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This paper is concerned with obtaining the approximate solution of a class of semi-explicit
Integral Algebraic Equations (IAEs) of index-2. A Jacobi collocation method including
the matrix–vector multiplication representation is proposed for the IAEs of index-2.
A rigorous analysis of error bound in weighted L2 norm is also provided which theoretically
justifies the spectral rate of convergence while the kernels and the source functions are
sufficiently smooth. Results of several numerical experiments are presented which support
the theoretical results.
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1. Introduction

Coupled systems of Integral Algebraic Equations (IAEs) consisting of the first and second kind Volterra Integral Equations
(VIEs) naturally arise in many mathematical modeling processes, e.g. the kernel identification problems in heat conduction
and viscoelasticity [21], evolution of a chemical reaction within a small cell [14], the two dimensional biharmonic equation
in a semi-infinite strip [10], dynamic processes in chemical reactors [15] and Kirchhoff’s laws. (For further applications see
[2,22] and references therein.)

An initial investigation of these equations indicates that they have properties very similar to Differential Algebraic Equa-
tions (DAEs). A system of DAEs is characterized by its index, which is the number of differentiations required to convert
it into a system of ODEs. The concept of “index” has been introduced in order to quantify the level of difficulty that is
involved in solving a given DAE or IAE (see e.g. [1,12,13]). It must be stressed that the numerical schemes which applicable
(i.e. convergent) for IAEs of a given index, might not be useful for IAEs of higher index. Note that IAEs with index > 1 are
generally hard to solve and are still under active research.

The theory of IAEs appeared from early attempts by Gear in the 1990 that determined the difficulties of these equations.
He introduced the “index reduction procedure” for IAEs system in [8] similar to that in [9] for DAEs in which if the process
is terminated, then the index is determined. This means that under suitable conditions, there is a solution for the resulting
regular system of integral equations.

Since then, several authors have investigated the existence, uniqueness and numerical analysis of IAEs systems. Bulatov
[3] in 1997, gave the existence and uniqueness results of solution for IAEs systems with convolutions kernels and defined
the index in analogy to Gear’s approach. (See [4] for further details.) Kauthen [16] in 2000, applied the polynomial spline
collocation method for a semi-explicit IAEs with index-1 and established global convergence as well as local superconver-
gence. Furthermore, Brunner [2] defined the index-1 tractable for a semi-explicit form of IAEs and investigated the existence
of a unique solution for these types of systems.
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In this paper, we study the numerical solvability of a mixed system of Volterra integral equations of the first and second
kind. More precisely, we consider the semi-explicit system of integral algebraic equations

{
y(t) = f (t) + (ν11 y)(t) + (ν12z)(t),

0 = g(t) + (ν21 y)(t),
(1.1)

where the linear Volterra integral operators νkl are given by:

(νklϕ)(t) =
t∫

0

Kkl(t, s)ϕ(s)ds, t ∈ I = [0, T ] (k, l = 1,2)

and y : I → R
d1 , z : I → R

d2 , K11(·,·) ∈ L(Rd1 ), K12(·,·) ∈ L(Rd2 ,R
d1 ), K21(·,·) ∈ L(Rd1 ,R

d2 ) and L(·,·) is the linear transfor-
mation space. Here, the word “algebraic” assumes a wider meaning, in that it refers to the “non-differential” constraints
forming part of the system in analogy to DAEs.

In order to give an application of these models, consider the following heat equation with initial and mixed boundary
conditions which represents a boundary reaction in diffusion of chemicals where α(t)ux represents the diffusive transport
of materials to the boundary. Following [5, p. 79], for continuously differentiable function f and for continuous functions
g,h,α,β , and γ , the solution of the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut = uxx, 0 < x < 1, 0 < t,

u(x,0) = f (x), 0 < x < 1,

ut(0, t) + α(t)ux(0, t) + β(t)u(0, t) = g(t), 0 < t,

ux(1, t) + γ (t)u(1, t) = h(t), 0 < t,

(1.2)

has the representation

u(x, t) =
1∫

0

{
θ(x − ξ, t) − θ(x + ξ, t)

}
f (ξ)dξ − 2

t∫
0

∂θ

∂x
(x, t − τ )

{
f (0) +

τ∫
0

φ1(η)dη

}
dτ

+ 2

t∫
0

∂θ

∂x
(x − 1, t − τ )

{
f (1) +

τ∫
0

φ2(η)dη

}
dτ , (1.3)

if and only if φ1 and φ2 are continuous functions that satisfy in the coupled system of Volterra integral equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(t) = φ1(t) + 2α(t)

t∫
0

θ(ξ, t) f ′(ξ)dξ − 2α(t)

t∫
0

θ(0, t − τ )φ1(τ )dτ

+ 2α(t)

t∫
0

θ(−1, t − τ )φ2(τ )dτ + β(t) f (0) + β(t)

t∫
0

φ1(τ )dτ ,

h(t) = 2

t∫
0

θ(1 + ξ, t) f ′(ξ)dξ − 2

t∫
0

θ(1, t − τ )φ1(τ )dτ

+ 2

t∫
0

θ(0, t − τ )φ2(τ )dτ + γ (t) f (1) + γ (t)

t∫
0

φ2(τ )dτ ,

(1.4)

where θ(x, t) is a well-known Theta function which is given in [5].

However, in some special cases (e.g. γ (t) = −2
∫ t

0 θ(0,t−τ )φ2(τ )dτ

f (1)+∫ t
0 φ2(τ )dτ

, u(1, t) = 0), it is possible to reduce the system (1.4) to a

system of the form (1.1) as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(t) = φ1(t) + 2α(t)

t∫
0

θ(ξ, t) f ′(ξ)dξ − 2α(t)

t∫
0

θ(0, t − τ )φ1(τ )dτ

+ 2α(t)

t∫
0

θ(−1, t − τ )φ2(τ )dτ + β(t) f (0) + β(t)

t∫
0

φ1(τ )dτ ,

h(t) = 2

t∫
0

θ(1 + ξ, t) f ′(ξ)dξ − 2

t∫
0

θ(1, t − τ )φ1(τ )dτ .

The outline of this paper is as follows: Section 2 is devoted to the introduce of IAEs and its preliminary concepts. In
Section 3, we investigate the existence of a unique solution for the semi-explicit IAEs system (1.1). The numerical analysis
and the error estimation of the Jacobi collocation method in weighted L2 norm are given in Sections 4 and 5. Finally, in
Section 6 some numerical experiments are reported which confirm the theoretical results of the paper.

