocking commit protocol
▸Blocking 3 scenario
▸If one or more machines fail (we need all to reply)

▸2PC is safe but not live.

12/28/22 Distributed Systems, KNTU 42

▸Fault Tolerant Systems ▸Distributed Commit

Three-Phase Commit (3PC)

▸Avoids blocking processes in the presence of fail-stop crashes

▸It is not applied often in practice as the conditions under which
2PC blocks occur rarely

▸Phase 1: prepare phase
▸Phase 2: pre-commit phase
▸Phase 3: commit phase

12/28/22 Distributed Systems, KNTU 43

▸Fault Tolerant Systems ▸Distributed Commit

Three-Phase Commit (3PC)

▸Phase 1: prepare phase

▸A: Coordinator asks participants if they can execute the operation
VOTE-REQUEST

▸B: Participants reply

▸VOTE-COMMIT: if they can execute operation

▸VOTE-ABORT: if they cannot execute the operation

12/28/22 Distributed Systems, KNTU 44

▸Fault Tolerant Systems ▸Distributed Commit

Three-Phase Commit (3PC)

▸Phase 2: pre-commit phase

▸A: coordinator collects all votes
▸Sends PREPARE-COMMIT: if all participants agree
▸Sends GLOBAL-ABORT: if even one participant not agree

▸B: Each participant
▸Send READY-COMMIT if receive PREPARE-COMMIT

12/28/22 Distributed Systems, KNTU 45

▸Fault Tolerant Systems ▸Distributed Commit

Three-Phase Commit (3PC)

▸Phase 3: commit phase

▸A: coordinator collects all READY-COMMIT messages
▸Sends GLOBAL-COMMIT: if all participants are prepared

▸B: Each participant
▸Commit locally if receive GLOBAL-COMMIT

12/28/22 Distributed Systems, KNTU 46

▸Fault Tolerant Systems ▸Distributed Commit

Three-Phase Commit (3PC)

12/28/22 Distributed Systems, KNTU 47

▸Fault Tolerant Systems ▸Distributed Commit

INIT

WAIT

PRE-COMMITABORT

Commit
Vote-request

Vote-abort
Global-abort

Vote-commit
Prepare-commit

INIT

READY

PRE-COMMITABORT

Vote-request
Vote-commit

Global-abort
ACK

Prepare-commit
Ready-commit

Vote-request
Vote-abort

The finite state machine for the
coordinator in 3PC

The finite state machine for a
participant in 3PC

COMMIT COMMIT

Ready-commit
Global-commit

Global-commit
Ack

Three-Phase Commit (3PC)

▸We skip the blocking scenarios similar to 2PC

▸Blocking 1: coordinator is blocked in PRE-COMMIT
▸One or more processes have crashed, but they have voted for commit
à coordinator sends GLOBAL-COMMIT

▸Crashed participator can be recovered by a recovery protocol, later.

12/28/22 Distributed Systems, KNTU 48

▸Fault Tolerant Systems ▸Distributed Commit

Three-Phase Commit (3PC)

▸Blocking 2: Participant blocked in READY or PRE-COMMIT.
▸This means coordinator has failed, then contacts with other participants

▸If in COMMIT à commit
▸If in PRE-COMMIT à commit
▸If in INIT à abort (because no participant reached to PRE-COMMIT)
▸If (majority) in READY à abort

▸A participant is crashed but no one knows what was the state of the crashed participant
▸ If it recovers to INIT then it was aborted
▸ If it was recovered to PRE-COMMIT, nothing harmful may be done

▸This situation is the major difference with 2PC. In 3PC no crashed participant
may recover to COMMIT, thus they can come to agreement

12/28/22 Distributed Systems, KNTU 49

▸Fault Tolerant Systems ▸Distributed Commit

Three-Phase Commit (3PC)

▸Liveness: it always makes progress

▸Safety: No!
▸3PC results in inconsistent state between replicas when network

is partitioned.

