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> Fault Tolerant Systems

Concepts

= Being fault tolerant is strongly related to what is called a dependable system
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(- A system is said to be
highly available if it will

(“Ifa system temporarily

fails to operate correctly,
nothing catastrophic
happens

be most likely working at
a given instant in time
-

f Availability

Reliability

P e
A Dependable System

</

Maintainabilit

Safety y

A highly-reliable system is )
one that will most likely
continue to work without
interruption during a
relatively long period of
time

» How easy a failed system )
can be repaired
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> Fault Tolerant Systems

Concepts

> Reliability is defined in terms of a time interval instead of an
Instant in time

> A system goes down randomly 1ms every hour
» System is not reliable
» System is available 99.999% of times

> A system is shutdown two weeks a year
» System is reliable
» System is available for 96%
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> Fault Tolerant Systems

Concepts

> A system is said to fail when it cannot meet its promises

> If a distributed system is designed to provide a number of services, it
has failed when one or more services cannot be (completely) provided

> An error is a part of a system’s state that may lead to a failure
» Example: receiver receives a erroneous packet
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> Fault Tolerant Systems

Concepts

» The cause of an error is called a fault.

» A crashed software is a failure which is crashes because of
programming error. An uninitialized pointer is the fault of this error

> Building dependable systems relates to controlling faults
> Preventing
» Tolerating
> Removing
> Forecasting
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> Fault Tolerant Systems

Concepts

» Fault tolerance

> A system can provide its services even in the presence of faults
» For erroneous packet, receiver can

> Request the correct packet from sender
» Use coding techniques to recover errors

> Fault Types

»

v v L4
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> Fault Tolerant Systems

Concepts

» Transient faults

> Occur once and then disappear. If the operation is repeated, the fault
goes away

» Example: losing packet, but sending it again works fine

> Intermittent fault
> Randomly repeating faults, difficult to diagnose
» Example: concurrency and thread-interleave issues

» Permanent fault
» Continues to exist until the faulty component is replaced
> Example: Burnt-out chips, software bugs
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> Fault Tolerant Systems

Concepts

> Partial failures
> Specific for distributed systems

> A partial failure may happen when a component in a distributed system
fails

> An overall goal in distributed systems is to construct a system in
such a way that it can automatically recover from partial failures
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> Fault Tolerant Systems

Failure Models

> Crash failure
» Server prematurely halts, but was working correctly until it stopped
> First solution is reboot!

> Omission failure
» When a server fails to respond to a request
> Two types
» Receive-omission failure: Fail to receive incoming messages

» Send-omission failure: Fail to send outgoing messages
» Omission failure: fails to take an action that it should have taken
» Commission failure: takes an action that it should not have taken.
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> Fault Tolerant Systems

Failure Models

> Timing failure
> When the response lies outside a specified real-time interval

» Sending data faster than what the client can absorb

» Server responds too late to a request due to overload known as performance
failure

» Response failure

> Server response is incorrect, A serious failure
» Value failure: a server simply provides the wrong reply to a request.
> A search engine systematically returns web pages not related to any of the search terms

» State-transition failure: when the server reacts unexpectedly to an incoming
request

» If a server receives an unknown message, a state-transition failure happens if no measures
have been taken to handle such messages.
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> Fault Tolerant Systems

Failure Models

» Arbitrary failures (Byzantine failures)
> Produce arbitrary responses at arbitrary times
> The most serious failure

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Failure Models

> Many of failure models deal with the situation that a process P
no longer perceives any actions from another process Q

> Can P conclude that Q has indeed come to a halt?

> [t depends to the type of the distributed system: Synchronous,
Asynchronous or Partial-Synchronous

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Halting Failures

> Fail-stop
> Crash failures that can be reliably detected

> This may occur when assuming non-faulty communication links and
when the failure-detecting process P can place a worst-case delay on
responses from Q

> Fail-noisy
> Like fail-stop, but P eventually come to the correct conclusion that Q
has crashed

» Some unknown time in which P’s detections of the behavior of Q are
unreliable
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> Fault Tolerant Systems

Halting Failures

> Fail-silent
» Communication links are nonfaulty, but process P cannot distinguish
crash failures from omission failures