2. Preliminaries

A general integral algebraic equations system takes the form:

A(t)X(t) = G(t) +
t∫

0

K
(
t, s, X(s)

)
ds, (2.1)

where X : I → R
d , G : I → R

d , K : I × I × R
d → R

d are continuous and A(t) ∈ L(Rd) is singular matrix with continuous
entries (rank(A)� 1, det(A) = 0). Note that since A is singular and the system has a structure similar to DAEs of index
greater than zero, there is no guarantee that the above system is solvable. (See e.g. [8,9].)

The semi-explicit linear version of (2.1) is as follows:{
y(t) = f (t) + (ν11 y)(t) + (ν12z)(t),

0 = g(t) + (ν21 y)(t) + (ν22z)(t),
(2.2)

where the Volterra integral operators νkl and the matrix kernels Kkl (k, l = 1,2), are defined as (1.1).
The notion of index is crucial for the behavior of solutions of IAEs and it must contain the properties of feasible nu-

merical solutions. There exist several different definitions of index for IAEs in [2,4,8] which are often closely related. These
definitions are conceptually based on the “index reduction procedure” i.e. a differentiation process of the algebraic con-
straints which yields a system of regular VIEs and the “tractability index” that is the algebraic constraints which are locally
solvable for the algebraic components of the IAEs solution. The following definition regarding to index-1 tractable for the
semi-explicit system (2.2) was given by Brunner which is analogous to that defined for DAEs by März [17]:

Definition 1. (See [2].) The semi-explicit IAEs (2.2), is said to be index-1 tractable if the first-kind VIE:

t∫
0

K22(t, s)w(s)ds = h(t), t ∈ I,

is uniquely solvable in C(I), whenever h ∈ C1(I) and h(0) = 0.

This means that IAEs system (2.2) is index-1 tractable if its second equation (e.g. the linear first kind VIE) is uniquely
solvable for z ∈ C(I) as an algebraic component. Following [2], assume that the functions f , g, Kij (i, j = 1,2) are sufficiently
smooth and for all t ∈ I, |det K22(t, t)| � k0 > 0, where k0 is a positive constant and g(0) = 0. Using the index reduction
procedure [8] and Theorem (2.1.8) in [2, p. 64], we can show that the linear VIE possesses a unique solution on I and so
the solvability and regularity of its solution have been obtained.

3. IAEs of index-2

As a consequence of the previous section, it is possible to define the index-2 for the semi-explicit IAEs system (1.1) based
on minimal regularity conditions and investigate the existence of a unique solution.

Considering the system (1.1) and differentiating from its second equation with respect to t , we obtain:

0 = g′(t) + K21(t, t)y(t) +
t∫

∂ K21(t, s)

∂t
y(s)ds.
0
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Now, by replacing y(t) from the first equation of (1.1):

0 = g1(t) +
t∫

0

(
K21(t, t)K11(t, s) + ∂ K21(t, s)

∂t

)
y(s)ds +

t∫
0

K21(t, t)K12(t, s)z(s)ds, (3.1)

where g1(t) = g′(t) + K21(t, t) f (t).
Obviously, (3.1) together with the first equation of (1.1) are the same as the index-1 semi-explicit IAEs system (2.2). In

accordance with the terminology introduced by Gear [8], we will refer to the system (1.1) as a semi-explicit IAEs of index-2.
However it has to be pointed out that this reduction to IAEs of index-1 (2.2) is not practical from a numerical point of view.

We can focus again on the tractability index-2 for the IAEs (1.1), in other view point. The IAEs (1.1) is called index-2
tractable, if the algebraic constraints are locally solvable for the algebraic components z i.e. by replacing y(t) from the first
equation of (1.1) into its second equation we have

0 = g(t) + f1(t) +
t∫

0

s∫
0

K21(t, s)K12(s, x)z(x)dx ds, (3.2)

where

f1(t) =
t∫

0

K21(t, s) f (s)ds +
t∫

0

s∫
0

K21(t, s)K11(s, x)y(x)dx ds.

Exchanging the two integrals in Eq. (3.2) with respect to s, then x, we obtain:

0 = g(t) + f1(t) +
t∫

0

K (t, x)z(x)dx, (3.3)

where K (t, x) = ∫ t
x K21(t, s)K12(s, x)ds.

One of our result in this section is given in the following definition which gives the tractability index-2 for the semi-
explicit IAEs system (1.1) using (3.3) and the extension of Definition 1:

Definition 2. The semi-explicit IAEs (1.1), is said to be index-2 tractable if the first-kind VIE:

t∫
0

K (t, x)w(x)dx = h(t), t ∈ I,

is uniquely solvable in C(I) whenever h ∈ C1(I) and h(0) = 0.

Now, we will make use of the result of Brunner [2], which gives the existence and uniqueness results for IAEs (1.1). So,
the VIE (3.1) is uniquely solvable for z ∈ C(I), if the given functions f , g, Kij(i, j = 1,2) and ∂ K21(t,s)

∂t are sufficiently smooth
and

g1(0) = 0, and
∣∣det

(
K21(t, t)K12(t, t)

)∣∣� k0 > 0, ∀t ∈ I

where k0 is a positive constant.
The following theorem gives the relevant conditions concerning K1l (l = 1,2), K21, f and g for the investigation of the

unique solution of IAEs (1.1) analogous to Theorem (8.1.5) in [2, p. 472]:

Theorem 1. Let ν � 0 and assume that

1. K1l ∈ Cν(D) for l = 1,2 and D = I × I,
2. K21 ∈ Cν+1(D) and |det(K21(t, t)K12(t, t))| � k0 > 0,

3. f ∈ Cν(D), g ∈ Cν+1(D) and g1(0) = 0, then the IAEs (1.1) possesses a unique solution y, z ∈ Cν(I).

It is also possible to obtain the desired information on the regularity of the solutions in accordance to Theorem (8.1.6)
of [2, p. 473]:
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Theorem 2. Assume that the hypotheses given in Theorem 1 hold with ν � 0, then for K21(t, t)K11(t, s) + ∂ K21(t,s)
∂t = 0 on D, the

unique solution of the IAEs (1.1) is given by the representation

y(t) = f (t) +
t∫

0

R11(t, s) f (s)ds + k12(t)g1(t) +
t∫

0

Q 12(t, s)g1(s)ds,

z(t) = k21(t)g1(t) − k−1 g′
1(t) +

t∫
0

Q 22(t, s)g1(s)ds,

where

k21 = − R22(t, t)

k
, k12 = −

(
2R11(t, t) − R22(t, t)

k

)
,

Q 22 = ∂

∂s

(
R22(t, s)

k

)
, Q 12 = ∂

∂s

(
2R11(t, s) − R22(t, s)

k

)
,

and R11(t, s) denotes the resolvent kernels associated with the kernel K11(t, s) in (1.1).