▸3PC trades safety for liveness

12/28/22 Distributed Systems, KNTU 50

▸Fault Tolerant Systems ▸Distributed Commit

Three-Phase Commit (3PC)

▸Safety:
▸C after sending prepare-commit, crashes and network is partitioned
▸A1 commits but, A2 and A3 will abort

12/28/22 Distributed Systems, KNTU 51

▸Fault Tolerant Systems ▸Distributed Commit

C

A1

A2

A3

C

A1

A2

A3

Prepare-commit

Network Partitioned

FLP Impossibility

▸Impossibility of distributed consensus with one faulty process
▸FLP Fischer-Lynch-Paterson (FLP) • M.J. Fischer, N.A. Lynch, and M.S.

Paterson, Journal of the ACM, 1985.

▸What FLP says: you cannot guarantee both safety and progress
when there is even a single fault at an inopportune moment to
reach a consensus.

▸What FLP does not say: in practice, how close can you get to the
ideal.

12/28/22 Distributed Systems, KNTU 52

▸Fault Tolerant Systems ▸Distributed Commit

Paxos

Distributed Systems, KNTU 5312/28/22

Paxos

▸Solving 2PC Problems
▸We should not rely on all participants à we can use majority vote

▸Having one coordinator is a real issue à Add more coordinators
▸This makes Paxos algorithm!

12/28/22 Distributed Systems, KNTU 54

▸Fault Tolerant Systems

Paxos

▸1979, 2PC, Gray
▸1981, 3PC, Stonebraker
▸1989, 42-page tech report
▸1990, “Part-time Parliament”

▸Paper rejected, ACM Transactions on Computer Systems
▸It was not considered a useful algorithm

▸1996, First implementation
▸1997, Used in Frangipani Distributed Lock
▸1998, Paper resubmitted and accepted TOCS

▸Won ACM SIGOPS Hall of Fame Award in 2012!
▸2001, ”Paxos Made Simple”, Lamport
▸2007, “Paxos Made Live”, Chandra
▸2014 RAFT appears

12/28/22 Distributed Systems, KNTU 55

▸Fault Tolerant Systems

Paxos

▸Paxos is everywhere
▸Yahoo’s ZooKeeper (Now an Apache project)
▸Google’s Chubby (Distributed Lock)
▸Frangipani (Distributed lock service)
▸Amazon Web Services uses Paxos
▸Windows Fabric, used by many of the Azure services, make use of the

Paxos algorithm for replication between nodes in a cluster
▸Neo4j HA graph database implements Paxos, replacing Apache

ZooKeeper used in previous versions.
▸Apache Mesos uses Paxos algorithm for its replicated log coordination
▸...

12/28/22 Distributed Systems, KNTU 56

▸Fault Tolerant Systems

Paxos

▸Assumptions
▸The distributed system is partially synchronous

▸Communication is unreliable, messages may be lost, duplicated, or
reordered

▸Corrupted messages can be detected

▸All operations are deterministic, once an execution is started, it is
known exactly what it will do.

▸Processes may exhibit fail-noisy failures, but not arbitrary failures, nor
do processes collude

12/28/22 Distributed Systems, KNTU 57

▸Fault Tolerant Systems

Paxos

▸Paxos lets all nodes agree on an operation despite node failures,
network failures and delays

▸Paxos works correctly when less than N/2 nodes fail

12/28/22 Distributed Systems, KNTU 58

▸Fault Tolerant Systems

Paxos

▸A single machine (server) has three
components

▸Proposer
▸Handles clients’ request
▸Suggest proposals for acceptors

▸Acceptor
▸Receives proposals
▸Accepts or reject proposals

▸Learner
▸Learns the operation chosen by majority

▸When one of these components crashes,
server is considered as crashed

12/28/22 Distributed Systems, KNTU 59

▸Fault Tolerant Systems

Paxos

▸A clients requests an operation

▸Proposers receive and handle requests of clients one at a time

▸A Proposer creates a proposal and sends to acceptors

▸If majority of acceptors accept the same proposal, it is said to be
chosen.

