Lecture 3:

Sublinear time algorithms II

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics
K. N. Toosi University of Technology

Spring 2021

Outline

- Deviation bounds: Markov, Chebyshev, Chernoff
- Estimating the average degree (continued)

Recap from previous lecture

We have a sequence of n (unknown) integers between 1 and $n-1$ (these are degrees of a graph on n nodes.)

$$
d_{1}, d_{2}, d_{3}, d_{4}, \ldots, d_{n}
$$

Want to estimate $d=\frac{d_{1}+d_{2}+\ldots+d_{n}}{n}$
We sample s integers (with replacement) and output the average.

Let X_{i} be a random variable associated with the i-th sample.

$$
\text { Algorithm's output: } X=\frac{1}{s}\left(X_{1}+\ldots+X_{s}\right)
$$

We know: $E[X]=d$

Deviation from Expectation

We want to know how often X deviates from $E[X]$ by a considerable degree.

In other words, we want to bound this probability $(\epsilon \geq 0)$

$$
\operatorname{Pr}(\underbrace{|X-E[X]|}_{\text {the amount of deviation }} \geq \epsilon E[X])
$$

We have some useful inequalities for this.

Deviation Bounds

Markov Inequality: For any non-negative random variable X,

$$
\operatorname{Pr}(X \geq t) \leq \frac{E[X]}{t} \Rightarrow \operatorname{Pr}(X \geq t E[X]) \leq \frac{1}{t}
$$

Chebyshev Inequality: For any random variable X and $t>0$,

$$
\operatorname{Pr}(|X-E[X]| \geq t) \leq \frac{\operatorname{Var}[X]}{t^{2}}
$$

Specially (when $t=\epsilon E[X]$),

$$
\operatorname{Pr}(|X-E[X]| \geq \epsilon E[X]) \leq \frac{\operatorname{Var}[X]}{\epsilon^{2} E^{2}[X]}
$$

Proof: Apply Markov inequality to the random variable $Y=(X-E[X])^{2}$.

Applying Chebyshev

We need an upper bound on $\operatorname{Var}[X]$.
Since X_{i} 's are independent,
$\operatorname{Var}[X]=\operatorname{Var}\left[\frac{1}{s}\left(X_{1}+\ldots+X_{s}\right)\right]=\frac{1}{s^{2}}\left(\operatorname{Var}\left[X_{1}\right]+\ldots+\operatorname{Var}\left[X_{s}\right]\right)$
Since X_{i} 's are identical, $\operatorname{Var}[X]=\frac{1}{s^{2}} s \operatorname{Var}\left[X_{i}\right]=\frac{1}{s} \operatorname{Var}\left[X_{i}\right]$

$$
\operatorname{Var}\left[X_{i}\right]=E\left[X_{i}^{2}\right]-E^{2}\left[X_{i}\right]=\left(\frac{d_{1}^{2}}{n}+\ldots+\frac{d_{n}^{2}}{n}\right)-d^{2}
$$

$$
\begin{aligned}
\operatorname{Pr}(|X-E[X]| \geq \epsilon E[X]) & \leq \frac{\frac{1}{s}\left(\frac{d_{1}^{2}+\ldots+d_{n}^{2}}{n}-d^{2}\right)}{\epsilon^{2} d^{2}} \\
& =\frac{1}{\epsilon^{2} s}\left(n \frac{d_{1}^{2}+\ldots+d_{n}^{2}}{\left(d_{1}+\ldots+d_{n}\right)^{2}}-1\right)
\end{aligned}
$$

How large the term $D=n \frac{d_{1}^{2}+\ldots+d_{n}^{2}}{\left(d_{1}+\ldots+d_{n}\right)^{2}}$ can be?
Lets consider two cases:

3-regular graph

$$
\begin{gathered}
d=3 \quad D=1 \\
\Rightarrow s=1 \text { is enough }
\end{gathered}
$$

wheel graph

$$
d \approx 4 \quad D=O(n)
$$

$$
\Rightarrow s=O\left(\frac{n}{\epsilon^{2}}\right)
$$

- It can be shown that $D \leq \frac{d_{\text {max }}}{d}$ when $d_{\text {max }}=\max \left\{d_{i}\right\}$. It suggests $s=O\left(\frac{d_{\text {max }}}{\epsilon^{2} d}\right)$ is enough.
- The above cases tell us we need random $\Omega(n)$ degree queries to distinguish between $d=3$ and $d \approx 4$.
- This shows $\frac{3}{4}+\epsilon$ approximation is not possible using $o(n)$ degree queries.
- Uriel Feige showed that $O\left(\frac{\sqrt{n}}{\epsilon}\right)$ random degree queries is enough to get a $\frac{1}{2}-\epsilon$ approximation of d.
- Note that even if we set $\epsilon=\frac{2}{3}$ (for $\frac{1}{3}$ approximation), Chebyshev inequality needs $s=\Omega(n)$.