Proof. The proof is mainly based on the proof of the corresponding theorem in [2] and we refrain from going into details.
It is sufficient we take k = K21(t, t)K12(t, t) and H22(t, s) = −k−1 ∂

∂t (K21(t, t)K12(t, s)). Also, R22(t, s) is the resolvent kernels
associated with the kernel H22(t, s). Under these conditions, the results of the theorem will be obtained. �

For considering the stability issue of the problem, we use the results of Gear [8], who has defined the index of IAEs
by considering the effect of perturbations of the equations on the solutions and obtained the relationship between the
differential and the perturbation index in which they are identical.

Theorem 2 reveals us the stability issue in the sense of perturbation index as follows:
The IAEs system (1.1) can be written as compact form

BY = G, (3.4)

where Y = (y, z)T ,G = ( f , g)T and B =
(

I−ν11 −ν12
−ν21 0

)
.

The corresponding perturbed system may be considered as

BỸ = G + δ,

with δ = (δ1, δ2)
T .

Differentiating the second equation of the perturbed system with respect to t and substituting ỹ from the first equation,
yields

B1Ỹ = G1 + δ′, (3.5)

where B1 =
(

I−ν11 −ν12
−V1 −V2

)
, Vi = ∫ t

0 Ki(t, s)ds, i = 1,2, with

K1(t, s) = K21(t, t)K11(t, s) + ∂ K21(t, s)

∂t
, K2(t, s) = K21(t, t)K12(t, s)

and

δ′ = (δ1, K21(t, t)δ1 + δ′
2

)T
, G1 = ( f , g1)

T with g1(t) = g′(t) + K21(t, t) f (t).

Also, differentiating the second equation of (3.5) with respect to t , gives

B2Ỹ = G2 + δ′′,

where

B2 =
(

I − ν11 −ν12

−V ′
1 −K21(t, t)K12(t, t) − V ′

2

)
,

V ′
i =

t∫
∂

∂t
Ki(t, s)ds, G2 = ( f , g2)

T , δ′′ = (δ1, K ′
21(t, t)δ1 + K21(t, t)δ′

1 + δ′′
2

)T
,

0
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and

g2(t) = g′
1(t) +

(
K21(t, t)K11(t, t) + ∂ K21(t, t)

∂t

)
ỹ(t).

Furthermore, for the original system (3.4) we have

B2Y = G2.

Applying Theorem 2, we can deduce that the operator B2 is a linear, bounded and bijective such that B−1
2 exists and is

bounded. Then it follows from the above relations

‖Y − Ỹ‖ � C‖B−1
2 ‖(‖δ1‖ + ∥∥δ′

1

∥∥+ ∥∥δ′′
2

∥∥),
where C is a constant independent of t .

This yields the stability estimate of the IAEs system (1.1) in the sense of the perturbation index.

4. The Jacobi collocation scheme

This section is devoted to applying the Jacobi collocation method to numerically solve the IAEs system of index-2. To do
so, we consider a collocation method including the matrix–vector multiplication representation of the equations.

Let PN (Λ) be the space of all polynomials with degree not exceeding N on Λ, where Λ stands for the open interval
(−1,1) and wα,β(x) = (1− x)α(1+ x)β , for α,β > −1 denotes a weight function in the usual sense. It is well known, the set
of Jacobi polynomials { Jα,β

N }∞N=0 forms a complete L2
wα,β (Λ) orthogonal system, where L2

wα,β (Λ) is the space of functions

f : [−1,1] → R with ‖ f ‖2
L2

wα,β

< ∞, and

‖ f ‖2
L2

wα,β

= 〈 f , f 〉L2
wα,β

=
1∫

−1

| f (x)|2 wα,β(x)dx.

So, any function u(x) in the space L2
wα,β (Λ) admits the expansion u(x) =∑∞

N=0 ũN Jα,β
N with

ũN = 1

‖ Jα,β

k ‖2
L2

wα,β

1∫
−1

u(ξ) Jα,β
N (ξ)wα,β(ξ)dξ.

Now, let Hm
wα,β denotes the Sobolev space of all functions u(x) on Λ such that u(x) and all its weak derivatives up to

order m are in L2
wα,β (Λ), with the norm and the semi-norm as

∥∥u(x)
∥∥2

Hm
wα,β (Λ)

=
m∑

k=0

∥∥∥∥ ∂k

∂xk
u(x)

∥∥∥∥2

L2
wα,β (Λ)

,

|u|Hm,N
wα,β (Λ)

=
(

m∑
j=min(m,N+1)

∥∥u( j)
∥∥2

L2
wα,β (Λ)

)1/2

. (4.1)

Let ΠN be the orthogonal projective operator from L2
wα,β (Λ) on to PN (Λ). It means that for any function ϕ in L2

wα,β (Λ),
ΠNϕ belongs to PN (Λ) and satisfies

∀ψN ∈ PN(Λ),

1∫
−1

(ϕ − ΠNϕ)(ξ)ψN(ξ)wα,β(ξ)dξ = 0.

For any u(x) ∈ C[−1,1], we can define the projection Iα,β
N as a Lagrange interpolating polynomial associated with the

Jacobi polynomials (see e.g. [19])

Iα,β
N u(x) =

N∑
i=0

ũi Jα,β

i (x) =
N∑

i=0

u(xi)Li(x),

where the Lagrange polynomials Li(x) take the form
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Li(x) = wi

N∑
k=0

1

γ̃k
Jα,β

k (xi) Jα,β

k (x) (i = 0,1, . . . , N)

and the collocation points {xi}N
i=0 represent the Jacobi–Gauss quadrature points used to compute the discrete expansion

coefficients ũk ,

ũk = 1

γ̃k

N∑
i=0

u(xi) Jα,β

k (xi)wi, (4.2)

where γ̃k and wi were given in [11, p. 231].
Let us now turn our attention toward the application of Jacobi collocation method for the following linear semi-explicit

IAEs system:

A(t)X(t) = G(t) +
t∫

0

K (t, s)X(s)ds, t ∈ [0, T ] (4.3)

where X : [0, T ] → R
d, G : [0, T ] → R

d, K ∈ L(Rd), are continuous and A(t) = diag(Id1 ,Od2 ) ∈ L(Rd) is a singular block
matrix and X(t) = {xi(t)}d

i=1, K (t, s) = {kij(t, s)}d
i, j=1.

