Lecture 3:

Sublinear time algorithms II

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics Faculty of Mathematics K. N. Toosi University of Technology

Spring 2021

Outline

- Deviation bounds: Markov, Chebyshev, Chernoff
- Estimating the average degree (continued)

Recap from previous lecture

We have a sequence of n (unknown) integers between 1 and n-1 (these are degrees of a graph on n nodes.)

 $d_1, d_2, d_3, d_4, \ldots, d_n$

Want to estimate $d = \frac{d_1+d_2+\ldots+d_n}{n}$

We sample s integers (with replacement) and output the average.

Let X_i be a random variable associated with the *i*-th sample.

Algorithm's output:
$$X = \frac{1}{s}(X_1 + \ldots + X_s)$$

We know: E[X] = d

Deviation from Expectation

We want to know how often X deviates from E[X] by a considerable degree.

In other words, we want to bound this probability $(\epsilon \ge 0)$

$$Pr\left(\underbrace{|X - E[X]|}_{\text{the amount of deviation}} \ge \epsilon E[X] \right)$$

We have some useful inequalities for this.

Deviation Bounds

Markov Inequality: For any non-negative random variable X,

$$Pr(X \ge t) \le \frac{E[X]}{t} \implies Pr(X \ge tE[X]) \le \frac{1}{t}$$

Chebyshev Inequality: For any random variable X and t > 0,

$$Pr(|X - E[X]| \ge t) \le \frac{Var[X]}{t^2}$$

Specially (when $t = \epsilon E[X]$),

$$Pr(|X - E[X]| \ge \epsilon E[X]) \le \frac{Var[X]}{\epsilon^2 E^2[X]}$$

Proof: Apply Markov inequality to the random variable $Y = (X - E[X])^2$.

Applying Chebyshev

We need an upper bound on Var[X].

Since X_i 's are independent,

 $Var[X] = Var[\frac{1}{s}(X_{1}+...+X_{s})] = \frac{1}{s^{2}}(Var[X_{1}]+...+Var[X_{s}])$ Since X_i's are identical, $Var[X] = \frac{1}{s^{2}}sVar[X_{i}] = \frac{1}{s}Var[X_{i}]$ $Var[X_{i}] = E[X_{i}^{2}] - E^{2}[X_{i}] = (\frac{d_{1}^{2}}{n} + ... + \frac{d_{n}^{2}}{n}) - d^{2}$

$$Pr(|X - E[X]| \ge \epsilon E[X]) \le \frac{\frac{1}{s}\left(\frac{d_1^2 + \dots + d_n^2}{n} - d^2\right)}{\epsilon^2 d^2}$$

$$= \frac{1}{\epsilon^2 s} \left(n \frac{d_1^2 + \ldots + d_n^2}{(d_1 + \ldots + d_n)^2} - 1 \right)$$

How large the term $D = n \frac{d_1^2 + \dots + d_n^2}{(d_1 + \dots + d_n)^2}$ can be?

Lets consider two cases:

- It can be shown that $D \leq \frac{d_{max}}{d}$ when $d_{max} = \max\{d_i\}$. It suggests $s = O(\frac{d_{max}}{\epsilon^2 d})$ is enough.
- The above cases tell us we need random Ω(n) degree queries to distinguish between d = 3 and d ≈ 4.
- ► This shows ³/₄ + ε approximation is not possible using o(n) degree queries.
- ► Uriel Feige showed that O(^{√n}/_ϵ) random degree queries is enough to get a ¹/₂ - ϵ approximation of d.
- Note that even if we set ε = ²/₃ (for ¹/₃ approximation), Chebyshev inequality needs s = Ω(n).

$$Pr(X \le (1-\epsilon)E[X]) \le \frac{1}{\epsilon^2 s}(D-1)$$

In our analysis using Chebyshev inequality, we did not use the fact that d_1, \ldots, d_n is the degree sequence of an undirected graph. In other words, the numbers d_1, \ldots, d_n have a certain relation. Consider the following sequence:

$$\underbrace{1, 1, 1, \dots, 1, 1}_{n-t}, \underbrace{n, \dots, n}_{t} \qquad \text{average} \ \approx t$$

Here we need $s = \Omega(n/t)$ samples for a $\alpha > 1/t$ approximation of the average. \odot

But wait! These numbers cannot be degree sequence of a graph.

