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Outline

▸ Deviation bounds: Markov, Chebyshev, Chernoff

▸ Estimating the average degree (continued)
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Recap from previous lecture

We have a sequence of n (unknown) integers between 1 and
n − 1 (these are degrees of a graph on n nodes.)

d1, d2, d3, d4, . . . , dn

Want to estimate d = d1+d2+...+dn
n

We sample s integers (with replacement) and output the
average.

Let Xi be a random variable associated with the i-th sample.

Algorithm’s output: X = 1

s
(X1 + . . . +Xs)

We know: E[X] = d
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Deviation from Expectation

We want to know how often X deviates from E[X] by a
considerable degree.

In other words, we want to bound this probability (ε ≥ 0)

Pr( ∣X −E[X] ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

the amount of deviation

≥ εE[X] )

We have some useful inequalities for this.
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Deviation Bounds

Markov Inequality: For any non-negative random variable X,

Pr(X ≥ t) ≤ E[X]
t

⇒ Pr(X ≥ tE[X]) ≤ 1

t

Chebyshev Inequality: For any random variable X and t > 0,

Pr(∣X −E[X] ∣ ≥ t) ≤ V ar[X]
t2

Specially (when t = εE[X]),

Pr(∣X −E[X] ∣ ≥ εE[X]) ≤ V ar[X]
ε2E2[X]

Proof: Apply Markov inequality to the random variable
Y = (X −E[X])2.
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Applying Chebyshev
We need an upper bound on V ar[X].

Since Xi’s are independent,

V ar[X] = V ar[1s(X1+. . .+Xs)] = 1
s2 (V ar[X1]+. . .+V ar[Xs])

Since Xi’s are identical, V ar[X] = 1
s2 sV ar[Xi] = 1

sV ar[Xi]

V ar[Xi] = E[X2
i ] −E2[Xi] = (d

2
1

n + . . . + d2n
n ) − d2

Pr(∣X −E[X] ∣ ≥ εE[X]) ≤
1
s
(d

2
1+...+d

2
n

n − d2)
ε2d2

= 1

ε2s
(n d21 + . . . + d2n

(d1 + . . . + dn)2
− 1)
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How large the term D = n d21+...+d
2
n

(d1+...+dn)2
can be?

Lets consider two cases:

3,3,3,3, . . . ,3

d = 3 D = 1

⇒ s = 1 is enough

3,3,3, . . . ,3, n − 1,3, . . . ,3

d ≈ 4 D = O(n)

⇒ s = O( nε2 )
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▸ It can be shown that D ≤ dmax
d when dmax = max{di}. It

suggests s = O(dmaxε2d ) is enough.

▸ The above cases tell us we need random Ω(n)
degree queries to distinguish between d = 3 and d ≈ 4.

▸ This shows 3
4 + ε approximation is not possible using o(n)

degree queries.

▸ Uriel Feige showed that O(
√
n
ε ) random degree queries is

enough to get a 1
2 − ε approximation of d.

▸ Note that even if we set ε = 2
3 (for 1

3 approximation),
Chebyshev inequality needs s = Ω(n).

Pr(X ≤ (1 − ε)E[X]) ≤ 1
ε2s

(D − 1)
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In our analysis using Chebyshev inequality, we did not use the
fact that d1, . . . , dn is the degree sequence of an undirected
graph. In other words, the numbers d1, . . . , dn have a certain
relation. Consider the following sequence:

1,1,1, . . . ,1,1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−t

, n, . . . , n
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

t

average ≈ t

Here we need s = Ω(n/t) samples for a α > 1/t approximation
of the average. /

But wait! These numbers cannot be degree sequence of a
graph.
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Union bound

Let E1, . . . ,Ek be a collection of events. Then

Pr(E1 ∪E2 ∪ . . . ∪Ek) ≤
k

∑
i=1

Pr(Ei)

Example: In the above sampling task, let Ei be the event that
we sample an n in the i-th round.

E = E1 ∪E2 ∪ . . . ∪Et ⇒ at least one nissampled

If we sample s times, by the union bound, we have

Pr(E) ≤
s

∑
i=1

Pr(Ei) =
s

∑
i=1

t

n
= st
n

If s < n
2t ⇒ Pr(E) < 1/2
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Lets try a different tool: Chernoff bound

Chernoff Bound: Let 0 ≤ ε ≤ 1. Suppose Y1, . . . , Yt are
independent random variables taking values in the interval

[0,1]. Let Y = ∑ti=1 Yi. Then

Pr( Y ≤ (1 − ε)E[Y ]) ≤ e−
ε2E[Y ]

2

Pr( Y ≥ (1 + ε)E[Y ]) ≤ e−
ε2E[Y ]

3

Pr( ∣Y −E[Y ]∣ ≥ εE[Y ]) ≤ 2e−
ε2E[Y ]

3

Proof: We present an incomplete proof shortly.
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Lets apply Chernoff inequality to our problem.