» Fail-safe

> Dealing with arbitrary failures by a process, but these failures are kind:
they cannot do any harm

> Fail-arbitrary

> Q may fail in any possible way; failures may be unobservable in addition
to being harmful

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Redundancy

> The key technique for masking faults is to use redundancy

Usually, extra bits are added to allow recovery from garbled bits

Information
U N\
Usually, extra Usually, extra

equipment are added
processes are added .
. Software Redundancy | Hardware [to allow tolerating
to allow tolerating

: failed hardware
failed processes
Time

@mponents
Usually, an action is performed, and then, if required, it is performed again

J
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> Fault Tolerant Systems

» Redundancy

Triple Modular Redundancy Sample

®

()
&/

A circuit with signals passing through devices A, B, and C, in sequence

VA1

V2

V3

Voter

V4 (c1)
V5
V6 \C3)

Each device is replicated 3 times and after each stage is a triplicated voter
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> Fault Tolerant Systems

Process Fault Tolerance

= Use Process Redundancy

= Organize several identical processes into a group
= Messages received by all members of the group
= Failure of one to several processes in the group does not halt the whole system

= 0V

= Notes:
= A process can join a group or leave one during system operation
= A process can be a member of several groups at the same time
= Mechanisms are needed for managing groups and group membership.

12/28/22 Distributed Systems, KNTU

19



> Fault Tolerant Systems > Process Fault Tolerance

Process Redundancy Models

= An important distinction between groups is their internal
structure

Coordinator]

(£ N O N

) . Flat Group: Hierarchical Group:
To decide anything, - -
a vote often has to (+) Symmetrical (+) Decision making is simple
be taken, incurring | (+) No single point of failure (-) Asymmetrical
some delay and (-) Decision making is (-) Single point of failure
overhead complicated U

A 2N /
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> Fault Tolerant Systems > Process Fault Tolerance

Group Membership Management

» Central group membership server
> Easy to implement
» Has single point of failure problem

» Distributed membership management
- Servers are added to a multicast group
- For join, a process can send a membership request to the whole group
- To leave send a goodbye message to all members

- In failures, member cannot commit a polite goodbye, other members
will have to detect and report to other member groups

12/28/22 Distributed Systems, KNTU 21



> Fault Tolerant Systems

Replication Protocols

> Primary-based protocols

> Replicated-write protocols

12/28/22

» Process Fault Tolerance
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> Fault Tolerant Systems > Process Fault Tolerance

Replication Protocols

> Primary-based replication
> Hierarchical group
> Primary-backup coordinates write operations
> Needs election algorithms when primary backup fails

> Replicated-write protocols
> Organize identical processes into a flat group
> Needs voting for decision (quorum-based)

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems > Process Fault Tolerance

Replication Protocols

> How much replication is sufficient?

k-fault-tolerant system

If a system can survive faults in k components and still meet its
specifications

Masking k-failures (k-fault tolerancy)
> If faults are crash or omission, then k+1 components is enough

> If faults are arbitrary, 2k+1 components is needed. (Why?)

12/28/22 Distributed Systems, KNTU
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Consensus Problems

Also known as Agreement Problems
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> Fault Tolerant Systems

Consensus Problem

> In a fault-tolerant process group, all non-faulty processes
execute the same commands, in the same order

> This means group members need to reach consensus on which
command to execute

» Reaching consensus is easy when no failure happen

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems » Consensus Problem

Flooding Consensus

» Assumes Fail-Stop failures
> Algorithm operates in rounds

> Clients send their proposals to a group of processes P={P;, P,...}

» At each round
» Processes send their list of commands to all members

> All processes merge all lists

» All processes run a similar sorting algorithm, then all processes select the same
command

» Processes received commands from all others, broadcast their decision
to others

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems » Consensus Problem

Flooding Consensus Example

> P, crashes, but before crash it sends its list. P, receives the list but P;, P, do
not receive the list

» P; detects P; failure but does not know if others have detected the failure
or not

> P; knows that if other process has received P; list it will decide and send
the decision to all

> P;, P, do nothing, but P, do the decision and its decision to all
> In the next round, P; and P, can decide based on P, list

decide

{} >
\ decide
Py 7} >

decide
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> Fault Tolerant Systems » Consensus Problem

Flooding Consensus

> This model works for fail-stop failures even with only one
working process

» What if P; could not detect the failure of the P; for sure?

