## Lecture 5:

# Estimating the Number of Connected Components 

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics
K. N. Toosi University of Technology

Spring 2021

## Connected Components



- A pair of vertices $u$ and $v$ are connected iff there is a path between $u$ and $v$.
- In an undirected graph $G=(V, E)$, a connected component in $G$ is a maximal subset $S \subseteq V$ where every pair of vertices in $S$ are connected in the induced subgraph on $S$.
- The above graph has 3 connected components.


## Connected components can represent:

- Related entities in a system

- Communities in a social network
- Clusters in a graph
- Objects in an image



## Computing the connected components



- A relatively easy problem
- There is a $O(m)$ time algorithm using popular graph traversal algorithms (BFS/DFS)
- $c c(G)=$ number of connected components in graph $G$
- Every algorithm that distinguishes between $c c(G)=1$ and $c c(G) \geq 2$ needs $\Omega(m)$ time.
- An additive approximation of $c c(G)$ is possible in sublinear time.


## Additive approximation of $c c(G)$

We study a randomized algorithm $A$ that approximates the number of connected components in the graph $G$.

Let $A(G)$ be the output of the algorithm. We have

$$
\operatorname{Pr}(|A(G)-c c(G)| \leq \epsilon n) \geq 1-\delta
$$

Algorithm $A$ performs $O\left(\ln \left(\frac{1}{\delta}\right) \frac{1}{\epsilon^{4}}\right)$ number of neighbor queries.
Neighbor query: Given a vertex $u$ and number $i \in\{1, \ldots, n\}$, output the $i$-th neighbor of $u$ if it exists otherwise output $\perp$.

$$
u: \underbrace{\left(v_{1}, \ldots, v_{k}\right)}_{\text {neighbors of } u}
$$

## Idea Behind Algorithm

Let $C(u)$ be the connected component that contains the vertex $u$. Here $|C|$ denotes the size of component $C$.

Lemma 1: $c c(G)=\sum_{u \in V} \frac{1}{|C(u)|}$.


In the above example:

$$
c c(G)=\underbrace{\left(\frac{1}{7}+\ldots+\frac{1}{7}\right.}_{7})+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)=3
$$

A slow algorithm: For each vertex $u \in V$, compute $\frac{1}{|C(u)|}$ and output the resulting summation.



BFS: Starting from vertex 0 , we find all vetices that are reachable.

We check every reachable edge.

Time complexity for each vertex is $O(m)$

Time complexity of the slow algorithm: $O(n m)$

## Additive Approximation of $c c(G)$

A deterministic algorithm with additive error: For each vertex $u \in V$, compute $\frac{1}{|C(u)|}$ but stop when the size of the component exceeds $\frac{2}{\epsilon}$. In other words, we compute the following.

$$
c c^{\prime}(G)=\sum_{u \in V} \frac{1}{z(u)}, \quad \text { where } z(u)=\min \left\{|C(u)|, \frac{2}{\epsilon}\right\} .
$$

Claim:

$$
\left|c c^{\prime}(G G)-c c(G)\right| \leq \frac{\epsilon n}{2}
$$

Proof of Claim: The quantity $c c^{\prime}(G)$ overestimates $c c(G)$.

So we have

$$
\begin{gathered}
c c^{\prime}(G)-c c(G)= \\
=\sum_{u \in V} \frac{1}{\min \left\{|C(u)|, \frac{2}{\epsilon}\right\}}-\sum_{u \in V} \frac{1}{|C(u)|} \\
=\left(\sum_{|C(u)| \leq \frac{2}{\epsilon}} \frac{1}{|C(u)|}+\sum_{|C(u)| \frac{2}{\epsilon}} \frac{\epsilon}{2}\right)-\left(\sum_{|C(u)| \leq \frac{2}{\epsilon}} \frac{1}{|C(u)|}+\sum_{|C(u)|>\frac{2}{\epsilon}} \frac{1}{|C(u)|}\right) \\
=\sum_{|C(u)|>\frac{2}{\epsilon}}\left(\frac{\epsilon}{2}-\frac{1}{|C(u)|}\right) \\
<\sum_{|C(u)| \geq \frac{2}{\epsilon}} \frac{\epsilon}{2} \\
\leq \frac{\epsilon n}{2}
\end{gathered}
$$

The running time of the deterministic algorithm: For each vertex $u$, we compute $\min \left\{|C(u)|, \frac{2}{\epsilon}\right\}$.

Question: In worst-case, how many neighbor queries we need ask to compute $\min \left\{|C(u)|, \frac{2}{\epsilon}\right\}$ ?