Recall that X = 1
s(X1 + . . . +Xs) where Xi ∈ {1, . . . , dmax}.

We define Yi = Xi
dmax

⇒ Yi ∈ [0,1].

Y = Y1 + . . . + Ys ⇒ Y = s

dmax
X

E[Y ] = s

dmax
d

Pr(∣X −E[X]∣ ≥ εE[X]) = Pr(∣ sX
dmax

−E[ sX
dmax

]∣ ≥ εE[ sX
dmax

])

= Pr(∣Y −E[Y ]∣ ≥ εE[Y ])

≤ 2e−
ε2E[Y ]

3 = 2e−
ε2s
3

d
dmax
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A direct application of Chernoff bound suggest s = O(dmaxdε2 ).

This is the same bound that we obtained using Chebyshev!

This is again what we expected because we have not yet used
the fact that the numbers d1, . . . , dn are the degree sequence
of a graph.

In comparison with Chebyshev inequality:

▸ Chernoff does not need a knowledge of the variance. It
only needs the expectation.

▸ Chernoff gives a much higher probability of concentration.
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Comparing Chebyshev and Chernoff

Suppose we want to have error probability δ < 0.

Using Chebyshev we should have:

Pr(∣X −E[X]∣ ≥ εE[X]) ≤ 1

ε2s
(D − 1) < 1

ε2s
(dmax

d
) ≤ δ

s > 1

δ

dmax
ε2d

Using Chernoff we should have:

Pr(∣X −E[X]∣ ≥ εE[X]) ≤ 2e−
ε2s
3

d
dmax ≤ δ

s ≥ 3 ln( 1

2δ
)dmax
ε2d
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An (incomplete) proof of Chernoff bound

Claim: Let Y = Y1 + . . . + Yt where Yi’s are independent
random variables taking values in the interval [0,1]. Let
µ = E[Y ]. Then

Pr(Y ≥ (1 + ε)µ) ≤ ( eε

(ε + 1)ε+1 )
µ

Proof: Fix θ > 0.

Pr(Y ≥ (1 + ε)µ) = Pr(eθY ≥ eθ(1+ε)µ)
because f(x) = ex is a monotone function.

Pr(eθY ≥ eθ(1+ε)µ) ≤ E[eθY ]
eθ(1+ε)µ

= E[eθ(Y1+...+Yt)]
eθ(1+ε)µ

by Markov inequality.
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Since Yi’s are independent, (E[XY ] = E[X]E[Y ] when Y
and X are independent.)

E[eθ(Y1+...+Yt)]
eθ(1+ε)µ

= E[eθY1] × . . . ×E[eθYt]
eθ(1+ε)µ

We show E[eθYi] ≤ e(eθ−1)E[Yi]. Since Yi ∈ [0,1],

E[eθYi] ≤ E[1 + (eθ − 1)Yi] = 1 + (eθ − 1)E[Yi] ≤ e(e
θ
−1)E[Yi]

Because for all x ∈ [0,1] and θ > 0, we have

eθx ≤ 1 + (eθ − 1)x ≤ e(eθ−1)x

∏t
i=1E[eθYi]
eθ(1+ε)µ

≤ ∏
t
i=1 e

(eθ−1)E[Yi]

eθ(1+ε)µ
= e(eθ−1)µ−θ(1+ε)µ = e((eθ−1)−θ(1+ε))µ

The claim follows after setting θ = ln(1 + ε).
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An application of Chernoff bound
Amplifying the success probability

Suppose we have a randomized algorithm A that processes the
input data D and approximate some f(D) where

∣A(D) − f(D)∣ ≤ εf(D) with probability at least 3/4.

How to amplify the success probability of A?

We want to have a randomized algorithm A′ with error
probability δ << 1/4.

Idea: Run A on input data D, O(ln(1
δ )) times and output the

median of the outcomes.



18/29

Each (independent) repetition of A succeeds with probability
3/4. Suppose ai is the outcome of i-th repetition. We have

Pr(∣a − f(D)∣ ≥ εf(A)) ≤ 1/4.
We define Xi = 1 if i-th repetition is good (its error is less
than εf(A)), otherwise we let Xi = 0.

X =X1 + . . . +Xt is the number of good outcomes in t
repetitions.

The median of {a1, . . . , at} is bad ⇒ Less than t/2
repetitions are good. In other words, X < t/2.

By Chernoff bound, we have

Pr(median is bad) ≤ Pr(X < t/2) ≤ eO(−t) ≤ δ ⇒ t = (ln(1

δ
))