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems > Distributed Commit

Distributed System Algorithms Properties

> Liveness
> In all conditions algorithms reaches a steady state

> Safety

> In all conditions with any input, algorithm does not violate initial
assumptions

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Distributed Commit

> A set of operations should be performed by all group members
or none at all

> All processes should execute operations in the same order

» The problem first was encountered in database systems

> Suppose a database system is updating some complicated data
structures that include parts residing on more than one machine.

» Assumptions:

» Concurrent processes and uncertainty of timing, order of events and
Inputs (asynchronous systems)

> Failure and recovery of machines/processors, of communication
channels

12/28/22 Distributed Systems, KNTU 32



> Fault Tolerant Systems > Distributed Commit

One-phase Distributed Commit

» A coordinator (= primary) sends an operation(s) to all
participants (= backups)

» Each participant executes the operation

> The simplest Solution

> Problem:
» No way to report back the failure of execution to coordinator!

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Two-Phase Commit (2PC)

> Phase 1: prepare phase

> Phase 2: commit phase

12/28/22

» Distributed Commit

Distributed Systems, KNTU
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> Fault Tolerant Systems > Distributed Commit

Two-Phase Commit (2PC)

> Phase 1: prepare (voting) phase

» A: Coordinator asks participants if they can execute the operation (VOTE-
REQUEST)

» B: Participants reply
» VOTE-COMMIT: if they can execute operation

» VOTE-ABORT: if they cannot execute the operation

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems > Distributed Commit

Two-Phase Commit (2PC)

> Phase 2: commit (decision) phase

» A: coordinator collects all votes
» Sends GLOBAL-COMMIT: if all participants agree.

» Sends GLOBAL-ABORT: if even one participant not agree.

> B: Each participant
» Commits locally if receive GLOBAL-COMMIT

» Aborts transaction locally if receive GLOBAL-ABORT

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Two-Phase Commit (2PC)

Commit
Vote-request

\ote-abort Vote-commit

Global-abort Global-commit

COMMIT

The finite state machine for the
coordinator in 2PC

» Distributed Commit

Vote-request
Vote-abort

Global-commit
ACK

COMMIT

Global-abort
ACK

The finite state machine for a
participant in 2PC

« Looking to finite state machine of coordinator and participants, they have

three waiting states.

« To avoid forever blocking, both use timeouts

12/28/22 Distributed Systems, KNTU



> Fault Tolerant Systems > Distributed Commit

Two-Phase Commit (2PC)

> Blocking 1: participants waiting for receiving VOTE-REQUEST
> After timeout, participants send VOTE-ABORT message

> Blocking 2: coordinator waits for vote replies

» After some time if not all votes collected, it sends GLOBAL-ABORT
message.

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems > Distributed Commit

Distributed Commit - 2PC

» Blocking 3: participants in ready state wait for coordinator reply
> Participants cannot decide by themselves!

» Simple Solution: Block until coordinator reboot and recover

» Cooperative protocol: ask other participants
» If the other is in COMMIT state - do commit
> If the other is in ABORT state - do abort

» If the other is in INIT state = do abort

> The other node didn't receive vote-request message, or coordinator has crashed before
sending to it

> If the other is in READY state = contact another participant! (may block)
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> Fault Tolerant Systems > Distributed Commit

Distributed Commit - 2PC

» Blocking 3: participants in ready state wait for coordinator reply
(cont.)
» Cooperative protocol: ask other participants (cont.)

> If the other is in READY state - contact another participant! (may block)

> If all are ready:
» Since some of participants may crash which was received COMMIT/ABORT command
» If it reboots and it will be in commit state

 Other participants must wait for coordinator or this participant, but how long should
they wait?
» If it never restarted?

12/28/22 Distributed Systems, KNTU 41



> Fault Tolerant Systems > Distributed Commit

Distributed Commit - 2PC

» To ensure recovery, coordinator and participants must log their
state in disk.

» 2PC is blocking commit protocol
> Blocking 3 scenario
> If one or more machines fail (we need all to reply)

» 2PC is safe but not live.

