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Outline

» Deviation bounds: Markov, Chebyshev, Chernoff

» Estimating the average degree (continued)



Recap from previous lecture

We have a sequence of n (unknown) integers between 1 and
n —1 (these are degrees of a graph on n nodes.)

d17 d27 d37 d47 7dn

Want to estimate d = ditdet.+dn

n

We sample s integers (with replacement) and output the
average.

Let X; be a random variable associated with the ¢-th sample.

1
Algorithm’s output: X = —(X; +...+ Xj)
s

We know: E[X]=d



Deviation from Expectation

We want to know how often X deviates from E[X] by a
considerable degree.

In other words, we want to bound this probability (e > 0)

Pr( | X-E[X]| >eBE[X])
(S —
the amount of deviation

We have some useful inequalities for this.



Deviation Bounds
Markov Inequality: For any non-negative random variable X,
E[X 1
Pr(X >t)< oxl Pr(X >tE[X]) < -
t t
Chebyshev Inequality: For any random variable X and ¢ > 0,

Var[X]

Pr(| X -E[X]|>t)< >

Specially (when t = eE[ X]),

Pr(|X - E[X]|>€E[X]) < %

Proof: Apply Markov inequality to the random variable
Y = (X - E[X])%



Applying Chebyshev
We need an upper bound on Var[ X].
Since X;'s are independent,
Var[X]=Var[2(Xi+.. +X,)] = 5(Var[X]+. . +Var[X,])
Since X;'s are identical, Var[X] = &sVar[X;] = 1Var[X;]

Var[X;] = E[X2] - E2[X,] = (S 4.+ %) -

IA

Pr(| X - E[X]|>eE[X])




How large the term D =n

Lets consider two cases:

3,3,3,3,...,3

3-regular graph
d=3 D=1

= s=1is enough

d2+..+d2

n can be?

(di+...4dn)?

3,3,3,...,3,n-1,3,...,3

wheel graph
d~4 D=0(n)
= 5s=0(%)



It can be shown that D < d"ﬁ% when 4, = max{d;}. It
suggests s = O(%32) is enough.

The above cases tell us we need random €2(n)
degree queries to distinguish between d =3 and d ~ 4.

This shows % + € approximation is not possible using o(n)
degree queries.

Uriel Feige showed that O(\/Tﬁ) random degree queries is

1

enough to get a 5 — ¢ approximation of d.

Note that even if we set € = 2 (for & approximation),
Chebyshev inequality needs s = Q(n).

Pr(X<(1-eE[X])<a(D-1)



In our analysis using Chebyshev inequality, we did not use the
fact that dy,...,d, is the degree sequence of an undirected
graph. In other words, the numbers dy,...,d, have a certain
relation. Consider the following sequence:

1,1,1,....1,1,n,...,n average ~t
Here we need s = Q(n/t) samples for a a > 1/t approximation
of the average. ®

But wait! These numbers cannot be degree sequence of a
graph.



Union bound

Let E1, ..., E. be a collection of events. Then

k
Pr(EyUE,U...UE) <> Pr(E)
=1

Example: In the above sampling task, let E; be the event that
we sample an n in the i-th round.

E=FE uFEyu...UFE;, = at least one nissampled

If we sample s times, by the union bound, we have

Pr(E) < gPr(Ei) _ Z% _ ‘%t

i=1

If s<3 = Pr(E)<1/2



Lets try a different tool: Chernoff bound

Chernoff Bound: Let 0 <e< 1. Suppose Yi,...,Y; are
independent random variables taking values in the interval
[0,1]. Let Y =¥, Y;. Then

2E[Y]

Pr(Y <(1-¢€)E[Y])<e 2

Pr(Y >(1+e)E[Y])<e
Pr(|Y-E[Y] 2€E[Y]) <2 5

Proof: We present an incomplete proof shortly.



Lets apply Chernoff inequality to our problem.

Recall that X = 1(X; +...+ X,) where X; € {1,...,dpas}-
We define Y; = d:iz =Y; e[0,1].
Y=Yi+...+Y, > Y=—"X
S
E[Y] = d
[ ] dmaa:
X X
Pr(|X - E[X]| > ¢E[X]) = Pr(|d5 —E[ds 1= B[
= Pr(lY - E[Y]| > eE[Y])
EE[Y] s d

N
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o
|
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A direct application of Chernoff bound suggest s = O(%24z).
This is the same bound that we obtained using Chebyshev!

This is again what we expected because we have not yet used
the fact that the numbers di, ..., d, are the degree sequence
of a graph.

In comparison with Chebyshev inequality:

» Chernoff does not need a knowledge of the variance. It
only needs the expectation.

» Chernoff gives a much higher probability of concentration.



Comparing Chebyshev and Chernoff
Suppose we want to have error probability ¢ < 0.

Using Chebyshev we should have:

1 1 dpmaz
Pr(|X—E[X]|2eE[X])<;(D 1)< 6S( y ) <o
1dma1‘

5 e2d

Using Chernoff we should have:

Pr(|X - E[X]| > €E[X]) <265 Tner <0

s >31n( ! dm?;




An (incomplete) proof of Chernoff bound

Claim: Let Y =Y; +...+Y, where Y;'s are independent
random variables taking values in the interval [0,1]. Let
p=FE[Y]. Then

66

PT(YZ (1+6)M) < (m

)M
Proof: Fix 8 > 0.

PT(Y >(1+ e)u) = Pr(eey > 69(1+6)u)
because f(x) =e® is a monotone function.

E[e?]  E[ef(it.¥)]
(2% 0(1+¢) _
Pr(e > et H) < o0+ EIeE

by Markov inequality.



Since Y;'s are independent, (E[XY] = E[X]E[Y] when Y
and X are independent.)

E[ef0ie0] B[] x ... x B[]

ef(l+e)u - ef(1+e)u

We show E[efYi] < e(¢’-DE] Since Y; € [0, 1],

E[e™] < E[1+ (e’ -1)Yi] = 1+ (¢! = 1) E[Y;] < ('~ DE]

Because for all x € [0,1] and 6 > 0, we have
69:13 <1+ (60 _ 1)1’ < e(eefl)x

T B[] TTLy e/ -De0)

0(1+¢) = (170 — 6(66—1)/J*9(1+6)‘u _ 6((6071)*9(1%))#
€ te)p e +e)u

The claim follows after setting 6 = In(1 +¢).



An application of Chernoff bound

Amplifying the success probability

Suppose we have a randomized algorithm A that processes the
input data D and approximate some f(D) where

|A(D) - f(D)| < ef(D) with probability at least 3/4.
How to amplify the success probability of A?

We want to have a randomized algorithm A’ with error
probability ¢ << 1/4.

Idea: Run A on input data D, O(In(3)) times and output the
median of the outcomes.



Each (independent) repetition of A succeeds with probability
3/4. Suppose a; is the outcome of i-th repetition. We have

Pr(la- f(D)| > ef(A)) < 1/4.

We define X; =1 if i-th repetition is good (its error is less
than €f(A)), otherwise we let X; = 0.

X =X;+...+ X, is the number of good outcomes in t
repetitions.

The median of {ay,...,a;} is bad = Less than ¢/2
repetitions are good. In other words, X < /2.

By Chernoff bound, we have

Pr(median is bad) < Pr(X <t/2) <D <§ = t= (ln(%))



