
Lecture 4:

Estimating the Average Degree

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics

K. N. Toosi University of Technology

Spring 2021

1/20



2/20

Outline

▸ An application of Chernoff bound

▸ Estimating the average degree (continued)
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Recap from previous lecture

Chernoff Bound: Let 0 ≤ ε ≤ 1. Suppose Y1, . . . , Yt are
independent random variables taking values in the interval

[0,1]. Let Y = ∑
t
i=1 Yi. Then

Pr( Y ≤ (1 − ε)E[Y ]) ≤ e−
ε2E[Y ]

2

Pr( Y ≥ (1 + ε)E[Y ]) ≤ e−
ε2E[Y ]

3

Pr( ∣Y −E[Y ]∣ ≥ εE[Y ]) ≤ 2e−
ε2E[Y ]

3
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An application of Chernoff bound
Amplifying the success probability

Suppose we have a randomized algorithm A that processes the
input data D and approximate some f(D) where

∣A(D) − f(D)∣ ≤ εf(D) with probability at least 3/4.

How to amplify the success probability of A?

We want to have a randomized algorithm A′ with error
probability δ << 1/4.

Idea: Run A on input data D, t = Ω(ln(1
δ )) times and output

the median of the outcomes.
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The median of n elements is the element with rank ⌈n2 ⌉. The
rank of an element is its position in the sorted list.

Example: median(5,2,14,21,15,10,6) = 10

Suppose ai is the outcome of i-th run of algorithm A.

Final Ouput: median(a1, a2, . . . , at).

Each (independent) run of A succeeds with probability 3/4.
Therefore we have

Pr(∣ai − f(D)∣ ≥ εf(A)) ≤ 1/4.

We define Xi = 1 if i-th run is good (its error is less than
εf(A)), otherwise we let Xi = 0.
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X =X1 + . . . +Xt is the number of good outcomes in t
repetitions.

We define the events:

E1 = The median of {a1, . . . , at} is bad

E2 = Less than t/2 repetitions are good ⇒ X < t/2

Important Observation: If the event E1 happens then the
event E2 has happened. Therefore Pr(E1) ≤ Pr(E2).

Median is too small: 5,5,8,8,11, . . . ,78
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bad

, 79
®
bad

,83, . . . ,121,124,130

Median is too big: 5,5,8,8,11, . . . ,78, 79
®
bad

,83, . . . ,121,124,130
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bad
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It follows, Pr(median is bad) ≤ Pr(X < t/2).

Since E[X] ≥ 3
4t, using Chernoff bound, we get

Pr(X < t/2) ≤ Pr(X < (1 −
1

3
)E[X]) ≤ e−(

1
3
)2( 3

4
t)( 1

2
) ≤ δ

Finally we get

t ≥
72

3
ln(

1

δ
)
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Estimating the average degree (continued)
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A slight change in the algorithm
The value of repetition

Basic estimator: Compute

X =
1

s
(X1 + . . . +Xs)

where each Xi is the degree of a random vertex.

The New estimator: Repeat the Basic estimator 8
ε times and

output the smallest outcome.

samples in each repetition
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
S1, S2, . . . , S8/ε

Si ⊆ V, ∣Si∣ = s
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Consider a repetition of the basic estimator. By
Markov inequality, we have

Pr(X ≥ (1 + ε)E[X]) ≤
1

1 + ε
≤ 1 −

ε

2

What is the probability that in all repetitions, the basic
estimator X is larger than (1 + ε)E[X]?

≤ (1 −
ε

2
)8/ε ≤

1

8
, (1 −

1

n
)n ≤ 1 − 1/e

Therefore with probability 1 − 1
8 , the smallest outcome is not

bigger than (1 + ε)E[X]. It does not overestimate by large.
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The probability of underestimation: Now we need to bound
the probability that the outcome of a repetition falls below
αE[X] for α < 1.

Suppose we are able to prove the probability that the outcome
of a single repetition falls below αE[X] (bad event) is at
most ε

64 .

The probability that at least one repetition is bad is at most
8
ε ×

ε
64 =

1
8 . (Union bound)

Therefore the probability of bad events happening
(overestimation and underestimation) is at most 1

8 +
1
8 =

1
4 .
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Main Idea: Recall the result we got from Chernoff bound:

number of samples = s ≥
3

ε2
ln(

1

2δ
)
dmax
d

This say if the term dmax
d is small then the number of required

samples would be small.

Suppose in the graph G = (V,E), we show there is always a
subset L ⊂ V with the following properties:

1. The average degree in L is at
least (1

2 − ε)d.