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems > Distributed Commit

Three-Phase Commit (3PC)

> Avoids blocking processes in the presence of fail-stop crashes

> It is not applied often in practice as the conditions under which
2PC blocks occur rarely

> Phase 1: prepare phase

> Phase 2: pre-commit phase
> Phase 3: commit phase

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems > Distributed Commit

Three-Phase Commit (3PC)

> Phase 1: prepare phase

> A: Coordinator asks participants if they can execute the operation
VOTE-REQUEST

> B: Participants reply
> VOTE-COMMIT: if they can execute operation

> VOTE-ABORT: if they cannot execute the operation

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems > Distributed Commit

Three-Phase Commit (3PC)

> Phase 2: pre-commit phase

> A: coordinator collects all votes
> Sends PREPARE-COMMIT: if all participants agree
> Sends GLOBAL-ABORT: if even one participant not agree

> B: Each participant
> Send READY-COMMIT if receive PREPARE-COMMIT

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems > Distributed Commit

Three-Phase Commit (3PC)

> Phase 3: commit phase

> A: coordinator collects all READY-COMMIT messages
> Sends GLOBAL-COMMIT: if all participants are prepared

> B: Each participant
> Commit locally if receive GLOBAL-COMMIT

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Three-Phase Commit (3PC)

Commit
Vote-request

\ote-abort Vote-commit

Global-abo

Prepare-commit

PRE-COMMIT

Ready-commit
Global-commit

COMMIT

The finite state machine for the
coordinator in 3PC

12/28/22

» Distributed Commit

Vote-request
Vote-abort

Global-abort
ACK

Prepare-commit
Ready-commit

PRE-COMMIT

Global-commit

Ack

COMMIT

The finite state machine for a
participant in 3PC
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> Fault Tolerant Systems > Distributed Commit

Three-Phase Commit (3PC)

> We skip the blocking scenarios similar to 2PC

> Blocking 1: coordinator is blocked in PRE-COMMIT

> One or more processes have crashed, but they have voted for commit
—> coordinator sends GLOBAL-COMMIT

> Crashed participator can be recovered by a recovery protocol, later.

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems > Distributed Commit

Three-Phase Commit (3PC)

» Blocking 2: Participant blocked in READY or PRE-COMMIT.

> This means coordinator has failed, then contacts with other participants
> If in COMMIT - commit
» If in PRE-COMMIT - commit
» If in INIT - abort (because no participant reached to PRE-COMMIT)
» If (majority) in READY - abort

> A participant is crashed but no one knows what was the state of the crashed participant
» If it recovers to INIT then it was aborted
> If it was recovered to PRE-COMMIT, nothing harmful may be done
> This situation is the major difference with 2PC. In 3PC no crashed participant
may recover to COMMIT, thus they can come to agreement

12/28/22 Distributed Systems, KNTU 49



> Fault Tolerant Systems > Distributed Commit

Three-Phase Commit (3PC)

> Liveness: It always makes progress

» Safety: No!

» 3PC results in inconsistent state between replicas when network
IS partitioned.

> 3PC trades safety for liveness

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems > Distributed Commit

Three-Phase Commit (3PC)

» Safety:
» C after sending prepare-commit, crashes and network is partitioned
> A1 commits but, A2 and A3 will abort

\\s
e A 0 ‘e\)a‘e'co <
. Comm\\

—Prepare-commit-»3%
~—~—,
c A2 Prevars o,

A3

Network Partitioned
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> Fault Tolerant Systems > Distributed Commit

FLP Impossibility

» Impossibility of distributed consensus with one faulty process

> FLP Fischer-Lynch-Paterson (FLP) « M.J. Fischer, N.A. Lynch, and M.S.
Paterson, Journal of the ACM, 1985.

» What FLP says: you cannot guarantee both safety and progress
when there is even a single fault at an inopportune moment to
reach a consensus.

» What FLP does not say: in practice, how close can you get to the
ideal.

12/28/22 Distributed Systems, KNTU 52
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> Fault Tolerant Systems

Paxos

> Solving 2PC Problems
» We should not rely on all participants = we can use majority vote

» Having one coordinator is a real issue = Add more coordinators
» This makes Paxos algorithm!