Union bound

Let E_1, \ldots, E_k be a collection of events. Then

$$Pr(E_1 \cup E_2 \cup \ldots \cup E_k) \leq \sum_{i=1}^k Pr(E_i)$$

Example: In the above sampling task, let E_i be the event that we sample an n in the *i*-th round.

$$E = E_1 \cup E_2 \cup \ldots \cup E_t \implies$$
 at least one *nissampled*

If we sample s times, by the union bound, we have

$$Pr(E) \le \sum_{i=1}^{s} Pr(E_i) = \sum_{i=1}^{s} \frac{t}{n} = \frac{st}{n}$$

If $s < \frac{n}{2t} \implies Pr(E) < 1/2$

Lets try a different tool: Chernoff bound

Chernoff Bound: Let $0 \le \epsilon \le 1$. Suppose Y_1, \ldots, Y_t are independent random variables taking values in the interval $\overline{[0,1]}$. Let $Y = \sum_{i=1}^{t} Y_i$. Then

$$Pr(Y \leq (1-\epsilon)E[Y]) \leq e^{-\frac{\epsilon^2 E[Y]}{2}}$$

$$Pr(Y \ge (1+\epsilon)E[Y]) \le e^{-\frac{\epsilon^2 E[Y]}{3}}$$

$$Pr(|Y - E[Y]| \ge \epsilon E[Y]) \le 2e^{-\frac{\epsilon^2 E[Y]}{3}}$$

Proof: We present an incomplete proof shortly.

Lets apply Chernoff inequality to our problem.

Recall that $X = \frac{1}{s}(X_1 + \ldots + X_s)$ where $X_i \in \{1, \ldots, d_{max}\}$. We define $Y_i = \frac{X_i}{d_{max}} \Rightarrow Y_i \in [0, 1]$.

$$Y = Y_1 + \ldots + Y_s \implies Y = \frac{s}{d_{max}}X$$

$$E[Y] = \frac{s}{d_{max}}d$$

$$Pr(|X - E[X]| \ge \epsilon E[X]) = Pr(|\frac{sX}{d_{max}} - E[\frac{sX}{d_{max}}]| \ge \epsilon E[\frac{sX}{d_{max}}])$$
$$= Pr(|Y - E[Y]| \ge \epsilon E[Y])$$

$$\leq 2e^{-\frac{\epsilon^2 E[Y]}{3}} = 2e^{-\frac{\epsilon^2 s}{3}\frac{d}{d_{max}}}$$

A direct application of Chernoff bound suggest $s = O(\frac{d_{max}}{dc^2})$.

This is the same bound that we obtained using Chebyshev!

This is again what we expected because we have not yet used the fact that the numbers d_1, \ldots, d_n are the degree sequence of a graph.

In comparison with Chebyshev inequality:

- Chernoff does not need a knowledge of the variance. It only needs the expectation.
- Chernoff gives a much higher probability of concentration.

Comparing Chebyshev and Chernoff

Suppose we want to have error probability $\delta < 0$.