$$
\operatorname{Pr}(X \leq(1-\epsilon) E[X]) \leq \frac{1}{\epsilon^{2} s}(D-1)
$$

In our analysis using Chebyshev inequality, we did not use the fact that d_{1}, \ldots, d_{n} is the degree sequence of an undirected graph. In other words, the numbers d_{1}, \ldots, d_{n} have a certain relation. Consider the following sequence:

$$
\underbrace{1,1,1, \ldots, 1,1}_{n-t}, \underbrace{n, \ldots, n}_{t} \quad \text { average } \approx t
$$

Here we need $s=\Omega(n / t)$ samples for a $\alpha>1 / t$ approximation of the average. $)^{-}$

But wait! These numbers cannot be degree sequence of a graph.

Union bound

Let E_{1}, \ldots, E_{k} be a collection of events. Then

$$
\operatorname{Pr}\left(E_{1} \cup E_{2} \cup \ldots \cup E_{k}\right) \leq \sum_{i=1}^{k} \operatorname{Pr}\left(E_{i}\right)
$$

Example: In the above sampling task, let E_{i} be the event that we sample an n in the i-th round.

$$
E=E_{1} \cup E_{2} \cup \ldots \cup E_{t} \Rightarrow \text { at least one nissampled }
$$

If we sample s times, by the union bound, we have

$$
\operatorname{Pr}(E) \leq \sum_{i=1}^{s} \operatorname{Pr}\left(E_{i}\right)=\sum_{i=1}^{s} \frac{t}{n}=\frac{s t}{n}
$$

If $s<\frac{n}{2 t} \Rightarrow \operatorname{Pr}(E)<1 / 2$

Lets try a different tool: Chernoff bound

Chernoff Bound: Let $0 \leq \epsilon \leq 1$. Suppose Y_{1}, \ldots, Y_{t} are independent random variables taking values in the interval $\overline{[0,1]}$. Let $Y=\sum_{i=1}^{t} Y_{i}$. Then

$$
\begin{gathered}
\operatorname{Pr}(Y \leq(1-\epsilon) E[Y]) \leq e^{-\frac{\epsilon^{2} E[Y]}{2}} \\
\operatorname{Pr}(Y \geq(1+\epsilon) E[Y]) \leq e^{-\frac{\epsilon^{2} E[Y]}{3}} \\
\operatorname{Pr}(|Y-E[Y]| \geq \epsilon E[Y]) \leq 2 e^{-\frac{\epsilon^{2} E[Y]}{3}}
\end{gathered}
$$

Proof: We present an incomplete proof shortly.

Lets apply Chernoff inequality to our problem.
Recall that $X=\frac{1}{s}\left(X_{1}+\ldots+X_{s}\right)$ where $X_{i} \in\left\{1, \ldots, d_{\max }\right\}$.
We define $Y_{i}=\frac{X_{i}}{d_{\max }} \Rightarrow Y_{i} \in[0,1]$.

$$
\begin{gathered}
Y=Y_{1}+\ldots+Y_{s} \Rightarrow Y=\frac{s}{d_{\max }} X \\
E[Y]=\frac{s}{d_{\max }} d
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{Pr}(|X-E[X]| \geq \epsilon E[X]) & =\operatorname{Pr}\left(\left|\frac{s X}{d_{\max }}-E\left[\frac{s X}{d_{\max }}\right]\right| \geq \epsilon E\left[\frac{s X}{d_{\max }}\right]\right) \\
& =\operatorname{Pr}(|Y-E[Y]| \geq \epsilon E[Y]) \\
& \leq 2 e^{-\frac{\epsilon^{2} E[Y]}{3}}=2 e^{-\frac{\epsilon^{2} s}{3} \frac{d}{d_{\max }}}
\end{aligned}
$$

A direct application of Chernoff bound suggest $s=O\left(\frac{d_{\text {max }}}{d \epsilon^{2}}\right)$.
This is the same bound that we obtained using Chebyshev!
This is again what we expected because we have not yet used the fact that the numbers d_{1}, \ldots, d_{n} are the degree sequence of a graph.

In comparison with Chebyshev inequality:

- Chernoff does not need a knowledge of the variance. It only needs the expectation.
- Chernoff gives a much higher probability of concentration.