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

» 1979, 2PC, Gray
» 1981, 3PC, Stonebraker
» 1989, 42-page tech report

» 1990, "Part-time Parliament”
> Paper rejected, ACM Transactions on Computer Systems

> It was not considered a useful algorithm
» 1996, First implementation
» 1997, Used in Frangipani Distributed Lock

» 1998, Paper resubmitted and accepted TOCS
> Won ACM SIGOPS Hall of Fame Award in 2012!

» 2001, "Paxos Made Simple”, Lamport
» 2007, "Paxos Made Live”, Chandra
» 2014 RAFT appears

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

» Paxos Is everywhere
> Yahoo's ZooKeeper (Now an Apache project)
> Google's Chubby (Distributed Lock)
> Frangipani (Distributed lock service)
> Amazon Web Services uses Paxos

» Windows Fabric, used by many of the Azure services, make use of the
Paxos algorithm for replication between nodes in a cluster

> Neo4j HA graph database implements Paxos, replacing Apache
ZooKeeper used in previous versions.

> Apache Mesos uses Paxos algorithm for its replicated log coordination

> LN ]

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

> Assumptions
» The distributed system is partially synchronous

» Communication is unreliable, messages may be lost, duplicated, or
reordered

» Corrupted messages can be detected

> All operations are deterministic, once an execution is started, it is
known exactly what it will do.

> Processes may exhibit fail-noisy failures, but not arbitrary failures, nor
do processes collude

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

> Paxos lets all nodes agree on an operation despite node failures,
network failures and delays

> Paxos works correctly when less than N/2 nodes fail

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

Clients

C

Single client request/response

C

12/28/22

—
Proposer  Acceptor Learner

| Server process
Other request

» A single machine (server) has three
components

» Proposer
» Handles clients’ request
» Suggest proposals for acceptors

» Acceptor
> Receives proposals
» Accepts or reject proposals

> Learner
» Learns the operation chosen by majority

» When one of these components crashes,
server is considered as crashed

Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

> A clients requests an operation
> Proposers receive and handle requests of clients one at a time
> A Proposer creates a proposal and sends to acceptors

» If majority of acceptors accept the same proposal, it is said to be
chosen.

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

» Multiple proposers and Multiple acceptors
> It is possible proposers never get the vote of majority

> . Let several proposals Is accepted by acceptors

» How acceptors distinguish proposals from each other?

» Tag each proposals with a unique number (=N)
> Each proposer generates a unique number never has generated before

» Proposals are tagged with (proposerlD, N) pair as Proposal
Number

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

» The proposer with the highest proposal number is the leader
proposer

» Paxos embeds a Distributed Leader Election process with proposal
numbers that are, in fact, Lamport logical clock

» The proposal with the highest proposal number will have the
majority
> Or

» Acceptors always choose (agree with) the operation with the
highest proposal number

> If another proposer transmit a proposal with any higher number
than the current chosen proposal, becomes the leader or its
proposal is chosen.

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

> Detailed Algorithm

> Phase 1a - prepare phase
> Phase 1b - promise phase
» Phase 2a - accept phase

> Phase 2b - accepted phase

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

> Phase la - prepare phase

» A proposer, P selects a proposal number N and sends a prepare
request with number (N, P,) to majority of acceptors

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

12/28/22

\

p1 kPrepare(NiPil) [ qq L1 Machine 1
0
\_ \/:e'oe/‘o, <
’ /u,(.?o ([/VJ,,O
@/‘ Jﬂ\ .
P2 @,/4/ A2 L2 Machine 2
<0
> \751 <
P3 \ A3 L3 Machine 3

J/
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> Fault Tolerant Systems

Paxos

> Phase 1b - promise phase

> If an acceptor receives (N;,P))
> If this is the first proposal, sends promise to the proposer

> Has promised to proposal (N;,P))

> If (N;,P)) < (N;,P)), acceptor sends promise with number (N; P)), the
highest- numEered proposal it has accepted so far

> For optimization no of messages, acceptor may not reply

> If (N, P) > (N;,P;), acceptor promises P;, sends a promise with number
(N;, P)
> [t promises not to accept any proposal with number less than (N, P;)
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> Fault Tolerant Systems

