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Dynamic Programming

Once the performance measure for a system has been chosen, the next task
is to determine a control function that minimizes this criterion. Two methods
of accomplishing the minimization are the minimum principle of Pontryagin
[P-1], and the method of dynamic programming developed by R. E. Bellman
[B-1, B-2, B-3]. The variational approach of Pontryagin (Chapter 5) leads
to a nonlinear two-point boundary-value problem that must be solved
(Chapter 6) to obtain an optimal control. In this chapter we shall consider
the method of dynamic programming and see that.it leads to a functional
equation that is amenable to solution by use of a digital computer.

3.1 THE OPTIMAL CONTROL LAW

In Chapter 1 we defined an optimal control of the form

uw*(t) = f(x(z), 1) @3.1-1)

as being a closed-loop or feedback optimal control. The functional relation-
ship f is called the optimal control law, or the optimal policy. Notice that the
optimal control law specifies how to generate the control value at time ¢
from the state value at time ¢, The presence of ¢ as an argument of f indicates
that the optimal control law may be time-varying.
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54 Dynamic Programming Sec. 3.2

In the method of dynamic programming, an optimal policy is found by
employing the intuitively appealing concept called the principle of optimality.
3.2 THE PRINCIPLE OF OPTIMALITY}

The optimal path for a multistage decision process is shown in Fig. 3-1(a).
Suppose that the first decision (made at a) results in segment g-b with cost

(a) (b)

Figure 3-1 (a) Optimal path from ato e. (b) Two possible optimal
paths from b to e

J,, and that the remaining decisions yield segment b-¢ at a cost of J,,. The
minimum cost J* from a to e is therefore

Jr=J, + J,.. 3.2-1)
ASSERTION: If g-b-e is the optimal path from a to e, then b-e is the optimal
path from b to e.
Proof by contradiction: Suppose b-c-e in Fig. 3-1(b) is the optimal path from
b to e; then

Jice < Jpes (3.2:2)
and

Jab + Jbu < an + Jbs = Ja": (3-2—3)

but (3.2-3) can be satisfied only by violating the condition that a-b-e is the
optimal path from a to e. Thus the assertion is proved.

Bellman [B-1] has called the above property of an optimal policy the
principle of optimality:

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

t Sections 3.2 through 3.6 follow the presentation given in [K-4].
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3.3 APPLICATION OF THE PRINCIPLE OF
OPTIMALITY TO DECISION-MAKING

The following example illustrates the procedure for making a single
optimal decision with the aid of the principle of optimality.

Consider a process whose current state is . The paths resulting from all
allowable decisions at b are shown in Fig. 3-2(a). The optimal paths from
¢, d, and e to the terminal point f are shown in Fig. 3-2(b). The principle of
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Figure 3-2 (a) Paths resulting from all allowable decisions at b.
(b) Optimal paths from ¢, d, e to f. (c) Candidates for optimal
paths from b to f

optimality implies that if b-c is the initial segment of the optimal path from
b to f, then c-fis the terminal segment of this optimal path. The same reason-
ing applied to initial segments b-d and b-e indicates that the paths in Fig.
3-2(c) are the only candidates for the optimal trajectory from & to f. The
optimal trajectory that starts at b is found by comparing

Cbtf = "bc + Jc)’;'
Citr = Joa + ¥ (3.3-1)
Cb’tf = Jbe + Je*;'

The minimum of these costs must be the one associated with the optimal
decision at point b.

Dynamic programming is a computational technique which extends the
above decision-making concept to sequences of decisions which together
define an optimal policy and trajectory. The optimal routing problem in
the next section illustrates the procedure.
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3.4 DYNAMIC PROGRAMMING APPLIED TO A
ROUTING PROBLEM

A motorist wishes to know how to minimize the cost of reaching some
destination 4 from his current location. He can only travel (one-way as indi-
cated) on the streets shown on his map (Fig. 3-3), and at the intersection-
to-intersection costs given.

Final
a > d > e A 1* point
8 3 8
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5 5 2 2 w ——}—— E
S
9 3 3
b Rt c f g

Figure 3-3 The road map

Instead of trying all allowable paths leading from each intersection to A
and selecting the one with lowest cost (an exhaustive search), consider the
application of the principle of optimality. In this problem, “state” refers to
the intersection and a “decision” is the choice of heading (control) elected by
the driver when he leaves an intersection.

Suppose the motorist is at c; from there he can go only to d or f, and then
on to h. Let J_, denote the cost of moving from ¢ to d and J,, the cost from
c to f. Assume that the motorist already knows the minimum costs, J} and
J}, to reach the final destination 4 from 4 and f. (In this example, J} = 10
and J} = 5.) Then the minimum cost J% to reach 4 from c is the smaller of

Ck, =J, + J} = minimum cost to reach s from ¢ viad 3.4-1)
and
C¥i = J.; + J# = minimum cost to reach 4 from c via f. 3.4-2)
Thus,
J% = min{C}%,, C¥,}
= min {15, 8} (3.4-3)
=8

and the optimal decision at ¢ is to go to f.
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How does the motorist know the values for J3 and JX ? These quantities
must have been calculated previously by working backward from 4. For
example, J%, = 2—there is only one path from g to 4. J} is then used to find
J}, from

I =st + J5

=342 (3.4-9)
= 5.
Then
J& = min {J,, V., + JHl} (3.4-5)

and so on. The general approach should now be evident. It remains to for-
malize the computational algorithm. In this connection it will be convenient
to introduce the following notation:

oo is the current state (intersection).

u, is an allowable decision (control) elected at the state . In this
example i can assume one or more of the values 1, 2, 3, 4, corre-
sponding td the headings N, E, S, W.

x, is the state (intersection) adjacent to & which is reached by applica-
tion of u, at «.

h is the final state.

J.., Iis the cost to move from & to x,.

J¥, is the minimum cost to reach the final state 4 from x,.

C# , is the minimum cost to go from & to 4 via x,.

J% is the minimum cost to go from & to 4 (by any allowable path).

u*(e) is the optimal decision (control) at a.

When this notation is used, the principle of optimality implies that
Cin = Jax + T3 (3.4-6)
and, as before, the optimal decision at a, u*(e), is the decision that leads to
J¥* =min{C¥ , CXu ., C¥pr- ..} 3.4-7)

These two equations define the algorithm called dynamic programming. To
illustrate the procedure, the automobile routing problem has been “solved”
in Table 3-1, where only the consequences of lawful decisions are included.
Notice particularly that the intersections nearest the destination A are con-
sidered first, and that the optimal trajectories (routes) are built up from 4
backwards toward the earlier states (intersections). This is necessary in order
that J*, be known prior to the calculation of C*,, (= J,,, + JX.).
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Once the table has been completed, the optimal path from any intersection
to 4 can be obtained by entering the table at the appropriate intersection
and reading off the optimal heading at each successive intersection along
the trajectory. For example, if the motorist starts at b, the table tells him to
head east. Heading east, he arrives at ¢, where the table indicates he should
again move east. Continuing the process, we find the optimal path from
b to h to be b-c-f~g-h and the minimum cost to be 17.

The information in the table also allows the motorist to adjust his route
if he is forced to deviate from the optimal path. Suppose he started at b
and reached ¢ only to find the road to f closed for repairs; he is forced to
move to d. After doing so, he enters the table and finds that from d the
optimal path to 4 is d-e-f-g-h.

Notice that a motorist at intersection a who heads south instead of east
is being misled by the prospect of a short-term gain. His overall cost will
be higher, even if he thereafter follows the optimal route.

Table 3-1 CALCULATION OF OPTIMAL HEADINGS BY DYNAMIC PROGRAMMING

Current Heading Next Minimum cost from Minimum Optimal
intersection intersection o to h via x; cost to heading
reach h at o
from a
o U X Jaxe + 50 = Clxn T & u*(@)
g N h 24+ 0= 2 2 N
f E g 34 2= 5 5 E
e E h 8+ 0= 8
S f 24 5=17 7
d E e 34 7=10 10 E
¢ N d 54+10=15
E f 34 5= 8 8
b E c 9+ 8=17 17
a E d 8-+10=18 18
S b 5417=22

3.5 AN OPTIMAL CONTROL SYSTEM

Consider a system described by the first-order differential equation

2 [x(0)] = ax() + bus), (3.5-1)
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where x(f) and u(f) are the state and control variables, respectively, and a
and b are constants. The admissible values of the state and control variables
are constrained by

0.0<x(®) < 1.5
and
—1.0 < ut) < 1.0, (3.5-2)

and the performance measure (cost) to be minimized is
T
J = x¥T) + A j u*(2) dt, (3.5-3)
0

where T is the specified final time, and 4 is a weighting factor included to
permit adjustment of the relative importance of the two termsin J. x(T) and
u(t) are squared because positive and negative values of these quantities are
of equal importance. This performance measure reflects the desire to drive
the final state x(7") close to zero without excessive expenditure of control
effort.