A graph with $k$ vertices has at most $\frac{1}{2} k(k-1)$ edges.
Therefore we need to ask at most $\frac{2}{\epsilon} \times \frac{2}{\epsilon}+1$ neighbor queries.
Query complexity of the deterministic algorithm: $O\left(\frac{n}{\epsilon^{2}}\right)$

## A faster randomized algorithm

Consider the quantity,

$$
c c^{\prime}(G)=\sum_{u \in V} \frac{1}{z(u)}, \quad \text { where } z(u)=\min \left\{|C(u)|, \frac{2}{\epsilon}\right\}
$$

Let $z^{\prime}(u)=\frac{1}{z(u)}$. We have

$$
c c^{\prime}(G)=\sum_{u \in V} z^{\prime}(u), \quad \text { Note: } z^{\prime}(u) \in\left[\frac{\epsilon}{2}, 1\right]
$$

Randomized algorithm: Sample $S \subseteq V$ (with replacement), and compute

$$
\frac{n}{|S|} \sum_{u \in S} z^{\prime}(u)
$$

## Analysis of the randomized algorithm:

Let $i \in\{1, \ldots,|S|\}$. Let $X_{i}$ be the outcome of the $i$-th sample. We have

$$
E\left[X_{i}\right]=\frac{1}{n}\left(z^{\prime}\left(u_{1}\right)+z^{\prime}\left(u_{2}\right)+\ldots+z^{\prime}\left(u_{n}\right)\right)=\frac{1}{n} c c^{\prime}(G) .
$$

Let $X=\sum_{i=1}^{|S|} X_{i}$. We have

$$
E[X]=\sum_{i=1}^{|S|} E\left[X_{i}\right]=\frac{|S|}{n} c c^{\prime}(G)
$$

Let $Y$ be the output of the algorithm. We have $Y=\frac{n}{|S|} X$.
Therefore,

$$
E[Y]=\frac{n}{|S|} E[X]=c c^{\prime}(G)
$$

$$
\begin{aligned}
\operatorname{Pr}\left(|Y-E[Y]| \geq \frac{\epsilon n}{2}\right) & =\operatorname{Pr}\left(\left|\frac{n X}{|S|}-E\left[\frac{n X}{|S|}\right]\right| \geq \frac{\epsilon n}{2}\right) \\
& =\operatorname{Pr}\left(|X-E[X]| \geq \frac{\epsilon|S|}{2}\right)
\end{aligned}
$$

Additive Chernoff Bound: Suppose $Y_{1}, \ldots, Y_{k}$ are independent random variables taking values in the interval $[0,1]$. Let $Y=$ $\sum_{i=1}^{k} Y_{i}$. For any $t \geq 1$,

$$
\operatorname{Pr}(|Y-E[Y]| \geq t) \leq 2 e^{-\frac{2 t^{2}}{k}}
$$

Using additive Chernoff bound, we get

$$
\operatorname{Pr}\left(|X-E[X]| \geq \frac{\epsilon|S|}{2}\right) \leq 2 e^{-\frac{2\left(\frac{\left.\epsilon^{2}| |\right|^{2}}{| |}\right)}{|S|}} \leq \delta \Rightarrow s=\Omega\left(\frac{1}{\epsilon^{2}} \ln \left(\frac{1}{\delta}\right)\right)
$$

$Y$ is the output of the algorithm. We just showed that

$$
\operatorname{Pr}\left(|Y-E[Y]| \geq \frac{\epsilon n}{2}\right) \leq \delta
$$

Since $E[Y]=c c^{\prime}(G)$,

$$
\operatorname{Pr}\left(\left|Y-c c^{\prime}(G)\right| \geq \frac{\epsilon n}{2}\right) \leq \delta
$$

Also we have,

$$
c c^{\prime}(G)-c c(G) \leq \frac{\epsilon n}{2}
$$

Finally,

$$
\operatorname{Pr}(|Y-c c(G)| \geq \epsilon n) \leq \delta
$$

Query complexity of the algorithm:

- We sample $s=\Omega\left(\frac{1}{\epsilon^{2}} \ln \left(\frac{1}{\delta}\right)\right)$ vertices.
- For each sampled vertex $u$, we compute $z^{\prime}(u)$.
- As we saw earlier, to compute $z^{\prime}(u)$, we make at most $O\left(\frac{1}{\epsilon^{2}}\right)$ neighbor queries.
- The total number of neighbor queries is $O\left(\ln \left(\frac{1}{\delta}\right) \frac{1}{\epsilon^{4}}\right)$.


## Final Remarks

- The algorithm we presented is from the following paper:
B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning tree weight in sublinear time. SIAM J. of Computing. 2005.
- Estimating the number of connected components is used in estimating the weight of the minimum spanning tree of a graph.
- There are faster algorithms for estimating the number of connected components. See the following paper.
P. Berenbrink, B. Krayenhoff, F. Mallmann-Trenn.

Estimating the number of connected components in sublinear time. Information Processing Letters. 2014.