12/28/22 Distributed Systems, KNTU 60

▸Fault Tolerant Systems

Paxos

▸Multiple proposers and Multiple acceptors
▸It is possible proposers never get the vote of majority

▸Solution: Let several proposals is accepted by acceptors

▸How acceptors distinguish proposals from each other?
▸Tag each proposals with a unique number (=N)

▸Each proposer generates a unique number never has generated before

▸Proposals are tagged with (proposerID, N) pair as Proposal
Number

12/28/22 Distributed Systems, KNTU 61

▸Fault Tolerant Systems

Paxos

▸The proposer with the highest proposal number is the leader
proposer
▸Paxos embeds a Distributed Leader Election process with proposal

numbers that are, in fact, Lamport logical clock

▸The proposal with the highest proposal number will have the
majority

▸Or
▸Acceptors always choose (agree with) the operation with the

highest proposal number

▸If another proposer transmit a proposal with any higher number
than the current chosen proposal, becomes the leader or its
proposal is chosen.

12/28/22 Distributed Systems, KNTU 62

▸Fault Tolerant Systems

Paxos

▸Detailed Algorithm
▸Phase 1a - prepare phase
▸Phase 1b - promise phase
▸Phase 2a - accept phase
▸Phase 2b - accepted phase

12/28/22 Distributed Systems, KNTU 63

▸Fault Tolerant Systems

Paxos

▸Phase 1a - prepare phase

▸A proposer, P selects a proposal number N and sends a prepare
request with number (Ni, Pi) to majority of acceptors

12/28/22 Distributed Systems, KNTU 64

▸Fault Tolerant Systems

Paxos

P1

P2

P3

A1

A2

A3

prepare([N1,P1]) L1

L2

L3

Machine 1

Machine 2

Machine 3

12/28/22 Distributed Systems, KNTU 65

▸Fault Tolerant Systems

Paxos

▸Phase 1b - promise phase
▸If an acceptor receives (Ni,Pi)

▸If this is the first proposal, sends promise to the proposer

▸Has promised to proposal (Nj,Pj)

▸If (Ni,Pi) < (Nj,Pj), acceptor sends promise with number (Nj,Pj), the
highest-numbered proposal it has accepted so far

▸For optimization no of messages, acceptor may not reply

▸If (Ni,Pi) > (Nj,Pj), acceptor promises Pi, sends a promise with number
(Ni, Pi)

▸It promises not to accept any proposal with number less than (Ni, Pi)

12/28/22 Distributed Systems, KNTU 66

▸Fault Tolerant Systems

Paxos

▸Phase 1b - promise phase
▸There is no accepted operation to be announced, they return null.
▸P1 is leader

12/28/22 Distributed Systems, KNTU 67

▸Fault Tolerant Systems

P1

P2

P3

A1

A3

L1

L2

L3

A2

Paxos

▸N2 > N1 è Now P2 is Leader

12/28/22 Distributed Systems, KNTU 68

▸Fault Tolerant Systems

P1

P2

P3

A1

A2

A3

L1

L2

L3

P1

P2

P3

A1

A3

promise([N2,P2],null)

L1

L2

L3

prepare([N2,P2]) A2

Paxos

▸N3 < N2

12/28/22 Distributed Systems, KNTU 69

▸Fault Tolerant Systems

P1

P2

P3

A1

A2

A3

L1

L2

L3

P1

P2

P3

A1 L1

L2

L3
promise([N2,P2],null)

A2

A3

Paxos

▸Phase 2a - accept phase

▸If a proposer receives corresponding promises from a majority of
acceptors:
▸It sends an accept request to each of those acceptors for a proposal

numbered (Ni,Pi) with operation P, which is the operation of the
highest-numbered proposal among the responses

▸Otherwise, aborts and starts again with a new proposal number

12/28/22 Distributed Systems, KNTU 70

▸Fault Tolerant Systems

Paxos

▸Phase 2a - accept phase

12/28/22 Distributed Systems, KNTU 71

▸Fault Tolerant Systems

P1

P2

P3

A1

A2

A3

L1

L2

L3

P1

P2

P3

A1

A2

A3

accept([N2,P2], O2)

L1

L2

L3

Paxos

▸Phase 2b - accepted phase
▸An acceptor has promised to proposal (Ni,Pi)

▸If receives an accept request numbered (Ni,Pi) sends accepted message

▸If receives an accept request numbered (Nj,Pj) sends accepted with the
accepted number and its operation