Before the numerical procedure of dynamic programming can be applied,
the system differential equation must be approximated by a difference equa-
tion, and the integral in the performance measure must be approximated by
a summation. This can be done most conveniently by dividing the time inter-
val 0 <t << T into N equal increments, A¢. Then from (3.5-1)

%_XLQ = ax(t) + bu(t), (3.5-4)

or
x(t + At) = [1 + a Ae}x(t) + b At u(z). (3.5-5)

It will be assumed that Az is small enough so that the control signal can be
approximated by a piecewise-constant function that changes only at the
instants t = 0, At, ..., (N — 1) A¢; thus, for ¢ = k At,

x(k + 1] Af) = [1 + a Aflx(k A) + b At u(k Ar);  k=0,1,..., N—1.
(3.5-6)

x(k Ar) is referred to as the kth value of x and is denoted by x(k). The
system difference equation can then be written

x(k 4+ 1) = [1 + a Aflx(k) + b At u(k). (3.5-7)
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In a similar way the performance measure becomes

J=xNA)+ 1 UA' u*(0)dt + f“‘ ur(At)dt 4 ---

ar a (3.5-8)

+ w(IN — 11 At) dt] ,
(N-1) At

or,
J = x*(N) + A A[ur(0) + uX(1) + -+ + w (N — 1)]

N-1 (3.5-9)
= x?(N) + A At kzo u*(k).

Now the method of dynamic programming can be applied as in the auto-
mobile routing problem. For numerical simplicity let a =0, 5 =1, 1 = 2,
T =2, At = 1, in which case N = 2; i.e., this is a two-stage process described
by the difference equation

x(k 4+ 1) = x(k) + u(k); k=0,1 (3.5-10)

where 4(0) and «(1) are to be selected to minimize the performance measure
(cost)

J = x*(2) 4+ 2u*(0) + 2u2(1) (3.5-11)
subject to the constraints
00<x(k) <15, k=0,1,2
and (3.5-12)
—10<uk)<10; k=0,1.

The first step in the computational procedure is to find the optimal policy
.for the last stage of operation, This is essentially a matter of trying all of the
allowable control values at each of the allowable state values. The optimal
control for each state value is the one which yields the trajectory having the
minimum cost. To limit the required number of calculations, and thereby
make the computational procedure feasible, the allowable state and control
values must be quantized. In this problem it will be assumed that the quan-
tized values are x(k) = 0.0,0.5, 1.0, 1.5, and u(k) = —1.0, —0.5, 0.0, 0.5, 1.0.

Using these values, we find that the computational procedure for deter-
mining the optimal policy over the last stage is

1. Put k = 1, select one of the quantized values of x(1), try all quantized
values of u(l), and calculate the resulting trajectories. The optimal
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control for this state value is the one which yields the minimum cost.
2. Repeat the procedure in step 1 for the remaining quantized levels of

x(1).

The resulting calculations are shown in Table 3-2, where calculations leading
to a violation of the constraints have been omitted. Notice that the cost
J,, of going from state x(1) to state x(2) is dependent on the value of the
state x(1) and on the value of the control applied, #(1); hence the notation
J, . (x(1), u(1)). Similarly, the minimum cost J#,(x(1)) and the optimal control
u*(x(1), 1) applied at k = | are dependent on the value of the state x(1).t

Now consider the next-to-last stage of the process by putting & = 0. At
each quantized value of the state x(0) all quantized values of the control #(0)
are tried. The trajectory from x(0) to x(1) is computed for each trial, together
with the cost J,;. Then, knowing the value of x(1) at the end of each such
trajectory, we may follow the optimal trajectory over the last stage with the
aid of the data available in Table 3-2, In mathematical terms this means that

C2(x(0), u(0)) = Jo,(x(0), u(0)) + J¥,(x(1)), (3.5-13)
and thus the cost of the optimal trajectory is

J82(x(0)) = min [o1(x(0), u(0)) + JH(x(1))], (3.5-14)

where

C#,(x(0), u(0)) is the minimum cost of operation over the last two stages
for one quantized value of x(0) given a particular trial
quantized value of u(0).

Jo1(x(0), u(0)) is the cost of operation in the interval k =0 to k= 1
for specified quantized values of x(0) and u(0).

JE (1) is the cost of the optimal last-stage trajectory which is
a function of the state x(1).
J&(x(0)) is the minimum cost of operation over the last two stages

for a specified quantized value of x(0).

Notice that (3.5-13) and (3.5-14) are analogous to (3.4-6) and (3.4-7) in the
automobile routing problem.

Finally, (3.5-13) and (3.5-14) are mechanized in Table 3-3 to complete
the dynamic programming algorithm.

The information contained in Tables 3-2 and 3-3 may now be used to
determine the optimal trajectory from any allowable quantized value of x(0)

t Rather than adhere to the form of (3.1-1) for the optimal control law, u*(k) = f(x(k), k),
we will shorten the notation by writing simply u*(x(k), k).
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to the final state x(2). For example, if x(0) = 1.5, Table 3-3 indicates that
u*(1.5, 0) = —0.5and J&(1.5) = 1.25. Application of u*(1.5, 0) at x(0) = 1.5
makes x(1) = 1.0, and Table 3-2 gives the optimal control applied at k = 1
as u*(1.0, 1) = —0.5. Thus, for x(0) = 1.5 the optimal control sequence is
{—0.5, —0.5}, and the minimum cost is 1.25.

In a similar way, the optimal policies and trajectories can be determined
from the tables for the other values of x(0). Observe that if x(0) = 1.0 the
optimal policy is nonunique—the control sequences {0, —0.5} and {—0.5, 0}
are both optimal. Notice also that in this problem there is no requirement
that all the trajectories end at the same value of x(2). A problem in which
x(T) is specified is included in the problems at the end of the chapter (Problem
3-3).

If a problem is segmented into more than two stages, the procedure must
simply be extended by repeating the calculations of Table 3-3 for each preced-
ing stage. In general, to determine the optimal control applied at ¢ = k At
in an N-stage process the appropriate forms for (3.5-13) and (3.5-14) are

CinGx(k), (k) = Jg, p0 (x(R), u(k)) + T MOk + 1)), | (3.5-13a)
Ti((k) = min [CH(x(K), u(kD]. (3.5-14a)

Taken together, equations (3.5-13a) and (3.5-14a) form the functional equation
of dynamic programming; we shall have more to say about this in Section 3.7.

In more practical problems a digital computer would normally be needed,
and it often becomes important to minimize the amount of storage required
for the retention of intermediate results. The calculations in Table 3-3 and the
determination of the optimal policy and trajectory for any allowable value of
x(0) require only the data in the last two columns of Tables 3-2 and 3-3;
therefore, only these data need be stored.

3.6 INTERPOLATION

In the preceding control example all of the trial control values drive
the state of the system either to a computational “grid” point or to a value
outside of the allowable range. Had the numerical values not been carefully
selected, this happy situation would not have been obtained and interpola-
tion would have been required. For example, suppose that the trial values
for u(k) had been —1, —0.75, —0.5, —0.25, 0, 0.25, 0.5, 0.75, 1. The values
of J(x(1)) and u*(x(1), 1) shown next to the state points in Fig. 3-4(a) are
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X X
[Jl*,(xu», W x(1), 1)] r
u(0)= 0.00
1.5+ 0[1.5000, —0.50] 1.5 g =4 _~u(0)=-0.25
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y Py >k & ° 1 k
1 2 1 2
(a) (b)

Figure 3-4 (a) Minimum costs and optimal controls for quantized
values of x(1). (b) Paths resulting from the application of quantized
control values at x(0) = 1.5

the results of repeating the calculations in Table 3-2 with the new trial values
for u(1).

Next, suppose that all of the quantized values of the control are applied
for a state value of x(0) = 1.5. The resulting values of x(1) are shown in Fig.
3-4(b), where it can be seen that two of the end points do not coincide with
the grid points of Fig. 3-4(a). But, by linear interpolation,

J%(1.25) = 0.68750 -+ 4[1.50000 — 0.68750]

3.6-1
= 1.09375 ( )

and

J#(0.75) = 0.18750 + $[0.68750 — 0.18750]

= 0.43750 @62

Finally, the result of repeating the calculations in Table 3-3 [for x(0)
= 1.5 only], the interpolated values of J¥(x(1)) being used where required,
is shown in Table 3-4.

Interpolation may also be required when one is using stored data to
calculate an optimal control sequence. For example, if the optimal control
applied at some value of x(0) drives the system to a state value x(1) that is
halfway between two points where the optimal controls are —1 and —0.5,
then by linear interpolation the optimal control is —0.75.