Paxos

> Phase 1b - promise phase
» There is no accepted operation to be announced, they return null.
> P, is leader

promise([N1,P1],null)

12/28/22 Distributed Systems, KNTU

67



> Fault Tolerant Systems

Paxos

>N, > N; = Now P2 is Leader

P1

P2

‘§&£q29//"

e\
Q(e(’a(
prepare([Nz,P2])»
o)

P3

A1l

L1

12/28/22

A2

L2

A3

L3
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> Fault Tolerant Systems

Paxos

> N3 < N,

P1

P2

P3

12/28/22

prepare([Ns,P3])-#

A1l

A2

A3

L1

L2

L3
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> Fault Tolerant Systems

Paxos
> Phase 2a - accept phase

» If a proposer receives corresponding promises from a majority of
acceptors:

» [t sends an accept request to each of those acceptors for a proposal
numbered (N;P;) with operation P, which is the operation of the
highest-numbered proposal among the responses

» Otherwise, aborts and starts again with a new proposal number

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

> Phase 2a - accept phase

P1

accept(INy,P1], O1)

P2

P3

12/28/22

A1

L1

A2

L2

A3

L3
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> Fault Tolerant Systems

Paxos

> Phase 2b - accepted phase
> An acceptor has promised to proposal (N, P;)

> If receives an accept request numbered (N, P;) sends accepted message

> If receives an accept request numbered (N;,P)) sends accepted with the
accepted number and its operation

» Acceptor accepts the accept request if its proposal no. is the
highest proposal no. it have agreed to

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

> Phase 2b - accepted phase

> Acceptors tell P;, they have accepted another proposer
> P, may retry

accepted([Ny,P5], O,)

L2

L3

12/28/22 Distributed Systems, KNTU



> Fault Tolerant Systems

Paxos

> Phase 2b - accepted phase
> After sending accepted, acceptors talk with learners about their

decision
> Learners commit if they receive the same operation from majority of
acceptors
I (0
earn(O») -
18gn(O
(O2) BB
arn( =

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

> Phase 2b - accepted phase

> Learners acknowledge acceptors about their commit
> When Acceptors received enough committed, start a new cycle

1 L

P2 ] — commied~ [,

L oMM

" AN
P3 ommitted L3
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> Fault Tolerant Systems

Paxos

> Phase 2b - accepted phase

» What if a new proposal received with higher number than what
has accepted, before learn?

> The proposal is accepted if the operation is the same as any
previously accepted proposal!

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

» Once a proposal with operation P is chosen by majority,

> No new operation will accepted, until the chosen operation get
completed

> If the operation on the highest-numbered proposal has not completed,
no new operation can be proposed

> Every higher-numbered proposal that is chosen also must propose P

» The goal is reaching a consensus, it is not important which value
Is eventually accepted.
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> Fault Tolerant Systems

Paxos

> Phase 2b - accepted phase

» What if new proposal received by acceptors before completion of learn

with higher proposal no.?
> Ns>N>

L1

L2

L2

L3
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> Fault Tolerant Systems

Paxos

> Phase 2b - accepted phase

» What if new proposal received by acceptors before completion of learn
with higher proposal no.?

> Ns>N>

P1 L1

P2 L2
’\‘ \J
aCQGQ
P3 >‘ A3 L3
accept([N4,P3],0,)
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> Fault Tolerant Systems

Paxos

> A faulty scenario (1)

P1 A1 L1
»
b\\
S —
P2 & A2 L2

prepare([N4,Ps])
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P3

A1l

promise([Ny,P3])

)

L1

L2

L3
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> Fault Tolerant Systems

Paxos

> A faulty scenario (2)

P1

P2

P3

12/28/22

accept([N4,P3], O

A3

L1

L2

L3

message

(=

A, crashes before
sending accepted

ccepted([N4,P3],04) A3
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learn(O4)
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> Fault Tolerant Systems

Paxos

> A faulty scenario (3)

12/28/22

L1

L2

L3

P1

N A2
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> Fault Tolerant Systems

Paxos

> A faulty scenario (4)

12/28/22

A, reboots and sends accepted. Now
we have two simultaneous commits!
Something is wrong!