▸Acceptor accepts the accept request if its proposal no. is the
highest proposal no. it have agreed to

12/28/22 Distributed Systems, KNTU 72

▸Fault Tolerant Systems

Paxos

▸Phase 2b - accepted phase
▸Acceptors tell P1, they have accepted another proposer
▸P1 may retry

12/28/22 Distributed Systems, KNTU 73

▸Fault Tolerant Systems

Paxos

▸Phase 2b - accepted phase
▸After sending accepted, acceptors talk with learners about their

decision
▸Learners commit if they receive the same operation from majority of

acceptors

12/28/22 Distributed Systems, KNTU 74

▸Fault Tolerant Systems

Paxos

▸Phase 2b - accepted phase
▸Learners acknowledge acceptors about their commit
▸When Acceptors received enough committed, start a new cycle

12/28/22 Distributed Systems, KNTU 75

▸Fault Tolerant Systems

Paxos

▸Phase 2b - accepted phase

▸What if a new proposal received with higher number than what
has accepted, before learn?

▸The proposal is accepted if the operation is the same as any
previously accepted proposal!

12/28/22 Distributed Systems, KNTU 76

▸Fault Tolerant Systems

Paxos

▸Once a proposal with operation P is chosen by majority,
▸No new operation will accepted, until the chosen operation get

completed
▸If the operation on the highest-numbered proposal has not completed,

no new operation can be proposed

▸Every higher-numbered proposal that is chosen also must propose P

▸The goal is reaching a consensus, it is not important which value
is eventually accepted.

12/28/22 Distributed Systems, KNTU 77

▸Fault Tolerant Systems

Paxos

▸Phase 2b - accepted phase
▸What if new proposal received by acceptors before completion of learn

with higher proposal no.?
▸N4>N2

12/28/22 Distributed Systems, KNTU 78

▸Fault Tolerant Systems

P1

P2

P3

A1

A2

A3

L1

L2

L3
prepare([N4,P3],O4)

P1

P2

P3

A1

A2

A3

L1

L2

L3

Paxos

▸Phase 2b - accepted phase
▸What if new proposal received by acceptors before completion of learn

with higher proposal no.?
▸N4>N2

12/28/22 Distributed Systems, KNTU 79

▸Fault Tolerant Systems

P1

P2

P3

A1

A2

A3
accept([N4,P3],O2)

L1

L2

L3

Accepted operation
is proposed again

Paxos

▸A faulty scenario (1)

12/28/22 Distributed Systems, KNTU 80

▸Fault Tolerant Systems

P1

P2

P3

A1

A2

A3
prepare([N4,P3])

L1

L2

L3

P1

P2

P3

A1

A3
promise([N4,P3])

L1

L2

L3

A2

Paxos

▸A faulty scenario (2)

12/28/22 Distributed Systems, KNTU 81

▸Fault Tolerant Systems

P1

P2

P3

A1

A2

A3accept([N4,P3],O4)

L1

L2

L3

A1 crashes before
sending accepted
message

Paxos

▸A faulty scenario (3)

12/28/22 Distributed Systems, KNTU 82

▸Fault Tolerant Systems

N5>N4

P1

P2

P3

A1

A2

A3

L1

L2

L3

P1

P2

P3

A1

A3

L1

L2

L3

A2

Paxos

▸A faulty scenario (4)

12/28/22 Distributed Systems, KNTU 83

▸Fault Tolerant Systems

N5>N4

A2 reboots and sends accepted. Now
we have two simultaneous commits!
Something is wrong!

P1

P2

P3

A1

A2

A3

L1

L2

L3

P1

P2

P3

A1

A3

L1

L2

L3

A2

Paxos

▸A faulty scenario (3-2)
▸correct version

▸After a while A1 reboots and sends accepted and operation
continues

12/28/22 Distributed Systems, KNTU 84

▸Fault Tolerant Systems

N5>N4

A3 never sends promise if O4 has not been committed.
(step 3 is wrong)

No new operation will accepted, until the chosen
operation get completed

P1

P2

P3

A1

A2

A3

L1

L2

L3

Paxos

▸A faulty scenario
▸What if A1 crash and does not reboot again or it doesn’t

remember its previous choice?