Comparing Chebyshev and Chernoff

Suppose we want to have error probability $\delta<0$.
Using Chebyshev we should have:

$$
\begin{gathered}
\operatorname{Pr}(|X-E[X]| \geq \epsilon E[X]) \leq \frac{1}{\epsilon^{2} s}(D-1)<\frac{1}{\epsilon^{2} s}\left(\frac{d_{\max }}{d}\right) \leq \delta \\
s>\frac{1}{\delta} \frac{d_{\max }}{\epsilon^{2} d}
\end{gathered}
$$

Using Chernoff we should have:

$$
\begin{gathered}
\operatorname{Pr}(|X-E[X]| \geq \epsilon E[X]) \leq 2 e^{-\frac{\epsilon^{2} s}{3} \frac{d}{\max }} \leq \delta \\
s \geq 3 \ln \left(\frac{1}{2 \delta}\right) \frac{d_{\max }}{\epsilon^{2} d}
\end{gathered}
$$

An (incomplete) proof of Chernoff bound

Claim: Let $Y=Y_{1}+\ldots+Y_{t}$ where Y_{i} 's are independent random variables taking values in the interval $[0,1]$. Let $\mu=E[Y]$. Then

$$
\operatorname{Pr}(Y \geq(1+\epsilon) \mu) \leq\left(\frac{e^{\epsilon}}{(\epsilon+1)^{\epsilon+1}}\right)^{\mu}
$$

Proof: Fix $\theta>0$.

$$
\operatorname{Pr}(Y \geq(1+\epsilon) \mu)=\operatorname{Pr}\left(e^{\theta Y} \geq e^{\theta(1+\epsilon) \mu}\right)
$$

because $f(x)=e^{x}$ is a monotone function.

$$
\operatorname{Pr}\left(e^{\theta Y} \geq e^{\theta(1+\epsilon) \mu}\right) \leq \frac{E\left[e^{\theta Y}\right]}{e^{\theta(1+\epsilon) \mu}}=\frac{E\left[e^{\theta\left(Y_{1}+\ldots+Y_{t}\right)}\right]}{e^{\theta(1+\epsilon) \mu}}
$$

by Markov inequality.

Since Y_{i} 's are independent, $(E[X Y]=E[X] E[Y]$ when Y and X are independent.)

$$
\frac{E\left[e^{\theta\left(Y_{1}+\ldots+Y_{t}\right)}\right]}{e^{\theta(1+\epsilon) \mu}}=\frac{E\left[e^{\theta Y_{1}}\right] \times \ldots \times E\left[e^{\theta Y_{t}}\right]}{e^{\theta(1+\epsilon) \mu}}
$$

We show $E\left[e^{\theta Y_{i}}\right] \leq e^{\left(e^{\theta}-1\right) E\left[Y_{i}\right]}$. Since $Y_{i} \in[0,1]$,

$$
E\left[e^{\theta Y_{i}}\right] \leq E\left[1+\left(e^{\theta}-1\right) Y_{i}\right]=1+\left(e^{\theta}-1\right) E\left[Y_{i}\right] \leq e^{\left(e^{\theta}-1\right) E\left[Y_{i}\right]}
$$

Because for all $x \in[0,1]$ and $\theta>0$, we have

$$
e^{\theta x} \leq 1+\left(e^{\theta}-1\right) x \leq e^{\left(e^{\theta}-1\right) x}
$$

$$
\frac{\prod_{i=1}^{t} E\left[e^{\theta Y_{i}}\right]}{e^{\theta(1+\epsilon) \mu}} \leq \frac{\prod_{i=1}^{t} e^{\left(e^{\theta}-1\right) E\left[Y_{i}\right]}}{e^{\theta(1+\epsilon) \mu}}=e^{\left(e^{\theta}-1\right) \mu-\theta(1+\epsilon) \mu}=e^{\left(\left(e^{\theta}-1\right)-\theta(1+\epsilon)\right) \mu}
$$

The claim follows after setting $\theta=\ln (1+\epsilon)$.

An application of Chernoff bound

Amplifying the success probability

Suppose we have a randomized algorithm A that processes the input data D and approximate some $f(D)$ where

$$
|A(D)-f(D)| \leq \epsilon f(D) \text { with probability at least } 3 / 4
$$

How to amplify the success probability of A ?
We want to have a randomized algorithm A^{\prime} with error probability $\delta \ll 1 / 4$.

Idea: Run A on input data $D, O\left(\ln \left(\frac{1}{\delta}\right)\right)$ times and output the median of the outcomes.

Each (independent) repetition of A succeeds with probability $3 / 4$. Suppose a_{i} is the outcome of i-th repetition. We have

$$
\operatorname{Pr}(|a-f(D)| \geq \epsilon f(A)) \leq 1 / 4 .
$$

We define $X_{i}=1$ if i-th repetition is good (its error is less than $\epsilon f(A)$), otherwise we let $X_{i}=0$.
$X=X_{1}+\ldots+X_{t}$ is the number of good outcomes in t repetitions.

The median of $\left\{a_{1}, \ldots, a_{t}\right\}$ is bad \Rightarrow Less than $t / 2$ repetitions are good. In other words, $X<t / 2$.

By Chernoff bound, we have
$\operatorname{Pr}($ median is bad $) \leq \operatorname{Pr}(X<t / 2) \leq e^{O(-t)} \leq \delta \Rightarrow t=\left(\ln \left(\frac{1}{\delta}\right)\right)$