Using Chebyshev we should have:

$$Pr(|X - E[X]| \ge \epsilon E[X]) \le \frac{1}{\epsilon^2 s} (D - 1) < \frac{1}{\epsilon^2 s} (\frac{d_{max}}{d}) \le \delta$$
$$1 d_{max}$$

 $s > \overline{\delta} \overline{\epsilon^2 d}$ Using Chernoff we should have:

$$Pr(|X - E[X]| \ge \epsilon E[X]) \le 2e^{-\frac{\epsilon^2 s}{3} \frac{d}{d_{max}}} \le \delta$$
$$s \ge 3\ln(\frac{1}{2\delta})\frac{d_{max}}{\epsilon^2 d}$$

An (incomplete) proof of Chernoff bound

Claim: Let $Y = Y_1 + \ldots + Y_t$ where Y_i 's are independent random variables taking values in the interval [0,1]. Let $\mu = E[Y]$. Then

$$Pr(Y \ge (1+\epsilon)\mu) \le (\frac{e^{\epsilon}}{(\epsilon+1)^{\epsilon+1}})^{\mu}$$

Proof: Fix $\theta > 0$.

$$Pr(Y \ge (1+\epsilon)\mu) = Pr(e^{\theta Y} \ge e^{\theta(1+\epsilon)\mu})$$

because $f(x) = e^x$ is a monotone function.

$$Pr(e^{\theta Y} \ge e^{\theta(1+\epsilon)\mu}) \le \frac{E[e^{\theta Y}]}{e^{\theta(1+\epsilon)\mu}} = \frac{E[e^{\theta(Y_1+\ldots+Y_t)}]}{e^{\theta(1+\epsilon)\mu}}$$

by Markov inequality.

Since Y_i 's are independent, (E[XY] = E[X]E[Y] when Y and X are independent.)

$$\frac{E[e^{\theta(Y_1+\ldots+Y_t)}]}{e^{\theta(1+\epsilon)\mu}} = \frac{E[e^{\theta Y_1}] \times \ldots \times E[e^{\theta Y_t}]}{e^{\theta(1+\epsilon)\mu}}$$

We show $E[e^{\theta Y_i}] \leq e^{(e^{\theta}-1)E[Y_i]}$. Since $Y_i \in [0,1]$,

$$E[e^{\theta Y_i}] \le E[1 + (e^{\theta} - 1)Y_i] = 1 + (e^{\theta} - 1)E[Y_i] \le e^{(e^{\theta} - 1)E[Y_i]}$$

Because for all $x \in [0,1]$ and $\theta > 0$, we have

$$e^{\theta x} \le 1 + (e^{\theta} - 1)x \le e^{(e^{\theta} - 1)x}$$

$$\frac{\prod_{i=1}^{t} E[e^{\theta Y_i}]}{e^{\theta(1+\epsilon)\mu}} \leq \frac{\prod_{i=1}^{t} e^{(e^{\theta}-1)E[Y_i]}}{e^{\theta(1+\epsilon)\mu}} = e^{(e^{\theta}-1)\mu-\theta(1+\epsilon)\mu} = e^{((e^{\theta}-1)-\theta(1+\epsilon))\mu}$$

The claim follows after setting $\theta = \ln(1 + \epsilon)$.

An application of Chernoff bound

Amplifying the success probability

Suppose we have a randomized algorithm A that processes the input data D and approximate some f(D) where

 $|A(D) - f(D)| \le \epsilon f(D)$ with probability at least 3/4.

How to amplify the success probability of A?

We want to have a randomized algorithm A' with error probability $\delta \ll 1/4$.

Idea: Run A on input data D, $O(\ln(\frac{1}{\delta}))$ times and output the median of the outcomes.

Each (independent) repetition of A succeeds with probability 3/4. Suppose a_i is the outcome of *i*-th repetition. We have

$$Pr(|a - f(D)| \ge \epsilon f(A)) \le 1/4.$$

We define $X_i = 1$ if *i*-th repetition is good (its error is less than $\epsilon f(A)$), otherwise we let $X_i = 0$.

 $X = X_1 + \ldots + X_t$ is the number of good outcomes in t repetitions.

The median of $\{a_1, \ldots, a_t\}$ is bad \Rightarrow Less than t/2 repetitions are good. In other words, X < t/2.

By Chernoff bound, we have

$$Pr(\text{median is bad}) \le Pr(X < t/2) \le e^{O(-t)} \le \delta \implies t = (\ln(\frac{1}{\delta}))$$