Lecture 2:

Sublinear Algorithms I

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics
K. N. Toosi University of Technology

Spring 2021

Outline

- Sublinear time algorithms: definitions
- A problem in 0,1 Matrices
- The celebrity problem
- Estimating the average degree

Sublinear Time Algorithms

Definitions, Different Types

Definition: A sublinear time algorithm is an algorithm whose running time is sublinear in terms of the input size.

Examples: Input Size $=n$

- $O\left(n^{0.99}\right)$
- $O\left(\frac{n}{\log \log n}\right)$
- $O\left(\log ^{2} n\right)$
- $O\left(\frac{1}{\epsilon^{2}} \sqrt{n}\right)$ when $\epsilon=\omega\left(n^{-1 / 4}\right)$
- $O\left(\frac{1}{\epsilon^{2}}\right)$ when $\epsilon=\omega\left(n^{-1 / 2}\right)$
- ...

A sublinear time algorithms does not read the whole input!

Sublinear Time Algorithms
 Definitions, Different Types

Two types of sublinear time algorithms:

- Algorithms that compute/approximate a target value

Examples target values: Frequent Items, Average Degree, Statistical Measures, Diameter, Count of Triangles, Cluster Centers, etc

- Property Testers: Distinguishing inputs that have a certain property from inputs that are far away from having that property

Examples: Testing Sortedness, Graph Planarity, Graph Bipartiteness, etc

Warm-up: An 0,1 Matrix Problem

- Suppose we have an m by $m(0,1)$ matrix A.
- Every row of A is sorted. The 0 's precede the 1 's.
- We want to find a row with most number of 0 's.
$\left[\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}\right]$
- Brute-Force solution: read every row. $O\left(m^{2}\right)$ worst-case running time.

Warm-up: An 0,1 Matrix Problem

- Suppose we have an m by $m(0,1)$ matrix A.
- Every row of A is sorted. The 0 's precede the 1 's.
- We want to find a row with most number of 0 's.
$\left[\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}\right]$
- Brute-Force solution: read every row. $O\left(m^{2}\right)$ worst-case running time.
- A sublinear solution: Begin from the first row. Upon seeing a 0 go left, when you see a 1 , go down.
$O(m)$ running time.

The Celebrity Problem

Definition: Celebrity is a person whom everybody knows but he knows nobody.

Problem: Find a celebrity in a directed graph on n nodes. We are allowed to ask questions like "Does an edge exist from x to y ?"

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

The Celebrity Problem

Definition: Celebrity is a person whom everybody knows but he knows nobody.

Problem: Find a celebrity in a directed graph. We are allowed to ask questions like "Does an edge exist from x to y ?"

There is a strategy that asks at most $n-1$ questions!

Hint: Every question eliminates a person.

The Celebrity Problem

A question to think about

Definition: $\mathrm{A}(k, t)$-celebrity is a person who whom at least $n-k$ person knows but he knows at most t person.

Problem: Can we find a (k, t)-celebrity in a directed graph on n nodes using sublinear number of edge queries? For what ranges of k and t ?

Estimating the average degree in a graph

Input: An undirected connected graph $G=(V, E)$ with n nodes and m edges. (We do not know m !)

Problem: Estimate the average degree $d=\frac{2 m}{n}$ using sublinear number of degree queries. Given a vertex $u \in V$, we can query for its degree.

Motivation: A huge social network (people with friends). How many friends each person has in average?

Strategy: We sample a random subset of vertices $S \subseteq V$ and compute the average degree in S. The average degree in S will be an estimate for d.

Estimating the average degree in a graph

Results

Theorem: [Uriel Feige, 2006] Using $O\left(\epsilon^{-1} \sqrt{n}\right)$ degree queries it is possible to approximate the average degree within $2+\epsilon$ factor with high probability assuming the minimum degree is at least 1.

Note: With high probability means with probability at least $1-n^{-c}$ for some constant c.

Note: The algorithm outputs d^{\prime} where $\left(\frac{1}{2}-\epsilon\right) d \leq d^{\prime} \leq(1+\epsilon) d$.
This lecture: We prove a similar but weaker result.
Reference: Artur Czumaj, Christian Sohler. Sublinear time algorithms (draft). Available at Artur Czumaj's webpage.

Estimating the average degree in a graph

Analysis

We have a sequence of n (unknown) integers between 1 and $n-1$

$$
d_{1}, d_{2}, d_{3}, d_{4}, \ldots, d_{n}
$$

d_{i} is the degree of i-th node in the graph G.

$$
d=\frac{d_{1}+d_{2}+\ldots+d_{n}}{n}
$$

We sample s nodes (with replacement) and output their average degree. $|S|=s$

Let X_{i} be a random variable associated with the degree of i-th node in the sampled set S.

Estimating the average degree in a graph

Analysis

$$
\begin{aligned}
& \text { Output of the algorithm: } X=\frac{1}{s}\left(X_{1}+\ldots X_{s}\right) \\
& E\left[X_{i}\right]=\sum_{i=1}^{n}\left(d_{i} \times \frac{1}{n}\right)=d \\
& E[X]=E\left[\frac{1}{s}\left(X_{1}+\ldots X_{s}\right)\right]=\frac{1}{s} \sum_{i}^{s} E\left[X_{i}\right]=\frac{1}{s} d s=d
\end{aligned}
$$

(By linearity of expectation.)
In expectation, it is all good (the estimator is unbiased) but how often X is close to $E[X]$?

Estimating the average degree in a graph

Analysis: A bad example

The estimated average degree will be $O(1)$.
Main Question: How many samples do we need?

Estimating the average degree in a graph

Analysis: Markov Inequality

Using Markov Inequality, we can easily show that the probability of X overestimating (by large) is small.

Markov Inequality: For every positive random variable X and $a>0$, we have

$$
\operatorname{Pr}[X \geq a] \leq \frac{E[X]}{a}
$$

In other words,

$$
\operatorname{Pr}[X \geq a E[X]] \leq \frac{1}{a}
$$

Estimating the average degree in a graph

Analysis: Markov Inequality

Markov Inequality: For every positive random variable X and $a>0$, we have

$$
\operatorname{Pr}[X \geq a] \leq \frac{E[X]}{a}
$$

$$
\begin{aligned}
E[X] & =\sum_{x} x P(x) \\
& =\sum_{x<a} x P(x)+\sum_{x \geq a} x P(x) \\
& \geq \sum_{x \geq a} x P(x) \\
& \geq \sum_{x \geq a} a P(x) \\
& =a \sum_{x \geq a} P(x) \\
& =a P(x \geq a),
\end{aligned}
$$

Estimating the average degree in a graph

Analysis: probability of underestimating
Recall that $X=\frac{1}{s}\left(X_{1}+\ldots+X_{s}\right)$
Question: Assuming β is a small constant, how large s should be so that we have the following?

$$
\operatorname{Pr}[X \leq \beta E[X]]=\text { small }
$$

Estimating the average degree in a graph

Analysis: probability of underestimating

Choosing $s \geq \Omega\left(\epsilon^{-1} \sqrt{n}\right)$ is good enough.
We need to introduce Hoeffding inequality which concerns the analysis of sum of independent variables.

$$
X_{1}+X_{2}+\ldots+X_{t}
$$

X_{i} 's are independent.