To use the theory of orthogonal Jacobi polynomials, we consider the change of variables:

s = T

2
(η + 1), −1 � η � τ , t = T

2
(τ + 1), −1 � τ � 1 (4.4)

to rewrite the problem (4.3) as follows

Â(τ ) X̂(τ ) = Ĝ(τ ) +
τ∫

−1

K̂ (τ ,η) X̂(η)dη, τ ∈ [−1,1] (4.5)

where

Ĝ(τ ) = G

(
T

2
(τ + 1)

)
, X̂(τ ) = X

(
T

2
(τ + 1)

)
, K̂ (τ ,η) = T

2
K

(
T

2
(τ + 1),

T

2
(η + 1)

)
.

Approximating K̂ (τm, η) with Jacobi polynomials gives

K̂N(τm, η) = {k̂i j(τm, η)
}d

i, j=1 =
{

N∑
k=0

(k̂i j)mk Jα,β

k (η)

}d

i, j=1

= {(k̂ij)m
}d

i, j=1 ⊗ (VW′), (4.6)

where V is a lower triangular coefficient matrix of Jacobi polynomials with { Jα,β

i (η)}N
i=0 = VW′, and

W′ = (1, η, . . . , ηN)T
, (k̂ij)m = ((k̂i j)m0, . . . , (k̂i j)mN

)
,

(k̂i j)mk = 1

‖ Jα,β

k ‖2
L2

wα,β

1∫
−1

k̂i j(τm, ξ) Jα,β

k (ξ)wα,β(ξ)dξ (k = 0,1, . . . , N)

and ⊗ is a Kronecker product.
Consequently, we seek a solution

Iα,β
N

(
X̂(η)

)= X̂N(η) =
{

N∑
k=0

(x̃i)k Jα,β

k (η)

}d

i=1

=
{

N∑
k=0

(x̂i)(τk)Lk(η)

}d

i=1

= {x̂i}d
i=1 ⊗ (V′W′), (4.7)

where V′ = JV with J = { 1
γ̃ j

wk Jα,β

j (τk)}N
k, j=0, x̂i = ((x̂i)(τ0), (x̂i)(τ1), . . . , (x̂i)(τN )), {τk}N

k=0 are the Gauss–Jacobi collocation

points (i.e. the zeros of Jα,β

N+1), the coefficients {(x̃i)k}N
k=0 are also given by (4.2) and {Lk}N

k=0 are the interpolating Lagrange
polynomials.

Inserting the collocation points {τm}N
m=0 in (4.5), we obtain the collocation equation as

Â(τm) X̂(τm) = Ĝ(τm) +
τm∫

K̂N(τm, η) X̂N (η)dη (m = 0,1, . . . , N) (4.8)
−1
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and using (4.6), (4.7) and (4.8), we get

Â(τm){x̂i}d
i=1 = Ĝ(τm) +

τm∫
−1

({
(k̂ij)m

}d
i, j=1 ⊗ (VW′))({x̂i}d

i=1 ⊗ (V′W′))dη (m = 0,1, . . . , N). (4.9)

In this position, we give the following lemma, that will become instrumental in establishing the matrix vector multipli-
cation representation of the product K̂N (τm, η) X̂N(η) in (4.8):

Lemma 1. Let P (η) =∑N
i=0 piη

i and Q (η) =∑N
j=0 q jη

j be two given polynomials, then

P (η)Q (η) = P(Q ⊗ M)W,

where P = (p0, p1, . . . , pN ), Q = (q0,q1, . . . ,qN), W = (1, η,η2, . . . , η2N )T , and M is a block sparse matrix of the form M =
(M(k)

N )N
k=0 with

k︷ ︸︸ ︷ j−k︷ ︸︸ ︷
M(k)

j =

⎛⎜⎜⎜⎜⎝
0 . . . 0 1 0 . . . 0 0 . . . 0

0 . . . 0 0 1 . . .
... 0 . . . 0

... . . .
...

...
. . . 0

... . . .
...

0 . . . 0 0 . . . 0 1 0 . . . 0

⎞⎟⎟⎟⎟⎠
(N+1)(N+1+ j)

.

︸ ︷︷ ︸
N+1

Proof. Firstly, we will show that

ηm
N∑

i=0

piη
i = PM(m)

m Wm,

where Wm = (1, η,η2, . . . , ηN+m)T .

The validity of the equation for m = 0 is obvious. Now we proceed by induction. So, we assume the validity of the
equation for m = k and transit to m = k + 1 as follows

ηk+1
N∑

i=0

piη
i = ηk

N∑
i=0

(piη)ηi = {piη}N
i=0M(k)

k Wk = PM(k)

k

(
η,η2, . . . , ηk+N+1)T

.

With some simple manipulations we conclude

M(k)

k

(
η,η2, . . . , ηk+N+1)T = M(k+1)

k+1

(
1, η, . . . , ηk+N+1)T = M(k+1)

k+1 Wk+1.

From these relations, we can write

ηk+1
N∑

i=0

piη
i = PM(k+1)

k+1 Wk+1,

and this proves the identity for m = k + 1.
Now, consider the multiplication

P (η)Q (η) =
N∑

j=0

q j

(
N∑

i=0

piη
i

)
η j =

N∑
j=0

q jPM( j)
j W j.

Due to the structure of M = (M(k)
N )N

k=0, we have

M( j)
N WN = M( j)

j W j ( j = 0,1, . . . , N).

This leads to the following relation

P (η)Q (η) = P

(
N∑

q jM
( j)
N

)
WN = P(Q ⊗ M)W. �
j=0
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Algorithm 1. The construction of the Jacobi collocation method including the matrix–vector multiplication
representation of the equations

Step 1. Choose N , form the orthogonal bases Jα,β

i (η), (i = 0,1, . . . , N) and compute the nonsingular co-
efficient matrices V and V′ as{

Jα,β

i (η)
}N

i=0 = VW′,

and

V′ = JV

where J = { 1
γ̃ j

wk Jα,β

j (τk)}N
k, j=0 and W′ = (1, η, . . . , ηN )T .

Step 2. Compute the approximations of K̂ (τm, η) and X̂(η) using Jacobi polynomials from (4.6) and (4.7).
Step 3. Compute the matrix M from Lemma 1 and take Wm = ∫ τm

−1 W dη with W = (1, η,η2, . . . , η2N )T .

Step 4. Solve the linear system (4.11) and obtain the entries of the vector solution {x̂i}d
i=1.