)
%
- O‘
L
O

(¢ D §
L2 p S a2 ‘ L2

3

| I’ “q |
L3 P3 Y A3 L3

N:>Ny
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> Fault Tolerant Systems

Paxos

> A faulty scenario (3-2)
> correct version

> After a while A; reboots and sends accepted and operation
continues

& L1

L1

X

promise([Ns,P4)

accepted([N4,P3],04)

N:>N,

A; never sends promise if O, has not been committed.\
(step 3 is wrong)

> No new operation will accepted, until the chosen
9 operation get completed

/

12/28/22 Distributed Systems, KNTU 84



> Fault Tolerant Systems

Paxos

> A faulty scenario

> What if A; crash and does not reboot again or it doesn't

remember its previous choice?

— s

romise([Ns,P4)
C
accepted([N4,P3],04)

2
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> Fault Tolerant Systems

Paxos

> A faulty scenario
> P1 retries with the O, operation!!
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> Fault Tolerant Systems

Paxos

Think about other bad conditions:

» What if leader fails

» Before sending accept

» After sending accept

» To send accept to majority of acceptors

» To send accept to some of acceptors (not majority)

» What if a node fails after receiving accept?
» If it doesn’t restart ---
» If it reboots ---

> What if a node fails after sending promise?
> If it reboots ---

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

> Safety Property
> Only an operation that has been proposed may be accepted.
> Only a single operation is chosen

> An learner learns an operation that has been chosen

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos

» Liveness Property (= Termination)
» If two or more proposers race to propose new values, they might step on each

other toes all the time.
» P1: prepare(nl)
» P2: prepare(n2)
» P1: accept(nl, vl)
» P1: prepare(n3)
» P2: accept(n2,v2)
» P2: prepare(n4 ), ---.

*»nl <n2<n3<n4<-

» With randomness, this occurs exceedingly rarely.
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90



> Fault Tolerant Systems

Paxos

» To read a client must ask several nodes and choose the value of
majority

12/28/22 Distributed Systems, KNTU
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> Fault Tolerant Systems

Paxos Issues

» Difficult to understand

> " The dirty little secret of the NSDI* community is that at most
five people really, truly understand every part of Paxos ,-)."— NSDI
viewer

> Very difficult to implement

> “There are significant gaps between the description of the Paxos
algorithm and the needs of a real-world system...the final system
will be based on an unproven protocol.” — Chubby Authors
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Designing for Understandability:
The Raft Consensus Algorithm
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» RAFT

Replicated State Machine

» Each command from a client changes the state of a replica
> Each replica maintains a log of events
> Replicas apply events in the log to their

» Log Consensus

> All replicas must agree on the of events in the log

» Consensus algorithm (i.e. Paxos) ensures that all logs contain the
same commands in the same order

> Replicated log => Replicated State Machine

12/28/22 Distributed Systems, KNTU
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» RAFT

Distributed Log

» State machines always execute commands in the log order

> They will remain as long as command executions have
results
Server Statra Machine ) |}
Consensus X3
Module y: 9
z: 0
¥

®\
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» RAFT

Overview

» Client sends a command to one of the servers

» Server adds the command to its log

> Server forwards the new log entry to the other servers

» Once a consensus has been reached, each server state machine
process the command and sends it reply to the client

12/28/22

/Consensus

S5\

| add jmp| moy sH |

Consensus

CEEEERE

shl

Conjﬂsus
duye

achine

&

S

| add jmp| moy sH]
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N
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» RAFT

Leader Election

» RAFT assumes starts with electing one leader

» Each server can be in one of three states
> Leader
> Follower
» Candidate (to be the new leader)

> Raft guarantees at a given time only one leader exists
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» RAFT

Leader Election

» Leader transmits heartbeats

> If elapses followers start the election process
times out, receives votes from
starts up times out, new election

starts election O majority of servers

Follower) (Candldatca C Leader)

Idlsdcovers current discovers server
eader or new term with higher term
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» RAFT

Leader Election

» Time Is divided into Terms

> A term may has

> no leader = election / split vote
> one leader = normal operation

Term 1 Term 2 Term 3

\\ /f

Elections Split Vote

12/28/22 Distributed Systems, KNTU
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» RAFT

Leader Election

» Term is like logical clock

> Followers
> maintain current Term, to identify obsolete info
> include in all messages
> update the term if receive a higher value

Term 1 Term 2 Term 3 Term 4 Term 5

\ /

"/ ] =

Elections Split Vote Normal Operation
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» RAFT

Leader Election Process

» When a follower starts an election, it

» Increments its current term

» Transitions to candidate state

» Votes for itself

> Issues RequestVote RPCs to all the other servers in the cluster.