In summary, although a finite grid of state and control values must be
employed in the numerical procedure, interpolation makes available approxi-
mate information about intermediate points, Naturally, the degree of approxi-



0SL8T'T = 0SL8I'0 + z(00'T—)T 05°0 00'1—
0ST9S'T = OSLEV'0 + z(SL'0—)T SL'0 SL'0~—
0s0— =°sDx?  0SL81'T = (S'N%r 0SL8T'T = 05.89°0 -+ z(0S'0—)T 001 0S°0—
SL8ITT = S§LE60'T + 2(ST0—)T ST §T0—
0000S'T = 0000S'T + <2(00°0)C 05°1 000 05’1
© ©x)xn (23507 WO )% = (DY r + )T oM + (O)x = (Dx o o)x
0=y s28p1s om1 = ((1X)%r + (o) “(O))'°r
v panddo SO} 4240 (0)n anpoda jor4z 4of 2018
1041100 owndQO 1500wty 523D1S OM] 1SD] 4240 JSOI WMUIUI] 301 IX3N jo43u0) Jusddny)y

05°T = (0)X ¥O4 SIDVIS OMI ISVT TEL WIAO NOLLVEEIO 10 SIS0D ¢ dqeL,



Sec. 3.7 Dynamic Programming 67

mation depends on the separation of the grid points, the interpolation scheme
used, and the system dynamics and performance measure. A finer grid gener-
ally means greater accuracy, but also increased storage requirements and
computation time. The effects of these factors are illustrated in some of the
exercises at the end of the chapter (Problems 3-14 through 3-18).

3.7 A RECURRENCE RELATION OF DYNAMIC
PROGRANMMING

In this section we shall begin to formalize some of the ideas introduced
intuitively in preceding sections. In particular, we wish to generalize the
procedure in Section 3.5 which led to equations (3.5-13a) and (3.5-14a).
Since our attention is focused on control systems, a recurrence relation will
be derived by applying dynamic programming to a control process.

An nth-order time-invariant system? is described by the state equation

x(2) = a(x(), u(®)). 3.7-1)

It is desired to determine the control law which minimizes the performance
measure

7= hx(e) + [ gx(o), ue) d, (37-2)

where ¢, is assumed fixed. The admissible controls are constrained to lie in
aset U;l.e.,ue U. As before, we first approximate the continuously operating
system of Eq. (3.7-1) by a discrete system this is accomplished by considering
N equally spaced time increments in the interval 0 < ¢ < ¢,. From (3.7-1)

XA 8D = X0  ae(r), u()) (3.73)
or
x(t + At) = x(¢) + At a(x(2), u()). (3.7-9)
Using the shorthand notation developed earlier for x(k Af) gives
x(k + 1) = x(k) + At a(x(k), u(k)), (3.7-5)
which we will denote by
x(k + 1) £ ay(x(k), u(k)). (3.7-6)

1 The following derivation can be applied to time-varying systems as well; time-
invariance is assumed only to simplify the notation.
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Operating on the performance measure in a similar manner, we obtain

T = hx(V An) + [ gar + [“gar+ - + 7 gar, (37)
0 At w-nac”
which becomes for small At,
—1

T~ V) + At 3y g(x(k), u(k)), (3.7-8)

which we shall denote by
N-—-1
J = h(x(N)) + kgo go(x(k), u(k)). (3.7-8a)

By making the problem discrete as we have done, it is now required that
the optimal control law u*(x(0), 0), w*(x(1), 1), ..., w*(x(N — 1), N — 1)
be determined for the system given by Eq. (3.7-6) which has the performance
measure given by (3.7-8a). We are now ready to derive the recurrence equa-
tion.

Begin by defining

Inn(X(N)) & h(x(N)); (3.7-9)
Jyw 1s the cost of reaching the final state value x(N). Next, define
Jy-1, NX(N — 1), u(N — 1)) & gp(x(N — 1), w(N — 1)) + A(X(N))
= gp(X(N — 1), u(N — 1)) + Jyn(X(N)),
(3.7-10)

which is the cost of operation during the interval (N — 1) At <t < N At
Observe that Jy_, y is also the cost of a one-stage process with initial state
x(N — 1). The value of J,._,  is dependent only on x(N — 1) and u(¥ — 1),
since x(N) is related to x(N — 1) and u(N — 1) through the state equation
(3.7-6), so we write

Jy-1, NN — 1), w(N — 1)) = gp(x(N — 1), u(N — 1))

3.7-11
+ JNN(aD(x(N — 1), u(N — 1))) ( )

The optimal cost is then
JE_, NN — 1) éug}iﬂl){gp(x(lv —D,u(N —1)) + JNN(aD(x(N — 1),
ulN — )}t (3.7-12)

T Notice that the minimization is performed with only admissible control values being
used.
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We know that the optimal choice of u(N — 1) will depend on x(N — 1), so
we denote the minimizing control by w*(x(N — 1), N — 1).

The cost of operation over the last two intervals is given by
Jy—2, NN — 2), u(N — 2), u(N — 1))

= go(X(N — 2), (N — 2)) + go(x(N — 1),u(N — 1)) + h(x(N)) (3.7-13)

= &o(X(V — 2), u(N — 2)) + Jy_,, XN — 1), u(N — 1)),
where again we have used the dependence of x(N) on x(N — 1) and u(N — 1).
As before, observe that Jy,_, » is the cost of a two-stage process with initial
state X(N — 2). The optimal policy during the last two intervals is found from
T2, NN — 2))

A min (g — 2, W — 2) + Ty, o — D, uV — 1)}

' (3.7-14)

The principle of optimality states that for this two-stage process, whatever
the initial state x(N — 2) and initial decision u(N — 2), the remaining deci~

sion w(N — 1) must be optimal with respect to the value of x(N — 1) that
results from application of u(N — 2); therefore,

J¥oa, n(X(N — 2)) = “r(rhlli_r;) {go(xX(N — 2), (N — 2)) + J¥_,, f(x(N — 1)}
3.7-15)
Since x(N — 1) is related to x(N — 2) and u(N — 2) by the state equation,
J¥_, n depends only on x(N — 2); thus
I¥-2 NN — 2))
= min {8,V —2), N — 2) + Jif-1, a(3:0N — 2, uV — 2)}
(3.7-15a)
By considering the cost of operation over the final three stages—a three-
Stage process with initial state x(N — 3)—we can follow exactly the same
reasoning which led to Egs. (3.7-13) through (3.7-15a) to obtain
I¥-s, NN — 3))
= min {g,(x(N — 3), UV = 3) + T, w(aolx(N — 3), N — )}
(3.7-16)

Continuing backward in this manner, we obtain for a K-stage process
the result

I3 w6V = K)
- min (B + 5 eax(h), wh)l,

u(N-K), o(N—-K+1), ..., u(N—-1)

(3.7-17)
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which by applying the principle of optimality becomes

J¥-x, nN(X(N — K)) = “(mNi_rll() {gb(x(N — K), (N — X))

(3.7-18)
+ J¥- -0, M(ao(X(N — K), (N — K))}.t

Equation (3.7-18) is the recurrence relation that we set out to obtain. By
knowing J¥_ ), n, the optimal cost for a (K — I)-stage policy, we can
generate Ji . y, the optimal cost for a K-stage policy. To begin the process
we simply start with a zero-stage process and generate J3y A Jyy (the * is
just a notational convenience here; no choice of a control is implied). Next,
the optimal cost can be found for a one-stage process by using Ji¥y and (3.7-
18), and so on. Notice that beginning with a zero-stage process corresponds
to starting at the terminal state 4 in the routing problem of Section 3.4 and
starting at the final time ¢+ = 2 At in the control example of Section 3.5.

This derivation of the recurrence equation has also revealed another
important concept—the imbedding principle. J%_, n(x(N — K)) is the
minimum cost possible for the final K stages of an N-stage process with
state value x(N — K) at the beginning of the (N — K)th stage; however,
Ji¥ k, ¥(X(N — K)) is also the minimum cost possible for a K-stage process
with initial state numerically equal to the value x(N — K). This means that
the optimal policy and minimum costs for a K-stage process are contained
(or imbedded) in the results for an N-stage process, provided that N > K.

Our discussion has been concerned primarily with the solution of optimal
control problems; however, dynamic programming can also be applied to
other types of optimization problems. For a more general treatment of
dynamic programming and its applications, see references [B-2] and [N-1].

3.8 COMPUTATIONAL PROCEDURE FOR SOLVING
OPTIMAL CONTROL PROBLEMS

Let us now summarize the dynamic programming computational pro-
cedure for determining optimal policies.

1 An alternative notation often used is
JEX(N — K)) = g}i_nm {epx(N — K), w(N — K)) + J¥_,(apx(N — K), u(N — K))},
where the subscripts of J* indicate the number of stages. We shall use the notation

of Eq. (3.7-18) because it more clearly indicates the computational procedure to be
followed.
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A system is described by the state difference equationt
x(k + 1) = ap(x(k), u(k)); k=01,..,N—1. (3.8-1)

It is desired to determine the control law that minimizes the criterion

J = h(x(N)) + :Z;]:gn(x(k), u(k)).1 (3.8-2)

As shown in Section 3.7, the application of dynamic programming to this
problem leads to the recurrence equation

J¥x, NN — K)) = 1(1)31_1110 {go(x(N — K), u(N — K))

+ ¥, N(aD(x(N -~ K), (N — K)))}a (3.8-3)
kK=1,2,...,N

with initial value
Jain(X(N)) = h(x(N)). (3.8-4)

It should be re-emphasized that Eq. (3.8-3) is simply a formalization of the
computational procedure followed in solving the control problem in Section
3.5.