Step 5. Set X̂N (η) = {x̂i}d
i=1 ⊗ (V′W′).

By the mentioned lemma and relations (4.6) and (4.7), the matrix–vector multiplication representation of the product
K̂N (τm, η) X̂N(η) can be obtained as follows:

K̂N(τm, η) X̂N (η) =
(

d∑
j=1

k̂i j(τm, η)x̂ j(η)

)d

i=1

=
(

d∑
j=1

(
(k̂ij)mVW′)(x̂jV

′W′))d

i=1

=
(

d∑
j=1

(
N∑

l=0

(
(k̂ij)mV

)
lη

l

)(
N∑

l=0

(
x̂jV

′)
lη

l

))d

i=1

=
(

d∑
j=1

(k̂ij)mV
((

x̂jV
′)⊗ M

)
W

)d

i=1

, (4.10)

where M = (M(l)
N )N

l=0 is a block matrix which is defined in Lemma 1.
Inserting (4.10) in (4.9), we obtain

Â(τm){x̂i}d
i=1 = Ĝ(τm) +

(
d∑

j=1

(k̂ij)mV
((

x̂j V ′)⊗ M
) τm∫
−1

W dη

)d

i=1

= Ĝ(τm) +
(

d∑
j=1

(k̂ij)mV
((

x̂jV
′)⊗ M

)
Wm

)d

i=1

(m = 0,1, . . . , N) (4.11)

where Wm = ∫ τm
−1 W dη.

Finally, we end up with a system of equations whose solution gives the unknown vectors {x̂i}d
i=1.

The Algorithm 1 summarizes the proposed Jacobi collocation method.

5. Convergence analysis

In this section, we will try to provide an error analysis which theoretically justifies the spectral rate of convergence of
the proposed method. In order to describe the key ideas without having to resort to complex notation involving Kronecker
products of matrices and vectors, we will consider the index-2 IAEs system (4.3) with d1 = d2 = 1. Our strategy is mainly
based on the ideas in [20], together with the following auxiliary lemmas from [6] and [7]:

Lemma 2. (See [6].) Let φ ∈ P N where P N denote the space of all polynomials of degree � N, then for any integer r � 1 and 0 � p � ∞,
there exists a positive constant C independent of N such that∥∥φ(r)

∥∥
L p

wα,β (−1,1)
� C N2r‖φ‖L p

wα,β (−1,1).
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Lemma 3. (See [6].) Assume that u ∈ Hm(Λ) and P N u =∑N
k=0 ûk Jα,β

k is the truncated orthogonal Jacobi series of u and Iα,β
N u is the

interpolation of u at any of the three families of Jacobi Gauss points (Gauss or Gauss–Radau or Gauss–Lobatto). Then for Λ = (−1,1),
the following estimates hold:

‖u − P N u‖L2
wα,β (Λ) � C N−m|u|Hm,N (Λ), (5.1)∥∥u − Iα,β

N u
∥∥

L2
wα,β (Λ)

� C N−m|u|Hm,N
wα,β (Λ)

,∥∥u′ − (Iα,β
N u

)′∥∥
L2

wα,β (Λ)
� C N1−m|u|Hm,N

wα,β (Λ)
. (5.2)

We are now ready to prove the following main theorem which gives the convergence properties of the presented scheme:

Theorem 3. Consider the IAEs of index-2 (4.3) and its transformed system (4.5) with Â(τ ) = diag(1,0), Ĝ(τ ) = ( f̂ (τ ), ĝ(τ ))T and
X̂(t) = ( ŷ, ẑ)T . Assume that the hypotheses given in Theorem 1 hold with ν � 0. If X̂N = ( ŷN , ẑN )T is an approximate solution of the
proposed Jacobi collocation scheme with the Gauss–Jacobi collocation points, then the Jacobi collocation approximation errors ŷ − ŷN

and ẑ − ẑN for m � 1 satisfy:

‖ ŷ − ŷN‖L2
wα,β (Λ) �

{
O(N2−m log N), −1 < α,β � − 1

2 ,

O(N
5
2 +γ −m), otherwise

‖ẑ − ẑN‖L2
wα,β (Λ) �

{
O(N4−2m(log N)2), −1 < α,β � − 1

2 ,

O(N5+2γ −2m), otherwise

where ŷ, ẑ ∈ Hm(Λ), Λ = (−1,1) and γ = max(α,β).

Proof. The strategy we shall follow is to determine the error estimations for ‖ ŷ − ŷN‖ and then ‖ẑ − ẑN‖. The spectral
collocation solution X̂N was considered as an interpolating polynomial of degree N on the interval (−1,1). It is defined
through the collocation equation (4.11)

ŷ(τi) = f̂ (τi) + D1(τi) + D2(τi) (i = 1,2, . . . , N) (5.3)

where

D1(τi) = (k̂11)mV
((

ŷV′)⊗ M
)
Wm, D2(τi) = (k̂12)mV

((
ẑV′)⊗ M

)
Wm.

We rewrite Eq. (5.3) in the form:

ŷ(τi) = f̂ (τi) +
τi∫

−1

K̂11(τi, η) ŷN (η)dη +
τi∫

−1

K̂12(τi, η)ẑN (η)dη + q1(τi) + q2(τi), (5.4)

such that

q1(τi) = D1(τi) −
τi∫

−1

K̂11(τi, η) ŷN (η)dη,

q2(τi) = D2(τi) −
τi∫

−1

K̂12(τi, η)ẑN (η)dη,

and ŷN , ẑN are the approximate solutions of ŷ, ẑ which is approximated by k-th Lagrange interpolating polynomials Lk:

Iα,β
N

(
ŷ(τ )

)= ŷN(τ ) =
n∑

k=0

ŷk Lk(τ ), Iα,β
N

(
ẑ(τ )

)= ẑN(τ ) =
n∑

k=0

ẑk Lk(τ ),

where ŷk = ŷ(τk) and ẑk = ẑ(τk). It follows that
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ŷ(τi) = f̂ (τi) +
τi∫

−1

K̂11(τi, η)e(η)dη +
τi∫

−1

K̂11(τi, η) ŷ(η)dη

+
τi∫

−1

K̂12(τi, η)ε(η)dη +
τi∫

−1

K̂12(τi, η)ẑ(η)dη + q1(τi) + q2(τi), (5.5)

where e(s) = ŷN(s) − ŷ(s) and ε(s) = ẑN (s) − ẑ(s). Multiplying the j-th equation of (5.5) by L j(τ ) and summing up over j
from 0 to N , we get