> A candidate remains in that state until
> It wins the election
» Another server becomes the new leader
> A period of time goes by with no winner, backs off with random interval

» Candidate receive the majority of votes become leader
> Each server will vote for at most one candidate in one term
» Winner sends heartbeat messages to all others
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» RAFT

Log Replication

» Leaders

> Accept client commands
> Append them to their log (new entry)
> Issue AppendEntry RPCs in parallel to all followers

> Followers record the log and acknowledge the leader

> Leader commits (updates the state machine) if
acknowledged
> Re-issue the command for slow servers, no problem!

» Heartbeats and subsequent messages include the index of last
committed log

» Committing an entry also commits all entries
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» RAFT

Log Structure

» Log entry = { index, term, command }

» Log stored on

storage (disk); survives crashes

> Entry committed if known to be stored on majority of servers
> Durable & stable, will eventually be executed by state machines

I TITITZ[ 3373773
,f' add |cmp| ret [mov| jmp | div | shl | sub
command
11111121 3
add |cmp| ret |mov| jmp
111111271 3 3 3 3
add |cmp| ret [mov| jmp | div | shl | sub
111
add |cmp
1111123 3 3
add [cmp| ret [mov| jmp | div | shl

12/28/22
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» RAFT

Log Structure
» Raft commits entries in strictly sequential order
> No gap Is accepted

> If log entries on different server have same index and term:
> Store the same command
> Logs are identical in all preceding entries

> Entry committed if known to be stored on majority of servers
> Durable & stable, will eventually be executed by state machines
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» RAFT

Handling Leader Crash

» Can leave the cluster in a inconsistent state if the old leader had

not fully replicated a previous entry

> Some followers may have in their logs entries that the new
leader does not have

> Other followers may miss entries that the new leader has

(al
(b)
(c)
(d)
(e)
()
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1 2 3 4 5 6

I8 9 101112

1/1(1[4[{4|5[5|6|/6]6
111{1(4]14[5[5|6]|6
111(1(4
111{1/414(5]|5 6|6
111{1/414(5]|5 b
111{1/414(4|4
101(1(2(2|2(3|3|3[3|3

Distributed Systems, KNTU

log index

leader far
term B

possible
fallowers

105



» RAFT

Handling Leader Crash

> Elect candidate most likely to contain all committed entries

, sq[1[1]1]2]|2|-——  Committed?
Can't tell —
which entries s, |1 [1]1]2
committed! TTil1l2121 Unavailable during
’ | leader transition

> In RequestVote, candidates include {index,term} of last log entry

» VVote for candidate unless

> Their own log is more "up to date” (higher term-longer log)
> They have already voted for another server

> Leader will have “most complete” log among electing majority

12/28/22 Distributed Systems, KNTU
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» RAFT

Handling Leader Crash

> New leader forces followers' log to duplicate its own
> Conflicting entries in followers' logs will be overwritten

> New leader sets its nextIndex to the index just after its last log

entry (11 in the example)
> Broadcasts it to all its followers

(a)
(b)
(c)
(d)
(e)
(f)
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» RAFT

Handling Leader Crash

» Leader maintains a nextIlndex for each follower
> Index of entry it will send to that follower

> Followers that have missed some AppendEntry calls will refuse all
further AppendEntry calls

» Leader will decrement its nextIndex for that follower and redo
the previous AppendEntry call

nextindex

1.2 3 4 5 6 7 8 910 11 12
Leader for term 7 1l1l1l2alalslslele i?im”j

@ |1[1]1]4

Followers VAT AYavavatlal
by 11121223 [3]|3([3]3
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> Fault Tolerant Systems
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