The solution of this recurrence equation is an optimal control law or
optimal policy, u*(x(N — K), N— K), K=1, 2, ..., N, which is obtained
by trying all admissible control values at each admissible state value. To
make the computational procedure feasible it is necessary to quantize the
admissible state and control values into a finite number of levels. For example,
if the system is second order, the grid of state values.would appear as shown
in Fig. 3-5. The heavily dotted points are the state values at which each of
the quantized control values is to be tried. In this second-order example,
the total number of state grid points for each time, k A¢, is s,5,, where s,
is the number of points in the x, coordinate direction and s, is the number
of points in the x, coordinate direction. s, and s, are determined by the
relationship

— Xrmx  Xrmin . —_ -
s, = . v +1; r=1,2, (3.8-5)

where it is assumed that Ax, is selected so that the interval x,_ — x,_.

t This difference equation and the performance measure may be a discrete approximation
to a continuous system, or they may represent a system that is actually discrete.

} To simplify the notation, it is assumed that the state equations and performance measure
do not contain & explicitly. The algorithm is easily modified if this is not the case.
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contains an integer number of points, For an nth-order system the number of
state grid points for each time, # = k A¢, is

N S=2u5,8+--- S, (3.8-6)
where

sp= TS 4 1 r=1,2,..,n, (3.8-7)

if it is assumed that the ratio [x,_, — x,_J/Ax, is an integer. The admis-~
sible range of control values is quantized in exactly the same way; if C is the
total number of quantized values of u(k), then

C=ci+Cpovvr> Cm (3.8-8)
where

; —'E‘:M+l; qg=12,...,m (3.8-9)

In the following development x(k)(i = 1,2,...,S) and u” (k) (j =1,

2,..., C) denote the admissible quantized state and control values at time
t =k At

The first step in the computational procedure is to calculate the values
of JFvWP(N)) (i=1,2,...,8) which are used to begin solution of the
recurrence equation.

Next, we set K = 1, and select the first trial state point by puttingi = 1
in the subroutine which generates the points x*(N — K). Each control value,
wWW(N—-K)(j=1,2,...,0C), is then tried at the state value x*’(N — K)
to determine the next state value, x“”(N — K + 1), which is used to look
up the appropriate value of J¥ ;) y(X*?(N — K+ 1)) in computer
memory—interpolation will be required if x*?(N — K + 1) does not fall
exactly on a grid value. Using this value of J¥ ), (N — K + 1))
we evaluate

Cé_x. (XN — K),u’(N — K)) = gpo(x*’(N — K), u’(N — K))
+ Ik nxEN — K + 1)),
(3.8-10)

which is the minimum cost of operation over the final K stages of an N-stage
process assuming that the control value u’(N — K) is applied at the state
value x”(N — K). The idea is to find the value of > (N — K) that yields
JE kNP (N — K)), the minimum of C¥_y y(x(N — K), u/(N — K)).
Only the smallest value of C_, NyxX’(N — K), u>(N — K)) and the asso-
ciated control need to be retained in storage; thus, as each control value is
applied at X”(N — K) the C¥_x y(x(N — K), u/’(N — K)) that results is
compared with the variable named COSMIN—the COSt which is the MINi-
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mum of those which have been previously calculated. If C¥_, y(x V(N — K),
u’(N — K)) < COSMIN, then the current value of COSMIN is replaced
by this new smaller value. The control that corresponds to the value of
COSMIN is also retained—as the variable named UMIN. Naturally, when
COSMIN is changed, so is UMIN.

After all control values have been tried at the state value x‘”(N — K),
the numbers stored in COSMIN and UMIN are transferred to storage in
arrays named COST(N — K,I) and UOPT(N — K, I), respectively. The
arguments (N — K) and I indicate that these values correspond to the state
value x)(N — K).

The above procedure is carried out for each quantized state value; then
K is increased by one and the procedure is repeated until X = N, at which
point the COST(N — K, I) and UOPT(N — K, I) arrays are printed out for
K=1,2,...,Nand I=1,2,...,S. A flow chart of the computational
procedure is shown in Fig. 3-6.

The result of the computational procedure is a number for the optimal

READ input data:
number of stages=N,
number of state values =S,
number of control values = C,
other required information

SETK=0;
CALCULATE and STORE
Ty (XHND) = (x D (N))
for afl admissible quantized values
of x(M (I=1,2,..., 5)

[
I
INCREASE Kby |
SET x(V — K) equal to the starting
quantized value by makingi = |

— CHANGE x®(N — K) to the
I next ized state value by,
SET “COSMIN" to a large positive number ; increasing i by 1

SET u(N — K) equal to the starting
quantized value by makingj =1

I
I

Ne

CALCULATE the value of
XN~ K+1)=35 (xON - K), u PN — K)
USE this value of x.A(N — K + 1) to seloct the
appropriate stared value of
5

HAVE
all quantized
state values been

HAS
the process

# OGPV — K+ 1)) CHANGE u)(N ~ K) to the tricd? all stages?
(mtn:rpolatmn requued if XAV — K + 1) is not next quantized control value asi=s7 asx =N;)
a grid value) ; by increasing j by 1 ) y
COMPUTE
» PN = k), wOWN ~ k)
the minfu Cost over the final (N — K) stages No STORE COSMIN in COST (¥ - K. D) Yes
ifu™N — K) is applied at xXMW — K) and UMIN in UOPT (¥ - K, 1)

s

the value of HAVE
Chr g W (XOW — £, uD(N — K)) all quantized
" just calculated control values been
less than tried?
COSMIN? (1Sj=C%

Yes
STORE the value
Chr- kw5 ~ K),uD N - )
in COSMIN; PRINT optimal contrals, UOPT (N — K, 1)
STORE the value u®(N — K) and minimum costs, COST (N — X, 1), for
in UMIN all quantized state points (/=1,2,...,5)

and all stages (K=1,2,...,N)

Figure 3-6 Flow chart of the computational procedure

been completed for
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control and the minimum cost at every point on the (n 4+ 1)-dimensional
state-time grid. To calculate the optimal control sequence for a given initial
condition, we enter the storage location corresponding to the specified initial
condition and extract the control value u*(0) and the minimum cost. Next,
by solving the state equation we determine the state of the system at k = 1
which results from applying u*(0) at k = 0. The resulting value of x(1) is
then used to reenter the table and extract u*(1), and so on. We see that the
optimal controller is physically realized by a table look-up device and a
generator of piecewise-constant signals.

3.9 CHARACTERISTICS OF DYNAMIC
PROGRAMMING SOLUTION

In Section 3.8 we formalized the algorithm for computing the optimal
control law from the functional equation

Ji-en@EWN — K)) = “I(%igo {gD(X(N — K), u(N — K))
+ J¥- k- v, 720XV — K), u(N — K)))}. (3.8-3)

Let us now summarize the important characteristics of the computational
procedure and the solution it provides.

Absolute Minimum

Since a direct search is used to solve the functional recurrence equation
(3.8-3), the solution obtained is the absolute (or global) minimum. Dynamic
programming makes the direct search feasible because instead of searching
among the set of all admissible controls that cause admissible trajectories,
we consider only those controls that satisfy an additional necessary con-
dition—the principle of optimality. This concept is illustrated in Fig. 3-7.
S, is the set of all controls; S, is the set of admissible controls; S, is the set
of controls that yield admissible state trajectories; .S, is the set of controls
that satisfy the principle of optimality. Without the principle of optimality
we would search in the intersection of sets .S, and S;.t The dynamic program-
ming algorithm, however, searches only in the shaded region—the intersec-
tion of S,, S, and S, (S, N S; N Sy).

1 The set that is the intersection of S and S5, denoted by S, N 3, is composed of the
elements that belong to both S, and S;.
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S, (all controls)

controls
S which cause
3 | admissible

trajectories

S, (admissible controls)

S4 (controls which satisfy
principle of optimality)

Figure 3-7 Subsets of the control space

Presence of Constraints

As shown in Fig. 3-7, the presence of constraining relations on admissible
state and/or control values simplifies the numerical procedure. For example,
if the control is a scalar and is constrained by the relationship

—1.0 < u(r) < 1.0, (3.9-1)

then in the direct search procedure we need to try only values of u in the
allowed interval instead of values of u throughout the interval

—oo < u(f) < oo. (3.9-2)

Form of the Optimal Control

Dynamic programming yields the optimal control in closed-loop or
feedback form—for every state value in the admissible region we know
what the optimal control is. However, although u* is obtained in the form
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w*(f) = f(x(2), 1), (3.9-3)

unfortunately the computational procedure does not yield a nice analytical
expression for f. It may be possible to approximate f in some fashion, but
if this cannot be done, the optimal control law must be implemented by
extracting the control values from a storage device that contains the solution
of Eq. (3.8-3) in tabular form.