ŷN(τ ) = Iα,β
N

(
f̂ (τ )

)+ Iα,β
N

( τ∫
−1

K̂11(τ ,η) ŷ(η)dη

)

+ Iα,β
N

(
q1(τ )

)+ Iα,β
N

(
q2(τ )

)+ Iα,β
N

( τ∫
−1

K̂11(τ ,η)e(η)dη

)

+ Iα,β
N

( τ∫
−1

K̂12(τ ,η)ẑ(η)dη

)
+ Iα,β

N

( τ∫
−1

K̂12(τ ,η)ε(η)dη

)
. (5.6)

From the first equation of (4.5), we may write

Iα,β
N

( τ∫
−1

K̂11(τ ,η) ŷ(η)dη +
τ∫

−1

K̂12(τ ,η)ẑ(η)dη

)
= Iα,β

N

(
ŷ(τ ) − f̂ (τ )

)
,

and replacing the above relation in (5.6), we get

0 =
τ∫

−1

K̂11(τ ,η)e(η)dη +
τ∫

−1

K̂12(τ ,η)ε(η)dη + Iα,β
N

(
q1(τ )

)+ Iα,β
N

(
q2(τ )

)+ P1 + P2, (5.7)

where

P1 = Iα,β
N

( τ∫
−1

K̂11(τ ,η)e(η)dη

)
−

τ∫
−1

K̂11(τ ,η)e(η)dη,

P2 = Iα,β
N

( τ∫
−1

K̂12(τ ,η)ε(η)dη

)
−

τ∫
−1

K̂12(τ ,η)ε(η)dη.

Differentiating from (5.7) respect to τ , yields:

−K̂11(τ , τ )e(τ ) − K̂12(τ , τ )ε(τ ) =
τ∫

−1

∂ K̂11(τ ,η)

∂τ
e(η)dη +

τ∫
−1

∂ K̂12(τ ,η)

∂τ
ε(η)dη

+ I ′α,β
N

(
q1(τ )

)+ I ′α,β
N

(
q2(τ )

)+ P ′
1 + P ′

2. (5.8)

In order to investigate the convergence of the second equation of (4.5), we apply the vector–matrix multiplication repre-
sentation form (4.11) for this equation. So, we have

0 = ĝ(τi) + D3(τi) (i = 1,2, . . . , N) (5.9)

where D3(τi) can be written as:

D3(τi) = (k̂21)mV
((

ŷV′)⊗ M
)
Wm.

Using a similar procedure as outlined in the first part, Eq. (5.9) give rise

0 =
τ∫

K̂21(τ ,η)e(η)dη + Iα,β
N

(
q3(τ )

)+ P3, (5.10)
−1
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where P3 and q3(τi) are similarly defined as:

P3 = Iα,β
N

( τ∫
−1

K̂21(τ ,η)e(η)dη

)
−

τ∫
−1

K̂21(τ ,η)e(η)dη,

q3(τi) = D3(τi) −
τi∫

−1

K̂21(τi, η) ŷN (η)dη.

Also, differentiating from (5.10) respect to τ , gives:

−K̂21(τ , τ )e(τ ) =
τ∫

−1

∂ K̂21(τ ,η)

∂τ
e(η)dη + I ′α,β

N

(
q3(τ )

)+ P ′
3. (5.11)

Now, let E(τ ) = (e(τ ), ε(τ ))T , then Eqs. (5.8) and (5.11), can be rewritten in matrix notation

HE(τ ) =
τ∫

−1

K̃(τ ,η)E(η)dη + D, (5.12)

with

H =
(

−K̂11(τ , τ ) −K̂12(τ , τ )

−K̂21(τ , τ ) 0

)
, K̃(τ ,η) =

(
∂ K̂11(τ ,η)

∂τ
∂ K̂12(τ ,η)

∂τ

∂ K̂21(τ ,η)
∂τ 0

)
,

and

D =
(

I ′α,β
N (q1(τ )) + I ′α,β

N (q2(τ )) + P ′
1 + P ′

2

I ′α,β
N (q3(τ )) + P ′

3

)
.

Due to the assumptions of Theorem 1, we have∣∣K21(t, t)K12(t, t)
∣∣> 0, ∀t ∈ I,

this shows that H is an invertible matrix with the inverse of the form:

H−1 =
(

0 −K̂ −1
21 (τ ,η)

−K̂ −1
21 (τ ,η) K̂ −1

12 (τ ,η)(K̂11(τ ,η)K̂ −1
21 (τ ,η))

)
.

Multiplying (5.12) by H−1 and using the Gronwall’s inequality (see e.g. Lemma 3.4 from [20]), we have

‖E‖L2
wα,β (Λ) � C‖F‖L2

wα,β (Λ), (5.13)

where F = H−1D.

Then it follows from Lemma 2:∥∥I ′α,β
N

(
q1(τ )

)∥∥
L2

wα,β (Λ)
� C N2

∥∥Iα,β
N

(
q1(τ )

)∥∥
L2

wα,β (Λ)
, (5.14)

indeed∥∥Iα,β
N

(
q1(τ )

)∥∥
L2

wα,β (Λ)
� max

0�i�N

∣∣q1(τi)
∣∣ max
τ∈(Λ)

n∑
i=0

∣∣Li(τ )
∣∣. (5.15)

Applying the Cauchy–Schwarz inequality (see e.g. [6]), we can write:

|q1(τi)| =
∣∣∣∣∣

τi∫
−1

(
(K̂11)N(τi, η) − K̂11(τi, η)

)
ŷN(η)dη

∣∣∣∣∣
�
∥∥(K̂11)N(τi, η) − K̂11(τi, η)

∥∥
L2

wα,β (Λ)
‖ ŷN‖L2

wα,β (Λ),

and using (5.1) from Lemma 3, we have
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∣∣q1(τi)
∣∣� C N−m

∣∣K̂11(τi, η)
∣∣

Hm,N
wα,β (Λ)

‖ ŷN‖L2
wα,β (Λ). (5.16)

In this position, we will make use of the result of Chen and Tang [7] and also [18], which gives the Lebesgue constant for
the Lagrange interpolating polynomials associated with the nodes of the Jacobi polynomials. Actually, as stated in Lemma 3.4
of [7], the following relation for (5.15) holds

max
η∈[−1,1]

n∑
i=0

∣∣Li(η)
∣∣= {O(log N), −1 < α,β � − 1

2 ,

O(Nγ + 1
2 ), γ = max(α,β), otherwise

so, we have∥∥Iα,β
N

(
q1(τ )

)∥∥
L2

wα,β (Λ)
�
{

C N−m log NΘ11, −1 < α,β � − 1
2 ,

C N
1
2 +γ −mΘ11, otherwise

where Θ11 = max0�i�N |K̂11(τi, η)|Hm,N
wα,β (Λ)

‖ ŷN‖L2
wα,β (Λ) and γ = max(α,β).

