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▸ Sublinear time algorithms: definitions

▸ A problem in 0,1 Matrices

▸ The celebrity problem

▸ Estimating the average degree



Sublinear Time Algorithms
Definitions, Different Types

Definition: A sublinear time algorithm is an algorithm whose
running time is sublinear in terms of the input size.

Examples: Input Size = n

▸ O(n0.99)
▸ O( n

log log n)
▸ O(log2 n)
▸ O( 1

ε2

√
n) when ε = ω(n−1/4)

▸ O( 1
ε2 ) when ε = ω(n−1/2)

▸ ...

A sublinear time algorithms does not read the whole input!



Sublinear Time Algorithms
Definitions, Different Types

Two types of sublinear time algorithms:

▸ Algorithms that compute/approximate a target value

Examples target values: Frequent Items, Average Degree,
Statistical Measures, Diameter, Count of Triangles,
Cluster Centers, etc

▸ Property Testers:
Distinguishing inputs that have a certain property from
inputs that are far away from having that property

Examples: Testing Sortedness, Graph Planarity, Graph
Bipartiteness, etc



Warm-up: An 0,1 Matrix Problem

▸ Suppose we have an m by m (0,1) matrix A.

▸ Every row of A is sorted. The 0’s precede the 1’s.

▸ We want to find a row with most number of 0’s.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

▸ Brute-Force solution:
read every row. O(m2)
worst-case running time.



Warm-up: An 0,1 Matrix Problem

▸ Suppose we have an m by m (0,1) matrix A.

▸ Every row of A is sorted. The 0’s precede the 1’s.

▸ We want to find a row with most number of 0’s.

▸ Brute-Force solution:
read every row. O(m2)
worst-case running time.

▸ A sublinear solution:
Begin from the first row.
Upon seeing a 0 go left,
when you see a 1, go
down.
O(m) running time.



The Celebrity Problem

Definition: Celebrity is a person whom everybody knows but
he knows nobody.

Problem: Find a celebrity in a directed graph on n nodes. We
are allowed to ask questions like “Does an edge exist from x
to y?”

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



The Celebrity Problem

Definition: Celebrity is a person whom everybody knows but
he knows nobody.

Problem: Find a celebrity in a directed graph. We are allowed
to ask questions like “Does an edge exist from x to y?”

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

There is a strategy
that asks at most
n − 1 questions!

Hint: Every question eliminates a person.



The Celebrity Problem
A question to think about

Definition: A (k ,t)-celebrity is a person who whom at least
n − k person knows but he knows at most t person.

Problem: Can we find a (k ,t)-celebrity in a directed graph on
n nodes using sublinear number of edge queries? For what
ranges of k and t?



Estimating the average degree in a graph

Input: An undirected connected graph G = (V ,E) with n
nodes and m edges. ( We do not know m !)

Problem: Estimate the average degree d = 2m
n using sublinear

number of degree queries. Given a vertex u ∈ V , we can query
for its degree.

Motivation: A huge social network (people with friends). How
many friends each person has in average?

Strategy: We sample a random subset of vertices S ⊆ V and
compute the average degree in S . The average degree in S
will be an estimate for d .



Estimating the average degree in a graph
Results

Theorem: [Uriel Feige, 2006] Using O(ε−1
√
n) degree queries

it is possible to approximate the average degree within 2 + ε
factor with high probability assuming the minimum degree is
at least 1.

Note: With high probability means with probability at least
1 − n−c for some constant c .

Note: The algorithm outputs d ′ where (1
2 − ε)d ≤ d ′ ≤ (1+ ε)d .

This lecture: We prove a similar but weaker result.

Reference: Artur Czumaj, Christian Sohler. Sublinear time
algorithms (draft). Available at Artur Czumaj’s webpage.



Estimating the average degree in a graph
Analysis

We have a sequence of n (unknown) integers between 1 and
n − 1

d1, d2, d3, d4, . . . ,dn

di is the degree of i -th node in the graph G .

d = d1 + d2 + . . . + dn
n

We sample s nodes (with replacement) and output their
average degree. ∣S ∣ = s

Let Xi be a random variable associated with the degree of i -th
node in the sampled set S .



Estimating the average degree in a graph
Analysis

Output of the algorithm: X = 1

s
(X1 + . . .Xs)

E [Xi] =
n

∑
i=1

(di ×
1

n
) = d

E [X ] = E [1

s
(X1 + . . .Xs)] =

1

s

s

∑
i

E [Xi] =
1

s
ds = d

(By linearity of expectation.)

In expectation, it is all good (the estimator is unbiased) but
how often X is close to E [X ]?



Estimating the average degree in a graph
Analysis: A bad example

m = t(t − 1) + 2(n − t) − 1

d = 2m
n = Θ( t2

n )

t = n2/3
⇒ d = Θ(n1/3

)

If we sample a small set of vertices, with high

probability we pick only the blue vertices.

Pr[ Picking only blue vertices ] =

(1 − t/n)s ≈ 1 when s = o(n1/3
)

The estimated average degree will be O(1).

Main Question: How many samples do we need?



Estimating the average degree in a graph
Analysis: Markov Inequality

Using Markov Inequality, we can easily show that the
probability of X overestimating (by large) is small.

Markov Inequality: For every positive random variable X and
a > 0, we have

Pr[X ≥ a] ≤ E [X ]
a

In other words,

Pr[X ≥ aE [X ]] ≤ 1

a



Estimating the average degree in a graph
Analysis: Markov Inequality

Markov Inequality: For every positive random variable X and
a > 0, we have

Pr[X ≥ a] ≤ E [X ]
a



Estimating the average degree in a graph
Analysis: probability of underestimating

Recall that X = 1
s (X1 + . . . +Xs)

Question: Assuming β is a small constant, how large s should
be so that we have the following?

Pr[X ≤ βE [X ]] = small



Estimating the average degree in a graph
Analysis: probability of underestimating

Choosing s ≥ Ω(ε−1
√
n) is good enough.

We need to introduce Hoeffding inequality which concerns the
analysis of sum of independent variables.

X1 +X2 + . . . +Xt

Xi ’s are independent.