A Comparison of Dynamic Programming and
Direct Enumeration

Dynamic programming uses the principle of optimality to reduce dra-
matically the number of calculations required to determine the optimal
control law. In order to appreciate more fully the importance of the principle
of optimality, let us compare the dynamic programming algorithm with
direct enumeration of all possible control sequences.

Consider a first-order control process with one control input. Assume
that the admissible state values are quantized into 10 levels, and the admissible
control values into four levels. In direct enumeration we try all of the four
control values at each of the 10 initial state values for one time increment
At. In general, this will allow x(A?) to assume any of 40 admissible state
values. Assuming that all of these state values are admissible, we apply all
four control values at each of the 40 state values and determine the resulting
values of x(2 At). This procedure continues for the appropriate number of

Table 3-5 AN EXAMPLE COMPARISON OF DYNAMIC PROGRAMMING AND
DIRECT ENUMERATION

Number of Number of calculations Number of calculations Number of calculations

stages required by dynamic required by direct required by direct
in the programming enumeration enumeration (assuming
process 50% of state values
N admissible and distinct)
1 40 40 40
2 80 200 120
3 120 840 280
4 160 3,400 600
5 200 13,640 1,240
6 240 54,600 2,520

L L
L 40L 3 [10-44] 3 [20-2]
k=1 k=1
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stages. In dynamic programming, at every stage we try four control values at
each of 10 state values. Table 3-5 shows a comparison of the number of
calculations required by the two methods. The table also includes the number
of calculations required for direct enumeration if it is assumed that at the end
of each stage only half of the state values are distinct and admissible. The
important point is that the number of calculations required by direct enumera-
tion increases exponentially with the number of stages, while the computa-
tional requirements of dynamic programming increase linearly.

The Curse of Dimensionality

From the preceding discussion it may seem that perhaps dynamic pro-
gramming is the answer to all of our problems; unfortunately, there is one
serious drawback: for high-dimensional systems the number of high-speed
storage locations becomes prohibitive. Bellman calls this difficulty the “curse
of dimensionality.” To appreciate the nature of the problem, recall that to
evaluate J¥_, , we need access to the values of J¥ ._;,, which have
been previously computed. For a third-order system with 100 quantization
levels in each state coordinate direction, this means that 102 x 10% x 102
= 10° storage locations are required; this number approaches the limit of
rapid-access storage available with current computers. There is nothing to
prevent us from using low-speed storage; however, this will drastically in-
crease computation time. Of the techniques that have been developed to
alleviate the curse of dimensionality, Larson’s “state increment dynamic
programming”[L-1]seems to be themost promising. There are other methods,
however, several of which are explained in [N-1]. [L-2] contains an excellent
survey of computational procedures used in dynamic programming.

3.10 ANALYTICAL RESULTS—DISCRETE LINEAR
REGULATOR PROBLEMS

In this section we consider the discrete system described by the state
equation

x(k + 1) = A(R)x(k) + B(k)u(k). (3.10-1)

The states and controls are not constrained by any boundaries. The problem is
to find an optimal policy u*(x(k), k) that minimizes the performance measure

J = 3xT(N)HX(N) + 4 12: [X"(k)QUeX(K) + w(k)R(K)u(k)], (3.10-2)
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where
H and Q(k) are real symmetric positive semi-definite » X n matrices.
R(k) is a real symmetric positive definite m X m matrix.
N is a fixed integer greater than 0.

The above problem is the discrete counterpart of the continuous linear
regulator problem considered in Sections 3.12 and 5.2.f To simplify the
notation in the derivation that follows, let us make the assumption that A,
B, R, and Q are constant matrices. The approach we will take is to solve
the functional equation (3.7-18). We begin by defining

Inn(X(N)) = $XT(NHX(N) = JEn(x(N)) & X" (VPOx(N)  (3.10-3)
where P(0) 2 H. The cost over the final interval is given by

In- 1, WV — 1), u(N — 1)) = 3x7(N — DQx(N — 1)

(3.10-4)
-+ 4u"(N — DRu(N — 1) + $x"(N)P0)x(N),

and the minimum cost is

T v — 1)) & min {1 nEWN — 1), u(¥ — 1))} (3.10-5)

Now x(N) is related to u(N — 1) by the state equation, so
T — D) = min X7V — DQXQV — 1) -+ 40"V — DRuN — 1)

+ 4{AX(V — 1) + Bu(N — DFPO[AX(NV — 1) + Bu¥ — D]}.
(3.10-6)

It is assumed that the admissible controls are not bounded; therefore, to
minimize Jy_, 5 With respect to u(N — 1) we need to consider only those
control values for which

Wy_yn
du, (N — 1)
0JN—1.N
du,(N — 1)

0Ty

aJN— LN
._0um(N - 1)_

1 Equations (3.10-1) and (3.10-2) may be the result of a discrete approximation to a con-
tinuous problem, or the formulation for a linear, sampled-data system (see Appendix 2).
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Evaluating the indicated partial derivatives gives
Ru(N — 1) + B"P(0)[AX(N — 1) + Bu(N — 1)] = 0.t (3.10-8)

The control values that satisfy this equation may yield a minimum of Jy_, y,
a maximum, or neither. To investigate further, we form the matrix of second
partials given by

B ‘92JN—1.N aZJN«I,N . ‘92JN-1,N ]
Jdui(N—1) du,(N—1)du,(N—1) Ju, (N —1)du,(N—1)
0ZJN-I.N 02JN—1,N .. dZJN~l,N
du,(N—1)du,(N—1) Juz(N—1) Ju,(N—1)du,(N—1)

0y _1,n 0%y _1.n e Oy
| 0u,(N—1)3u,(N—1)  u,,(N—1)du,(N—1) duL(N—1)
A dzJN—l.N
T ow¥(N — 1) (3.10-9)
= R + BP(0)B.

By assumption H [and hence P(0)] is a positive semi-definite matrix, and R
is a positive definite matrix. It can be shown that since P(0) is positive semi-
definite, so is B'P(0)B. This means that R + B"P(0)B is the sum of a posi-
tive definite matrix and a positive semi-definite matrix, and this implies that
R + B"P(0)B is positive definite. Since Jy_, 5 is a quadratic function of
u(N — 1) and the matrix 0*Jy_, y/Ou*(N — 1) is positive definite, the control
that satisfies Eq. (3.10-8) yields the absolute, or global, minimum of Jy_, 4.
Solving (3.10-8) for the optimal control gives

u*(N — 1) = —[R + B"P(0)B]~'B"P(0)AX(N — 1)

(3.10-10)
A F(N — Dx(N — 1).

Since R 4+ BTP(0)B is positive definite, the indicated inverse is guaranteed
to exist. Substituting the expression for u*(N — 1) into the equation for
Jy_1,n gives J¥_; n, Which after terms have been collected becomes

J¥ NN — 1)) = $x"(N — D{[A + BF(N — 1)]"P(0)[A + BF(N — 1)]
+ FT(N — DRFWV — 1) + Q}x(N — 1)
2 IXT(N — DP(Dx(N¥N — 1). (3.10-11)
t The symmetry of R and P(0) have also been used here. The reader will find the matrix

calculus relationships given in Appendix 1 helpful in following the steps of this derivation.
{ See Appendix 1.
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The definition for P(1) is clear, by inspection of (3.10-11). The important
point is that J¥_, y is of exactly the same form as JF ,, which means that
when we continue the process one stage further back, the results will have
exactly the same form; i.e.,

u¥(¥ — 2) = —[R + BTP(1)B] ' B"P()AX(N — 2)

(3.10-12)
A2 F(N — 2x(N — 2),

and
JE (XN — 2)) = 1xXT(N — 2){[A + BF(N — 2)]TP(1)[A + BF(N — 2)]
+ F'(N — 2)RF(N — 2) + Q}x(N —2)
2 IXT(N — 2)PQQ)x(N — 2). (3.10-13)

If you do not believe this, try it and see.
By induction, for the Kth stage

w¥(N — K) = —[R -+ B"P(K — 1)B]"'B"P(K — 1)AX(N — K)

A F(N — K)x(N — K) (3.10-14)

and

T3k vX(N — K)) = $x7(N — K){[A +BF(N — K)]"P(K — 1)[A+ BF(N — K)]
+F(N — K)RF(N — K) + Q}x(N — K)
A IXT(N — K)P(K)X(N — K). (3.10-15)

In the general time-varying case the same derivation gives

uw¥(N — K)= —[R(N — K)+ B"(N — K)P(K—1)B(N — K)|™*
XBT(N — K)P(K — 1)A(N — K)X(N — K) (3.10-16)
A F(N — K)x(N —K)

I kXN — K)=4x"(N — K){[A(N — K)
+BW — KF(N—K)J"
X P(K—D)[A(V—K)+B(N—K)F(N—K)]
+F(N — K)R(N — K)F(N — K)
+QW — K)}x(N—K)
23xT(N — K)P(K)X(N — K).