Now, by using this relation for (5.14), we have

∥∥I ′α,β
N

(
q1(τ )

)∥∥
L2

wα,β (Λ)
�
{

C N2−m log NΘ11, −1 < α,β � − 1
2 ,

C N
5
2 +γ −mΘ11, otherwise

and similarly

∥∥I ′α,β
N

(
q2(τ )

)∥∥
L2

wα,β (Λ)
�
{

C N2−m log NΘ12, −1 < α,β � − 1
2 ,

C N
5
2 +γ −mΘ12, otherwise∥∥I ′α,β

N

(
q3(τ )

)∥∥
L2

wα,β (Λ)
�
{

C N2−m log NΘ21, −1 < α,β � − 1
2 ,

C N
5
2 +γ −mΘ21, otherwise

where

Θ12 = max
0�i�N

∣∣K̂12(τi, η)
∣∣

Hm,N
wα,β (Λ)

‖ẑN‖L2
wα,β (Λ),

Θ21 = max
0�i�N

∣∣K̂21(τi, η)
∣∣

Hm,N
wα,β (Λ)

‖ ŷN‖L2
wα,β (Λ).

Indeed, using (5.2) and (4.1) for m = 1 and then applying Hardy’s inequality (see e.g. Lemma 3.7 from [7]), we can write

∥∥P ′
1

∥∥
L2

wα,β (Λ)
� C

∥∥∥∥∥K̂11(τ , τ )e(τ ) +
τ∫

−1

∂(K̂11(τ ,η))

∂τ
e(η)dη

∥∥∥∥∥
L2

wα,β (Λ)

� C

{∥∥K̂11(τ , τ )
∥∥

L2
wα,β (Λ)

∥∥e(τ )
∥∥

L2
wα,β (Λ)

+
∥∥∥∥∥

τ∫
−1

∂(K̂11(τ ,η))

∂τ
e(η)dη

∥∥∥∥∥
L2

wα,β (Λ)

}

� C
{∥∥K̂11(τ , τ )

∥∥
L2

wα,β (Λ)

(
C N−m| ŷ|Hm,N

wα,β (Λ)

)+ C
∥∥e(τ )

∥∥
L2

wα,β (Λ)

}
� C

{(∥∥K̂11(τ , τ )
∥∥

L2
wα,β (Λ)

+ C
)(

C N−m| ŷ|Hm,N
wα,β (Λ)

)}
,

thus ∥∥P ′
1

∥∥
L2

wα,β (Λ)
� C N−m(∥∥K̂11(τ , τ )

∥∥
L2

wα,β (Λ)
+ C

)| ŷ|Hm,N
wα,β (Λ)

� C N−m| ŷ|Hm,N
wα,β (Λ)

.

Similarly∥∥P ′
2

∥∥
L2

wα,β (Λ)
� C N−m(∥∥K̂12(τ , τ )

∥∥
L2

wα,β (Λ)
+ C

)|ẑ|Hm,N
wα,β (Λ)

� C N−m|ẑ|Hm,N
wα,β (Λ)

,∥∥P ′
3

∥∥
L2

wα,β (Λ)
� C N−m(∥∥K̂21(τ , τ )

∥∥
L2

wα,β (Λ)
+ C

)| ŷ|Hm,N
wα,β (Λ)

� C N−m| ŷ|Hm,N
wα,β (Λ)

.

The above estimates together with (5.13), yield

‖e‖L2
wα,β (Λ) = ‖ ŷ − ŷN‖L2

wα,β (Λ) � C N−m| ŷ|Hm,N
wα,β (Λ)

+
{

C N2−m log NΘ21, −1 < α,β � − 1
2 ,

5
2 +γ −m

(5.17)

C N Θ21, otherwise
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Table 1
L2

wα,β errors for Example 1.

N ‖x1 − u‖L2
wα,β

‖x2 − v‖L2
wα,β

‖x3 − w‖L2
wα,β

4 1.79 × 10−4 9.86 × 10−5 3.72 × 10−3

6 3.12 × 10−6 1.84 × 10−6 1.30 × 10−4

8 7.66 × 10−8 4.67 × 10−8 4.61 × 10−6

10 1.99 × 10−9 1.46 × 10−9 1.59 × 10−7

12 5.33 × 10−11 3.01 × 10−11 5.38 × 10−9

14 1.37 × 10−12 7.73 × 10−13 1.74 × 10−10

Also Θ11 can be written as:

Θ11 = max
0�i�N

|K̂11(τi, η)|Hm,N
wα,β (Λ)

‖ ŷN‖L2
wα,β (Λ) � K (‖ ŷ‖L2

ω(Λ) + ‖e‖L2
ω(Λ)),

where K = max0�i�N |K̂11(τi, η)|Hm,N
wα,β (Λ)

.

Finally, the above estimates together with (5.13) and (5.17) give

‖ε‖L2
wα,β (Λ) = ‖ẑ − ẑN‖L2

wα,β (Λ) � C N−m(| ŷ|Hm,N
wα,β (Λ)

+ |ẑ|Hm,N
wα,β (Λ)

)
+
⎧⎨⎩

C N2−m log N(K (‖ ŷ‖L2
wα,β (Λ) + ‖e‖L2

wα,β (Λ)) + Θ12 + Θ21), −1 < α,β � − 1
2 ,

C N
5
2 +γ −m(K (‖ ŷ‖L2

wα,β (Λ) + ‖e‖L2
wα,β (Λ)) + Θ12 + Θ21), otherwise

which leads to the estimate stated of the theorem, provided that N is sufficiently large and C is a constant independent
of N . �
6. Numerical results and discussions

To incorporate our numerical approach, two semi-explicit IAEs system of index-2 together an applied problem are consid-
ered. These problems are solved using the proposed Jacobi collocation method for α = 1

2 and β = 1
3 based on matrix–vector

multiplication representation of equations. To examine the accuracy of the results, L2
wα,β errors are employed to assess the

efficiency of the method. All the calculations were supported by the software Matematica®.

