#### Lecture 2:

# Sublinear Algorithms I

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics Faculty of Mathematics K. N. Toosi University of Technology

Spring 2021

◆□> ◆□> ◆三> ◆三> ● 三 のへで

### Outline

- Sublinear time algorithms: definitions
- A problem in 0,1 Matrices
- The celebrity problem
- Estimating the average degree

(ロ)、

# Sublinear Time Algorithms

Definitions, Different Types

Definition: A sublinear time algorithm is an algorithm whose running time is sublinear in terms of the input size.

Examples: Input Size = n

• 
$$O(n^{0.99})$$

- $O(\frac{n}{\log \log n})$
- $O(\log^2 n)$

▶ ...

- $O(\frac{1}{\epsilon^2}\sqrt{n})$  when  $\epsilon = \omega(n^{-1/4})$
- $O(\frac{1}{\epsilon^2})$  when  $\epsilon = \omega(n^{-1/2})$

A sublinear time algorithms does not read the whole input!

# Sublinear Time Algorithms

Definitions, Different Types

Two types of sublinear time algorithms:

Algorithms that compute/approximate a target value

Examples target values: Frequent Items, Average Degree, Statistical Measures, Diameter, Count of Triangles, Cluster Centers, etc

 Property Testers:
Distinguishing inputs that have a certain property from inputs that are far away from having that property

Examples: Testing Sortedness, Graph Planarity, Graph Bipartiteness, etc

#### Warm-up: An 0,1 Matrix Problem

- Suppose we have an m by m(0,1) matrix A.
- Every row of A is sorted. The 0's precede the 1's.
- We want to find a row with most number of 0's.

|   |   |   |   |   |   |   |   | 1] |
|---|---|---|---|---|---|---|---|----|
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1  |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  |
| 0 |   |   | 0 |   |   |   |   |    |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1  |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1  |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1  |

 Brute-Force solution: read every row. O(m<sup>2</sup>) worst-case running time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

## Warm-up: An 0,1 Matrix Problem

- Suppose we have an m by m(0,1) matrix A.
- Every row of A is sorted. The 0's precede the 1's.
- We want to find a row with most number of 0's.



- Brute-Force solution: read every row. O(m<sup>2</sup>) worst-case running time.
- A sublinear solution: Begin from the first row. Upon seeing a 0 go left, when you see a 1, go down. O(m) running time.

### The Celebrity Problem

Definition: Celebrity is a person whom everybody knows but he knows nobody.

Problem: Find a celebrity in a directed graph on n nodes. We are allowed to ask questions like "Does an edge exist from x to y?"



$$\begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

### The Celebrity Problem

Definition: Celebrity is a person whom everybody knows but he knows nobody.

Problem: Find a celebrity in a directed graph. We are allowed to ask questions like "Does an edge exist from x to y?"



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Hint: Every question eliminates a person.

# The Celebrity Problem

A question to think about

Definition: A (k,t)-celebrity is a person who whom at least n - k person knows but he knows at most t person.

Problem: Can we find a (k,t)-celebrity in a directed graph on n nodes using sublinear number of edge queries? For what ranges of k and t?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Input: An undirected connected graph G = (V, E) with n nodes and m edges. (We do not know m!)

Problem: Estimate the average degree  $d = \frac{2m}{n}$  using sublinear number of degree queries. Given a vertex  $u \in V$ , we can query for its degree.

Motivation: A huge social network (people with friends). How many friends each person has in average?

Strategy: We sample a random subset of vertices  $S \subseteq V$  and compute the average degree in S. The average degree in S will be an estimate for d.

Theorem: [Uriel Feige, 2006] Using  $O(\epsilon^{-1}\sqrt{n})$  degree queries it is possible to approximate the average degree within  $2 + \epsilon$  factor with high probability assuming the minimum degree is at least 1.

Note: With high probability means with probability at least  $1 - n^{-c}$  for some constant c.

Note: The algorithm outputs d' where  $(\frac{1}{2} - \epsilon)d \le d' \le (1 + \epsilon)d$ .

This lecture: We prove a similar but weaker result.

Reference: Artur Czumaj, Christian Sohler. Sublinear time algorithms (draft). Available at Artur Czumaj's webpage.

# Estimating the average degree in a graph Analysis

We have a sequence of n (unknown) integers between 1 and n-1

$$d_1, d_2, d_3, d_4, \ldots, d_n$$

 $d_i$  is the degree of *i*-th node in the graph G.

$$d=\frac{d_1+d_2+\ldots+d_n}{n}$$

We sample s nodes (with replacement) and output their average degree. |S| = s

Let  $X_i$  be a random variable associated with the degree of *i*-th node in the sampled set *S*.

# Estimating the average degree in a graph Analysis

Output of the algorithm: 
$$X = \frac{1}{s}(X_1 + \dots X_s)$$

$$E[X_i] = \sum_{i=1}^n (d_i \times \frac{1}{n}) = d$$
$$E[X] = E[\frac{1}{s}(X_1 + \dots + X_s)] = \frac{1}{s}\sum_{i=1}^s E[X_i] = \frac{1}{s}ds = d$$

(By linearity of expectation.)

In expectation, it is all good (the estimator is unbiased) but how often X is close to E[X]?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Estimating the average degree in a graph Analysis: A bad example



$$m = t(t-1) + 2(n-t) - 1$$

$$d = \frac{2m}{n} = \Theta(\frac{t^2}{n})$$

$$t = n^{2/3} \Rightarrow d = \Theta(n^{1/3})$$

If we sample a small set of vertices, with high probability we pick only the blue vertices.

 $Pr[\text{ Picking only blue vertices }] = (1 - t/n)^{s} \approx 1 \text{ when } s = o(n^{1/3})$ 

The estimated average degree will be O(1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Main Question: How many samples do we need?

Analysis: Markov Inequality

Using Markov Inequality, we can easily show that the probability of X overestimating (by large) is small.

Markov Inequality: For every positive random variable X and a > 0, we have

$$\Pr[X \ge a] \le \frac{E[X]}{a}$$

In other words,

$$Pr[X \ge aE[X]] \le \frac{1}{a}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Analysis: Markov Inequality

Markov Inequality: For every positive random variable X and a > 0, we have

$$Pr[X \ge a] \le \frac{E[X]}{a}$$



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Analysis: probability of underestimating

Recall that 
$$X = \frac{1}{s}(X_1 + \ldots + X_s)$$

Question: Assuming  $\beta$  is a small constant, how large *s* should be so that we have the following?



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Analysis: probability of underestimating

Choosing  $s \ge \Omega(\epsilon^{-1}\sqrt{n})$  is good enough.

We need to introduce Hoeffding inequality which concerns the analysis of sum of independent variables.

$$X_1 + X_2 + \ldots + X_t$$

 $X_i$ 's are independent.