(3.10-17)
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What are the implications of these results? First, and most important,
observe that the optimal control at each stage is a linear combination of the
states; therefore, the optimal policy is linear state-variable feedback. Notice
that the feedback is time-varying, even if A, B, R, and Q are al/l constant
matrices—this means that the controller for the optimal policy can be
implemented by the m time-varying amplifier-summers each with » inputs
shown in Fig. 3-8. At the conclusion of Section 3.8 we remarked, “...the
optimal controller is physically realized by a table look-up device and a
generator of piecewise-constant signals”; when the system is linear and the
performance measure quadratic in the states and controls, the only table
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Figure 3-8 (a) Plant and linear time-varying feedback controller
(b) Controller configuration
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look-up involved in the controller is to determine the appropriate gain settings
from stage to stage.

Another important result of the derivation is that the minimum cost for
an N-stage process with initial state x, is given by

J¥n(Xo) = £XTP(N)X,, (3.10-18)

which follows directly from the definition of P(N — K). This means that
storage of the P(N — K) matrices for K = 1,2,..., N provides us with a
means of determining the minimum costs for processes of from 1 to N stages.

The computational implications of these results are also important. In
order to evaluate the feedback gains and the minimum cost for any initial
state, it is necessary only to solve the equations

F(N — K) = —[RWV — K) 4 BT (N — K)P(K — 1)B(N — K)|"*

(3.10-19)
X BTN — K)P(K — DAN — K)

and

P(K) = [AN — K) + BN — K)E(N — K)"P(K — 1)
X [AN — K) + B(N — K)E(N — K)| (3.10-20)

+ FI(N — K)R(N — K)F(N — K) + QN — K)

with P(0) = H. We obtain the solution by evaluating F(N — 1) using P(0)
= H, and then substituting F(N — 1) in (3.10-20) to determine P(1). This
constitutes one cycle of the procedure, which we then continue by calculating
F(N — 2), P(2), and so on. The solution is best done by a digital computer;
for a reduction in the number of arithmetic operations, it is helpful to define

V(N —K) A AN — K)+ BN — KF(N —K)  (3.10-21)

so that the procedure is to solve (3.10-19), then (3.10-21), and finally the
equation

P(K) = VI(N — K)P(K — 1)V(NV — K)

(3.10-20a)
+ FT(N — K)R(N — K)F(N — K) + Q(N — K).
The F and P matrices are printed for use in synthesizing optimal controls
and determining minimum costs.
It is important to realize that the solution of these equations is equivalent
to the computational procedure outlined in Section 3.8; however, because



84 Dynamic Programming Sec. 3.10

of the linear plant dynamics and quadratic performance measure we obtain
the closed-form results given in Egs. (3.10-16) through (3.10-20a).

The reader may have noticed that the control problem of Section 3.5 is of
the linear regulator type. Why then are not the optimal controls in the right-
most columns of Tables 3-2 and 3-3 linear functions of the state values ? The
answer is that the quantized grid of points is very coarse, causing numerical
inaccuracies. When the quantization increments are made much smaller,
the linear relationship between the optimal control and state values is appar-
ent; this effect is illustrated in Problems 3-14 through 3-17 at the end of the
chapter.

Another important characteristic of the linear regulator problem is that
if the system (3.10-1) is completely controllablet and time-invariant, H = 0,
and R and Q are constant matrices, then the optimal control law is time-
invariant for an infinite-stage process; that is

F(N — K) —> F (a constant matrix) as N —> oo,

From a physical point of view this means that if a process is to be controlled
for a large number of stages the optimal control can be implemented by
feedback of the states through a configuration of amplifier-summers as
shown in Fig. 3-8(b), but with fixed gain factors. One way of determining
the constant F matrix is to solve the recurrence relations for as many stages
as required for F(N — K) to converge to a constant matrix.

Let us now conclude our consideration of the discrete linear regulator
problem with the following example.

Example 3.10-1. The linear discrete system

0.9974 0.0539
—0.1078 1.1591

0.0013

xe +1) = [ 0.0539

:lx(k) + [ }u(k) (3.10:22)

is to be controlled to minimize the performance measure
N—-1
J=1 kzo [0.25x%(k) + 0.05x3(k) + 0.05u2(k)]. (3.10-23)

Determine the optimal control law,
Equations (3.10-19), (3.10-21), and (3.10-20a) are most easily solved
by using a digital computer with A and B as specified in Eq. (3.10-22),

t The discrete system of Eq. (3.10-1) with A and B constant matrices is completely con-
trollable if and only if the n X mn matrix

[B{AB]...iAm1B]

is of rank n. For a proof of this theorem, see [P-2].
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0.25 0.00

= 0’ =
H Q [0.00 0.05

}, and R = 0.05.

The optimal feedback gain matrix F(k) is shown in Fig. 3-9(a) for N = 200.
Looking backward from k = 199, we observe that at k = 130 the F(k)
matrix has reached the steady-state value

F(k) = [—0.5522 —5.9668], 0 < k<130 (3.10-24)

The optimal control history and the optimal trajectory for x(0) = [2 1]7
are shown in Fig. 3-9(b). Notice that the optimal trajectory has essentially
reached 0 at k = 100. Thus, we would expect that insignificant perfor-
mance degradation would be caused by simply using the steady-state
value of F given in (3.10-24) rather than F(k) as specified in Fig. 3-9(a).

3.11 THE HAMILTON-JACOBI-BELLMAN EQUATION

In our initial exposure to dynamic programming, we approximated con-
tinuously operating systems by discrete systems. This approach leads to a
recurrence relation that is ideally suited for digital computer solution. In
this section we shall consider an alternative approach which leads to a non-
linear partial differential equation—the Hamilton-Jacobi-Bellman (H-J-B)
equation. The derivation that will be given in this section parallels the devel-
opment of the functional recurrence equation (3.7-18) in Section 3.7.

The process described by the state equation

x(0) = a(x(s), u(z), 1) (3.11-1)

is to be controlled to minimize the performance measure
J = hex(ey), 1) + | gx(x), (o), ) dr, (3.11-2)
where 4 and g are specified functions, 7, and ¢, are fixed, and 7 is a dummy
variable of integration. Let us now use the imbedding principle to include this

problem in a larger class of problems by considering the performance mea-
sure

IO, 1, 0(D)) = hx(ep), 1) + [ g, (@), D, (3113)

where ¢ can be any value less than or equal to ¢, and x(¢r) can be any admis-
sible state value. Notice that the performance measure will depend on the
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numerical values for x(¢) and ¢, and on the optimal control history in the
interval [¢, ¢/].

Let us now attempt to determine the controls that minimize (3.11-3) for
all admissible x(¢), and for all ¢ < ¢,. The minimum cost function is then

70, 1) = min { [ (@), u(@), e + hx(t), 1)} G11-4)
1<t<ts

By subdividing the interval, we obtain
. t+Af tr
J*x(1), 1) = min {j gdr+ 7 gd+ hx(ry), tf)}. (3.11-5)
u(z) t t+AL
t<t<tr
The principle of optimality requires that
. t+At
(0,9 = min { [ gdr 4 Ire+ An, £+ At)}, (3.11-6)

tSTSr+AL

where J*(x(¢ 4 At), t + At) is the minimum cost of the process for the time
interval 7 4 At < © < ¢, with “initial” state x(¢ 4- At).

Assuming that the second partial derivatives of J* exist and are bounded,
we can expand J*(x(¢t + Atr), t + At) in a Taylor series about the point
(x(#), ?) to obtain

@, 0= min {[™gar+ 17, 0+ [ % ), 0] A

1<StsetAr

+ [%(x(t), :)]T [x(t +AD — x(t):l G.11-7)
+- terms of higher order}.