Example 1. Consider the following semi-explicit linear IAEs system of index-2

A(t)X(t) = g(t) +
t∫

0

K (t, s)X(s)ds,

where

A(t) =
(1 0 0

0 1 0
0 0 0

)
, K (t, s) =

⎛⎜⎝
3−2s
2−s

3−s
2−s 2(2 − s)

−1
s−2 −1 1

s + 2 s2 − 4 0

⎞⎟⎠ ,

X(t) = (x1(t), x2(t), x3(t)
)T

, g(t) = (1,2et − 1,−1 + et(−t2 + t + 1
))T

.

The exact solutions of the system are:

x1(t) = x2(t) = et, x3(t) = − et

2 − t
.

Let u, v, w be the approximation of the exact solutions x1, x2, x3, respectively, that is given by (4.7). The discrete method
described in Section 4 has been implemented for the problem and the L2

wα,β errors for different values of N = 4,6,8, . . .

have been reported in Table 1. Graphs of the error functions and error behaviors for several values of N are also given in
Figs. 1 and 2. We observe that the approximate solution of the equation represents the expected convergence behavior as
described in Theorem 3.

Example 2. Let us consider the IAEs system of index-2:

A(t)X(t) = g(t) +
t∫

K (t, s)X(s)ds,
0
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Fig. 1. Error functions of the Jacobi collocation approximations of orders N = 6,10,12 and 14 for α = 1
2 and β = 1

3 in Example 1.

Fig. 2. L2
wα,β errors versus the number of collocation points for Example 1.

with

A(t) =
(

1 0
0 0

)
, K (t, s) =

(
et+s (s + 1)2

s + t + 2 0

)
,

X(t) = (x1(t), x2(t)
)T

, g(t) = ( f1(t), f2(t)
)T

,

and

f1(t) = sin t − 1

2
et(1 + et(− cos t + sin t)

)− 1

4

(−2 + 2(1 + t) cos 2t + (1 + 4t + 2t2) sin 2t
)
,

f2(t) = −(2 + t) + 2(1 + t) cos t − sin t.

The exact solutions of the system are:

x1(t) = sin t, x2(t) = cos 2t.

We assume u and v are the Jacobi collocation approximation of the exact solutions x1 and x2 respectively, which are
defined by (4.7).
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Table 2
L2

wα,β errors for Example 2.

N ‖x1 − u‖L2
wα,β

‖x2 − v‖L2
wα,β

4 2.41 × 10−5 5.29 × 10−4

6 4.25 × 10−8 4.44 × 10−6

8 4.18 × 10−11 1.86 × 10−8

10 2.39 × 10−14 4.85 × 10−11

12 4.05 × 10−15 1.97 × 10−13

14 3.94 × 10−15 1.45 × 10−13

Fig. 3. Error functions of the Jacobi collocation approximations of orders N = 6,8,10 and 14 for α = 1
2 and β = 1

3 in Example 2.

Fig. 4. L2
wα,β errors versus the number of collocation points for Example 2.

The computational results have been reported in Table 2. Figs. 3 and 4 show the graphs of the Jacobi collocation error
functions with α = 1

2 and β = 1
3 . It is observed that the errors decay exponentially.
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Table 3
The absolute errors of Example 3 for different values of N .

N |u(0.95,0.05) − û(0.95,0.05)| |u(1,0.05) − û(1,0.05)|
2 1.69 × 10−3 5.53 × 10−6

3 1.59 × 10−3 3.47 × 10−6

4 1.49 × 10−3 2.54 × 10−6

5 1.48 × 10−3 1.98 × 10−6

Example 3. As an applied test problem, consider the controlled heat equation (1.2) with f (x) = 1, α(t) = 1, β(t) = 0,

h(t) = 1√
πt

, and g(t) = e
−1
4t (1+2t)

2
√

πt
3
2

.

The exact solution of the equation is:

u(x, t) = erf

(
1 − x

2
√

t

)
.

It can be shown that, under the assumption γ (t) = e
−49

4t (7−12e
13
4t +5e

6
t )(9+π2t)

9πt(−erf( 5
2
√

t
)+2 erf( 3√

t
)−erf( 7

2
√

t
))

, the system (1.4) can be reduced to a

system of the form (1.1) as follows⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e
−1
4t (1 + 2t)

2
√

πt
3
2

= φ1(t) − 2

t∫
0

θ(0, t − τ )φ1(τ )dτ + 2

t∫
0

θ(−1, t − τ )φ2(τ )dτ ,

1√
πt

= −2

t∫
0

θ(1, t − τ )φ1(τ )dτ ,

where θ(0, t − τ ) � 1√
4πt

(1 + π2

3 t), θ(−1, t − τ ) � 3
4

√
tπ

3
2 and θ(1, t − τ ) � 1

2

√
tπ

3
2 .

Let φ̂1(t) and φ̂2(t) be the approximation of the exact solutions φ1(t) and φ2(t) that are given by (4.7). Now, by replacing
φ̂1(t) and φ̂2(t) in (1.3), the approximate solution of the problem (1.2) can be obtained as

û(x, t) =
1∫

0

{
θ̂ (x − ξ, t) − θ̂ (x + ξ, t)

}
dξ − 2

t∫
0

∂θ̂

∂x
(x, t − τ )

{
1 +

τ∫
0

φ̂1(η)dη

}
dτ

+ 2

t∫
0

∂θ̂

∂x
(x − 1, t − τ )

{
1 +

τ∫
0

φ̂2(η)dη

}
dτ , (6.1)

where θ̂ (x, t) is the truncated series of the Theta function

θ̂ (x, t) = 1√
4πt

3∑
m=−3

exp

(
− (x + 2m)2

4t

)
.

The approximate solution of û(0.95,0.05) and û(1,0.05) are special interest and computed using the Euler product integra-
tion method for (6.1). The differences between the numerical and analytical solutions for different values of N , are listed in
Table 3.

7. Conclusion

Here, we elaborated a spectral collocation method based on Jacobi orthogonal polynomials to obtain numerical solution
of a class of IAEs system with index-2. We will achieve the goal by using the matrix–vector representation and the solu-
tion of the related system of equations. The strategy has been derived using some variable transformations to change the
equation into an other IAEs defined on the standard interval [−1,1], so the Jacobi orthogonal polynomial theory can be
applied conveniently and the obtained index-2 system is solved directly without using the index reduction procedure which
causes the simplification of the method. The spectral rate of convergence for the proposed method established in weighted
L2 norm.

With the availability of this methodology, it will now be possible to investigate the approximate solution of other classes
of IAEs systems. Although our convergence theory does not cover the nonlinear case, but it contains some complications
and restrictions for establishing a convergent result similar to Theorem 3 which will be the subject of our future work.
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