12/28/22 Distributed Systems, KNTU 85

▸Fault Tolerant Systems

Paxos

▸A faulty scenario
▸P1 retries with the O4 operation!!

12/28/22 Distributed Systems, KNTU 86

▸Fault Tolerant Systems

Paxos

Think about other bad conditions:
▸What if leader fails

▸Before sending accept
▸After sending accept
▸To send accept to majority of acceptors
▸To send accept to some of acceptors (not majority)

▸What if a node fails after receiving accept?
▸If it doesn’t restart …
▸If it reboots …

▸What if a node fails after sending promise?
▸If it reboots …

12/28/22 Distributed Systems, KNTU 88

▸Fault Tolerant Systems

Paxos

▸Safety Property

▸Only an operation that has been proposed may be accepted.

▸Only a single operation is chosen

▸An learner learns an operation that has been chosen

12/28/22 Distributed Systems, KNTU 89

▸Fault Tolerant Systems

Paxos

▸Liveness Property (= Termination)
▸If two or more proposers race to propose new values, they might step on each

other toes all the time.
▸P1: prepare(n1)
▸P2: prepare(n2)
▸P1: accept(n1 , v1)
▸P1: prepare(n3)
▸P2: accept(n2 , v2)
▸P2: prepare(n4) , ….

▸n1 < n2 < n3 < n4 <···

▸With randomness, this occurs exceedingly rarely.

12/28/22 Distributed Systems, KNTU 90

▸Fault Tolerant Systems

Paxos

▸To read a client must ask several nodes and choose the value of
majority

12/28/22 Distributed Systems, KNTU 91

▸Fault Tolerant Systems

Paxos Issues

▸Difficult to understand
▸“The dirty little secret of the NSDI* community is that at most

five people really, truly understand every part of Paxos ;-).”– NSDI
viewer

▸Very difficult to implement
▸“There are significant gaps between the description of the Paxos

algorithm and the needs of a real-world system...the final system
will be based on an unproven protocol.” – Chubby Authors

12/28/22 Distributed Systems, KNTU 92

▸Fault Tolerant Systems

Designing for Understandability:
The Raft Consensus Algorithm

12/28/22 Distributed Systems, KNTU 93

Replicated State Machine

▸Each command from a client changes the state of a replica
▸Each replica maintains a log of events
▸Replicas apply events in the log to update their state

▸Log Consensus
▸All replicas must agree on the order of events in the log
▸Consensus algorithm (i.e. Paxos) ensures that all logs contain the

same commands in the same order

▸Replicated log => Replicated State Machine

12/28/22 Distributed Systems, KNTU 94

▸RAFT

Distributed Log

▸State machines always execute commands in the log order
▸They will remain consistent as long as command executions have

deterministic results

12/28/22 Distributed Systems, KNTU 95

▸RAFT

Overview

▸Client sends a command to one of the servers
▸Server adds the command to its log
▸Server forwards the new log entry to the other servers
▸Once a consensus has been reached, each server state machine

process the command and sends it reply to the client

12/28/22 Distributed Systems, KNTU 96

▸RAFT

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

Servers

Clients

shl

Leader Election

▸RAFT assumes starts with electing one leader

▸Each server can be in one of three states
▸Leader
▸Follower
▸Candidate (to be the new leader)

▸Raft guarantees at a given time only one leader exists

12/28/22 Distributed Systems, KNTU 97

▸RAFT

Leader Election

12/28/22 Distributed Systems, KNTU 98

▸RAFT

▸Leader transmits heartbeats
▸If Election-Timeout elapses followers start the election process

Leader Election

12/28/22 Distributed Systems, KNTU 99

▸RAFT

▸Time is divided into Terms
▸A term may has

▸no leader à election / split vote
▸one leader à normal operation

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote

Leader Election

12/28/22 Distributed Systems, KNTU 100

▸RAFT

▸Term is like logical clock
▸Followers

▸maintain current Term, to identify obsolete info
▸include in all messages
▸update the term if receive a higher value

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote

Leader Election Process

12/28/22 Distributed Systems, KNTU 101

▸RAFT

▸When a follower starts an election, it
▸Increments its current term
▸Transitions to candidate state
▸Votes for itself
▸Issues RequestVote RPCs to all the other servers in the cluster.