Now for small Az

J¥(x(1), 1) = min {a(x(2), u(t), 1) At + J*(x(2), 1)
+ JXx(D), ©) At + TE (), D[ax(®), u(®), 1)] At (3.11-8)
+ o(An)},t

where o(Ar) denotes the terms containing [Af]* and higher orders of At that
arise from the approximation of the integral and the truncation of the Taylor
series expansion. Next, removing the terms involving J*(x(¢), 7) and J¥(x(¢), 1)

aJ* aJ* dJ* aJ *T aJ*
*a v - ver = * .
tixa ax 3x1 3xz 0x, and Je & ot
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from the minimization [since they do not depend on u(?)], we obtain
0 = J¥x(), ) At + nﬁg {g(x(D), u(?), t) At

+ JET(x(0), D]a(x(2), u(n), )] At + o(Ar)}. (3.11-9)

Dividing by Ar and taking the limit as Az — 0 givest

0==J(x(#), £)-+min {g(x(), u(0), )+ 17 (x(1); N[ax(n),u(®), D]} | (3.11-10)

To find the boundary value for this partial differential equation, set = ¢;;
from Eq. (3.11-4) it is apparent that

TEX(E))s 1)) = h(x(t), 1,). (3.11-11)

We define the Hamiltonian 2 as
(1), u(D), JE, 1) & g(x(1), u(z), 1) + JET(x(2), D{a(x(®), u®), ] (3.11-12)
and

H(x(), w (x(1), J¥, 1), J¥, 1) = min S (x(0), w(), /3, 0, (.11-13)

since the minimizing control will depend on x, J#*, and ¢. Using these defini-
tions, we have obtained the Hamilton-Jacobi equation

0 = J¥x@), 1) + A (x@0), w*(x(r), J¥, 1), JE, 1). (3.11-10a)

This equation is the continuous-time analog of Bellman’s recurrence
equation (3.7-18); therefore, we shall refer to (3.11-10a) as the “Hamilton-
Jacobi-Bellman equation.”

Example 3.11-1. A first-order system is described by the differential
equation

x(t) = x(t) + u(t); (3.11-14)

t lim “’ft’)’=o.

At—0
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it is desired to find the control law that minimizes the performance measure
J = 1xT) + f : () dt. (3.11-15)

The final time T is specified, and the admissible state and control values
are not constrained by any boundaries.

Substituting g = 1u2(¢) and @ = x(r) + u(t) into Eq. (3.11-12), we find
that the Hamiltonian is (omitting the arguments of J*)

(), ut), TE, ) = ju2(@) +THx() + u®)],  (B.11-16)

and since the control is unconstrained, a necessary condition that the
optimal control must satisfy is

%’ = 2ult) + TG, O = . (3.11-17)

Observe that

2
"ajf =5 >0; (.11-18)

thus, the control that satisfies Eq. (3.11-17) does minimize 5. From
(3.11-17)

u*(t) = =2J¥(x(r), 0, (3.11-19)
which when substituted in the Hamilton-Jacobi-Bellman equation gives
0 =J¥ + {—2J%P + [V EIx() — 2[J3T

=J¥ — [T + [T¥1x(). (3.11-20)
The boundary value is, from (3.11-15),
J¥x(T), T) = 1x¥(T). (3.11-21)

One way to solve the Hamilton-Jacobi-Bellman equation is to guess
a form for the solution and see if it can be made to satisfy the differential
equation and the boundary conditions. Let us assume a solution of the
form

TA(x(), ) = $K(E)xX), (3.11-22)

where K(t) represents an unknown scalar function of ¢ that is to be deter-
mined. Notice that

J*(x(1), 1) = K(@#)x(2), (3.11-23)
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which, together with Eq. (3.11-19), implies that
u¥(@) = —2K(x(1). (3.11-24)

Thus, if a function K(f) can be found such that (3.11-20) and (3.11-21)
are satisfied, the optimal control is linear feedback of the state—indeed,
this was the motivation for selecting the form (3.11-22).

By making K(T) = 4, the assumed solution matches the boundary
condition specified by Eq. (3.11-21).

Substituting (3.11-23) for J* and

TEX(0), 1) = $K@0x()
into Eq. (3.11-20) gives
0 = LK()x2(t) — K2()x2(t) + K(O)x2(). (3.11-25)
Since this equation must be satisfied for all x(¢),
1K@ — K2(1) + K1) = 0. (3.11-26)

K(1) is a scalar function of ¢; therefore, the solution can be obtained by
separation of variables with the result

€(Tr-0
The optimal control law is then
u*(@t) = —2J¥x(), 1)
= —2K()x(@). (3.11-28)

Notice that as T'— oo, the linear time-varying feedback approaches
constant feedback (K(r) — 1), and that the controlled system

x(1) = x(t) — 2x(@1)
= —x(f) (3.11-29)

is stable. If this were not the case, the performance measure would be
infinite.

3.12 CONTINUOUS LINEAR REGULATOR PROBLEMS

Problems like Example 3.11-1 with linear plant dynamics and quadratic
performance criteria are referred to as linear regulator problems. In this
section we investigate the use of the Hamilton-Jacobi-Bellman equation as
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a means of solving the general form of the continuous linear regulator
problem.t
The process to be controlled is described by the state equations

x(®) = A@)x(@) + B()u(), (3.12-1)

and the performance measure to be minimized is

J = 1xT(e Hx(t,) + f HXTOQUOX() + w(OREE] dt.  (3.12-2)

H and Q are real symmetric positive semi-definite matrices, R is a real,
symmetric positive definite matrix, the initial time ¢, and the final time ¢, are
specified, and u(¢) and x(¢) are not constrained by any boundaries.

To use the Hamilton-Jacobi-Bellman equation, we first form the Hamil-
tonman:

HX(2), u(t), J¥, 1) = 3xT(O)Q(NX(2) + Fu"(OR(Ou(?) + JEF(x(2), 1)
J[A@DX() + B(u()]. (3.12-3)

A necessary condition for u(¢) to minimize 5# is that d3#/0u = 0; thus

a—‘,'}uf(X(t), u(®), Jt, 1) = R(u(e) + BOTEx(), 1) = 0. (3.12-4)
Since the matrix
‘?;;;/f —RQ) (3.12-5)

is positive definite and s# is a quadratic form in u, the control that satisfies
Eq. (3.12-4) does minimize 5 (globally). Solving Eq. (3.12-4) for u*(¢) gives

w*() = —R'(O)BT()J¥x(), 1), (3.12-6)
which when substituted in (3.12-3) yields
SX(), u*(t), J¥, 1) = 3x"Qx + LJX¥"BR'BJ ¥
+ J¥TAx — J¥TBRIB7J* (3.12-7)
= IX"Qx — LJ¥TBRIBTJ¥ + J¥TAx.I
The Hamilton-Jacobi-Bellman equation is
0 =J% 4+ 1x7Qx — LJ¥"BR'B7J% | J*TAx, (3.12-8)
1 Refer also to Section 5.2, where this same problem is considered and the variational

approach is used.
I Where no ambiguity exists, the arguments will be omitted.



92 Dynamic Programming Sec. 3.12
From Eq. (3.12-2) the boundary condition is
T*x(tp), ;) = $x7(2, ) HX(1). (3.12-9)

Since we found in Section 3.10 that the minimum cost for the discrete
linear regulator problem is a quadratic function of the state, it seems reason-
able to guess as a solution the form

JEx(t), 1) = 1xT(O)K()x(2), (3.12-10)

where K(¢) is a real symmetric positive-definite matrix that is to be deter-
mined. Substituting this assumed solution in Eq. (3.12-8) yields the result

0 = 4x"Kx + 1x7Qx — $x"KBR!B"Kx

KA (3.12-11)

The matrix product KA appearing in the last term can be written as the
sum of a symmetric part and an unsymmetric part,
KA = }[KA + (KA)"] + $[KA — (KA)7]. (3.12-12)

Using the matrix property (CD)” = D7CT and the knowledge that the trans-
pose of a scalar equals itself, we can show that only the symmetric part of
KA contributes anything to (3.12-11). Thus Eq. (3.12-11) can be written

0 = 1x"Kx + 1x"Qx — $x”KBR™'B7Kx

(3.12-13)
+ ix"KAx 4 IxTATKx.
This equation must hold for all x(¢), so
0 = K(1) + Q) — K(®B®R™(1)B7(1)K(r) (3.12.14)
+ K(DA(1) + AT(OK(), '
and the boundary condition is [from (3.12-9) and (3.12-10)}
K(¢;) = H. (3.12.15)

Let us consider the implications of this result: first, the H-J-B partial
differential equation reduces to a set of ordinary nonlinear differential equa-
tions. Second, the K(¢r) matrix can be determined by numerical integration
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of Eq. (3.12-14) from ¢t =t; to t = t, by using the boundary condition
K(t;) = H. Actually, since the n X n K(#) matrix is symmetric, we need to
integrate only n(n + 1)/2 differential equations.

Once K(¢) has been determined, the optimal control law is given by

u(t) = —R-1()BT()K()X(). (3.12-16)

Thus, by assuming a solution of the form (3.12-10) the optimal control law
is linear, time-varying state feedback. It should be pointed out, however,
that other forms are possible as solutions of the Hamilton-Jacobi-Bellman
equation. Reference [J-1] gives an alternative approach which, under certain
conditions, leads to a nonlinear but time-invariant form for the optimal
control law.

Our approach in this section leads to Eq. (3.12-14), which is a differen-
tial equation of the Riccati type, and thus is referred to as “the Riccati
equation”; in Section 5.2 this same equation is developed by variational
methods—in linear regulator problems all routes lead to the same destina-~
tion.