2. Every vertex outside L has
degree ≥ dmax(L).

3.
dmax(L)

d(L)
≈ O(

√
n)

d(L)= average degree in L

dmax(L) =
maximum degree in L
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Bounding the probability of underestimation:

Let H be the set of
√
εn

vertices with highest
degrees.

Let L be the rest of
vertices.

Let dH be the smallest
degree in H.

Note: total degree in
graph is 2m.

Claim: Average degree in L is at least (1
2 − ε)d
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Proof: Lets calculate the total degree in L. In the process,

▸ Every edge with both endpoint in L is counted twice.

▸ Every edge with one endpoint in L and the other in H is
counted once.

▸ The edges inside H are not counted.

How many edges can be inside H?

At most
√
εn ×

√
εn = εn edges.

This is at most εm assuming m ≥ n. Therefore total degree in
L is at least 2m − 1

2(2m) − 2εm = (1
2 − ε)2m.

Since ∣L∣ ≤ n, the average degree in L is at least

(1
2 − ε)2m

∣L∣
≥

(1
2 − ε)2m

n
= (

1

2
− ε)d
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Important Observation: Since we want to bound the
probability of underestimation, we can safely assume that
the estimator only samples the vertices in L.

(this is the worst-case scenario.)

Lets apply the Chernoff bound to the vertices in L.

E → the event that we sample only vertices in L

E[X ∣E] = d(L)

Note that dmax(L) ≤ dH . Conditioned on E, we have

Pr(X ≤ (1 − ε)L(d)) ≤ e
− ε2s

3
d(L)

dH
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Since the vertices in H have degree at least dH ,

d ≥
∣H ∣dH
n

We also know that

d(L) ≥ (
1

2
− ε)d ≥ (

1

2
− ε)

∣H ∣dH
n

We want

e
− ε2s

2
d(L)

dH ≤ e
− ε2s

2

(
1
2−ε)

∣H∣dH
n

dH = e−
ε2

2
( 1
2
−ε) s∣H∣

n

to be smaller than e−5−ln
1
ε ≤ ε

64 .

Let assume ε < 1
4 . Setting

s ≥ 8n
ε2∣H ∣(5+ ln 1

ε ) = O(ln(1
ε )ε

−2.5√n) works. (Note ∣H ∣ =
√
εn)
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Summing up

Let X be the outcome of a single repetition. We showed if we
set s = β ln(1

ε )ε
−2.5√n when β is a large enough constant, we

have

Pr(X ≤ (1 − ε)L(d)) ≤
ε

64

Let X∗ be the repetition with smallest outcome.

Pr(X∗ ≤ (1−ε)(
1

2
−ε)d) ≤ Pr(X∗ ≤ (1−ε)L(d)) ≤

8

ε

ε

64
=

1

8

We also showed that

Pr(X∗ ≥ (1 + ε)d) ≤
1

8



18/20

Pr((1 − ε)(
1

2
− ε)d ≤X∗ ≤ (1 + ε)d) ≥ 1 −

1

8
−

1

8

Pr((
1

2
−

3

2
ε)d ≤ X∗ ≤ (1 + ε)d) ≥

3

4

To eliminate underestimation, we can return X ′ = 2
1−3εX

∗

instead. We have

Pr(d ≤ X ′ ≤ 2
1 + ε

1 − 3ε
d) ≥

3

4

Pr(d ≤ X ′ ≤ (2 +O(ε))d) ≥
3

4

Query complexity: Number of degree queries we made in total
is bounded by

8

ε
× s =

8

ε
β ln(

1

ε
)ε−2.5

√
n = O(ln(

1

ε
)ε−3.5

√
n)
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Theorem: Let 0 < ε < 1/4. Given a graph G = (V,E) where
∣V ∣ = n and ∣E∣ ≥ n, there is an algorithm that makes
O(ln(1

ε )ε
−3.5√n) random degree queries and with probability

at least 3/4 returns a 2 +O(ε) factor approximation of the
average degree of the graph.

Feige’s result: Given a graph G = (V,E) where ∣V ∣ = n and
∣E∣ ≥ n, there is an algorithm that makes O(ε−1

√
n) random

degree queries and with probability at least 3/4 returns a
2 +O(ε) factor approximation of the average degree of the
graph.
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Using different types of queries (for example neighbor queries)
we can get more efficient algorithms.

See Goldreich and Ron’s and Dasgupta, Kumar, Sarlos’s paper
in the suggested reading list.