▸A candidate remains in that state until
▸It wins the election
▸Another server becomes the new leader
▸A period of time goes by with no winner, backs off with random interval

▸Candidate receive the majority of votes become leader
▸Each server will vote for at most one candidate in one term
▸Winner sends heartbeat messages to all others

Log Replication

12/28/22 Distributed Systems, KNTU 102

▸RAFT

▸Leaders
▸Accept client commands
▸Append them to their log (new entry)
▸Issue AppendEntry RPCs in parallel to all followers

▸Followers record the log and acknowledge the leader

▸Leader commits (updates the state machine) if majority
acknowledged
▸Re-issue the command for slow servers, no problem!

▸Heartbeats and subsequent messages include the index of last
committed log
▸Committing an entry also commits all previous entries

Log Structure

12/28/22 Distributed Systems, KNTU 103

▸RAFT

▸Log entry = { index, term, command }
▸Log stored on stable storage (disk); survives crashes

▸Entry committed if known to be stored on majority of servers
▸Durable & stable, will eventually be executed by state machines

1
add

1 2 3 4 5 6 7 8
3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader

log index

followers

committed entries

term

command

Log Structure

12/28/22 Distributed Systems, KNTU 104

▸RAFT

▸Raft commits entries in strictly sequential order
▸No gap is accepted

▸If log entries on different server have same index and term:
▸Store the same command
▸Logs are identical in all preceding entries

▸Entry committed if known to be stored on majority of servers
▸Durable & stable, will eventually be executed by state machines

Handling Leader Crash

12/28/22 Distributed Systems, KNTU 105

▸RAFT

▸Can leave the cluster in a inconsistent state if the old leader had
not fully replicated a previous entry

▸Some followers may have in their logs entries that the new
leader does not have

▸Other followers may miss entries that the new leader has

Handling Leader Crash

12/28/22 Distributed Systems, KNTU 106

▸RAFT

▸Elect candidate most likely to contain all committed entries

▸In RequestVote, candidates include {index,term} of last log entry
▸Vote for candidate unless

▸Their own log is more "up to date” (higher term-longer log)
▸They have already voted for another server

▸Leader will have “most complete” log among electing majority

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2 Unavailable during
leader transition

Committed?
Can’t tell

which entries
committed!

s1

s2

Handling Leader Crash

12/28/22 Distributed Systems, KNTU 107

▸RAFT

▸New leader forces followers' log to duplicate its own
▸Conflicting entries in followers' logs will be overwritten

▸New leader sets its nextIndex to the index just after its last log
entry (11 in the example)
▸Broadcasts it to all its followers

Handling Leader Crash

12/28/22 Distributed Systems, KNTU 108

▸RAFT

▸Leader maintains a nextIndex for each follower
▸Index of entry it will send to that follower

▸Followers that have missed some AppendEntry calls will refuse all
further AppendEntry calls
▸Leader will decrement its nextIndex for that follower and redo

the previous AppendEntry call

1 41 1 4 5 5 6 6 6Leader for term 7

1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1
Followers

2 2 33 3 3 32

(a)

(b)

nextIndex

References

▸Slides of Dr. Payberah: https://www.slideshare.net/payberah/paxos-43900572

▸Neat Algorithms - Paxos: http://harry.me/blog/2014/12/27/neat-algorithms-paxos/

▸Kirsch, Jonathan, and Yair Amir. "Paxos for system builders: An overview."
Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and
Middleware. ACM, 2008.

▸Lamport, Leslie. "Paxos made simple." ACM Sigact News 32.4 (2001): 18-
25.

▸Princeton Distributed Systems course,
https://www.cs.princeton.edu/courses/archive/spring22/cos418/schedule.h
tml

12/28/22 Distributed Systems, KNTU 109

▸Fault Tolerant Systems

https://www.cs.princeton.edu/courses/archive/spring22/cos418/schedule.html

Distributed Systems, KNTU 11112/28/22