3.13 THE HAMILTON-JACORBI-BELLMAN
EQUATION—-SOME OBSERVATIONS

We have derived the Hamilton-Jacobi-Bellman equation and used it
to solve two examples of the linear regulator type. Let us now make some
observations concerning the H-J-B functional equation.

Boundary Conditions

In our derivation we have assumed that ¢, is fixed; however, the results
still apply if 7, is free. For example, if S represents some hypersurface in the
state space and ¢, is defined as the first time the system’s trajectory intersects
S, then the boundary condition is

THX(1), 1) = h(x(ty), 1). (3.13-1)

A Necessary Condition

The results we have obtained represent a necessary condition for opti-
mality; that is, the minimum cost function J*(x(¢), ) must satisfy the Hamil-
ton-Jacobi-Bellman equation.
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A Sufficient Condition

Although we have not derived it here, it is also true that if there is a cost
function J'(x(¢), t) that satisfies the Hamilton-Jacobi-Bellman equation, then
J' is the minimum cost function; i.e.,

J'(x(0), 1) = J*(x(@), 1). (3.13-2)

Rigorous proofs of the necessary and sufficient conditions embodied in the
H-J-B equation are given in [K-5] and also in [A-2], which contains several
examples.

Solution of the Hamilton-Jacobi-Bellman Equation

In both of the examples that we considered, a solution was obtained by
guessing a form for the minimum cost function. Unfortunately, we are nor-
mally unable to find a solution so easily. In general, the H-J-B equation
must be solved by numerical techniques—see [F-1], for example. Actually,
a numerical solution involves some sort of a discrete approximation to the
exact optimization relationship [Eq. (3.11-10)]; alternatively, by solving the
recurrence relation [Eq. (3.7-18)] we obtain the exact solution to a discrete
approximation of the Hamilton-Jacobi-Bellman functional equation.

Applications of the Hamilton-Jacobi-Bellman Equation

Two examples of the use of the H-J-B equation to find a solution to
optimal control problems have been given; in these examples we used the
necessary condition.

Alternatively, if we have in our possession a proposed solution to an
optimal control problem, the sufficiency condition can be used to verify the
optimality. Several examples of this type are given in [A-2]. It should be
pointed out that the derivation of the sufficient condition requires that
trajectories remain in certain regions in state-time space. Unfortunately,
these regions are not specified in advance—they must be determined in order
to use the Hamilton-Jacobi-Bellman equation.

In Chapter 7 we shall see that the Hamilton-Jacobi-Bellman equation
provides us with a bridge from the dynamic programming approach to varia-
tional methods.

3.14 SUMMARY

The central theme in this chapter has been the development of dynamic
programming as it applies to a class of control problems. The principle of



Referances Dynamic Programming 956

optimality is the cornerstone upon which the computational algorithm is
built. We have seen that dynamic programming leads to a functional recur-
rence relation [Eq. (3.7-18)] when a continuous process is approximated by
a discrete system. Alternatively, when we deal with a continuous process,
the H-J-B partial differential equation results. In either case, a digital com-
puter solution is generally required, and the curse of dimensionality rears
its ugly head. In solving the recurrence equation (3.7-18) we obtain an
exact solution to a discrete approximation of the optimization equation, where-
as in performing a numerical solution to the H-J-B equation we obtain an
approximate solution to the exact optimization equation. Both approaches
lead to an optimal control law (closed-loop optimal control). In linear regula-
tor problems we are able to obtain the optimal control law in closed form.
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PROBLEMS

3-1. To apply (discrete) dynamic programming to a continuously operating system
it is necessary to use discrete approximations to the state differential equations
and the performance measure.

(a) Determine the discrete approximations to use for the system
() = x2(t)
Xa(f) = —x:(0) + [1 — x3Oea() + u(@),

which is to be controlled to minimize the performance measure
T
J =[x = 5P+ [ {30 + 20000 — 5P + w20} ar.

The final time T is 10.0; use an interval At equal to 0.01.

(b) What adjustments are required to apply the dynamic programming
algorithm to this system because of the nonlinearity of the differential
equations ?

3-2. A first-order discrete system is described by the difference equation
x(k + 1) = —0.5x(k) + u(k).

The performance measure to be minimized is

J=3 2@,
k=0

and the admissible states and controls are constrained by

—0.2 < x(k) < 0.2, k=012
—0.1 <u(k) <0.1, k=01.
(a) Carry out by hand the computational steps required to determine the
optimal control law by using dynamic programming. Quantize both u(k)

and x(k) in steps of 0.1 about zero, and use linear interpolation.
(b) What is the optimal control sequence for an initial state value of 0.2?

3-3. The first-order discrete system

x(k + 1) = 0.5x(k) + u(k)
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is to be transferred to the origin in two stages (x(2) = 0) while the perfor-
mance measure

7 =k2:0[| xR + 5|utk)|]

is minimized.

(a) Use the method of dynamic programming to determine the optimal
control law for each of the heavily dotted points in Fig. 3-P3. Assume
that the admissible control values are quantized into the levels 1, 0.5,
0, —0.5, —1.

Y ~
Final
—1 state
-2
-3
0 1 2
k —
Figure 3-P3

(b) Find the optimal control sequence {#*(0), #*(1)} that corresponds to the
initial state x(0) = —2.

. The discrete approximation to a nonlinear continuously operating system is

given by
x(k + 1) = x(k) — 0.4x2(k) + u(k).
The state and control values are constrained by

0.0 < x(k)<1.0
—0.4 < uk) <04.

Quantize the state into the levels 0, 0.5, 1, and the control into the levels
—0.4, —0.2, 0, 0.2, 0.4. The performance measure to be minimized is

J=41x)| + k.’goiu(k)l.

(a) Use dynamic programming with linear interpolation to complete the
tables shown below.
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Dynamic Programming Problems

x(0) | J§(x(0) | u*(x(0),0) x(1) | TEG(1) | wr(D), D)
0.0 0.0
0.5 0.5
1.0 1.0

(b) Frora the results of part (a) find the optimal control sequence {u*(0),
u*(1)} and the minimum cost \f the initial state is 1.0.

. The approximating difference equation representation for a continuously

operating system is
x(k + 1) = 0.75x(k) + u(k).
It is desired to bring the system state to the target set .S defined by
0.0 < x(2) <20
with minimum expenditure of control effort; i.e., minimize
J = u2(0) + u2(1).
The allowable state and control values are constrained by

0.0 < x(k) < 6.0
—1.0 < ulk) < 1.0.
Quantize the state values into the levels x(k) = 0, 2:0, 4.0, 6.0 for k = 0, 1,2
and the control values into the levels #(k) = —1.0, —0.5, 0.0, 0.5, 1.0 for
k=0,1.
(a) Find the optimal control value(s) and the minimum cost for each point

on the state grid. Use linear interpolation.
(b) What is the optimal control sequence {u*(O), u*(1)} if x(0) = 6.0?

A discrete system described by the difference equation
x(k + 1) = x(k) + u(k)

is to be controlled to minimize the performance measure
2
J = kznl[z | x(k) — 0.1k2| + |utk — 1)]].

The state and control values must satisfy the constraints

00 < x(k) <04, k=012
—02<uk) <02, k=0,1.
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3-10.

(a) Use the dynamic programming algorithm to determine the optimal
control law u*(x(k), k). Quantize the state into the values x(k) = 0, 0.1,
0.2,0.3,04 (k =0, 1,2) and the control into the values u(k) = —0.2,
—0.1,0,0.1,0.2 (k =0, 1).

(b) Determine the optimal control sequence {u*(O), u*(l)} if the initial state
value is x(0) = 0.2.

. The first step in using the Hamilton-Jacobi-Bellman equation

0 =J¥x(®, N + T(I,? {g(x(®), u(®), ) + T x(), D]ax(@), (), N]}

is to determine the admissible control w*(¢) [in terms of x(¢), ¢, and J*] that
minimizes { - }. Find w*(f)—expressed as a function of x(¢), ¢, and J*—for
the system

X310 = %20
Xo() = —x1(t) + x,(t) + u(®),

and the performance measure
T
7= [ 3010 + 240 + wO]d,  01,0,> 0.
The admissible controls are constrained by

[u@] < 1.

., The first-order linear system

x@) = —10x(t) + u()
is to be controlled to minimize the performance measure
0.04
J = $x%0.04) + _/; [3x2(f) + 3u2(D)] dt.

The admissible state and control values are not constrained by any bounda-
ries. Find the optimal control law by using the Hamilton-Jacobi-Bellman
equation.

. Assume that A, B, R, and Q may be dependent on k and derive the recur-

rence relations (3.10-19) and (3.10-20) for the discrete nth-order linear
regulator problem with m control inputs. Appendix 1 contains some useful
matrix relationships.

(a) Follow the steps in the derivation given in Section 3.10 to determine
the optimal control law for the first-order system

x(k 4+ 1) = Ax(k) -+ Bu(k).



