
Lecture 5:

Estimating the Number of Connected

Components

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics

K. N. Toosi University of Technology

Spring 2021

1/16

2/16

Connected Components

▸ A pair of vertices u and v are connected iff there is a path
between u and v.

▸ In an undirected graph G = (V,E), a connected
component in G is a maximal subset S ⊆ V where every
pair of vertices in S are connected in the
induced subgraph on S.

▸ The above graph has 3 connected components.

3/16

Connected components can represent:

▸ Related entities in a system

▸ Communities in a social network

▸ Clusters in a graph

▸ Objects in an image

4/16

Computing the connected components

▸ A relatively easy problem

▸ There is a O(m) time algorithm using popular graph
traversal algorithms (BFS/DFS)

▸ cc(G) = number of connected components in graph G

▸ Every algorithm that distinguishes between cc(G) = 1 and
cc(G) ≥ 2 needs Ω(m) time.

▸ An additive approximation of cc(G) is possible in
sublinear time.

5/16

Additive approximation of cc(G)
We study a randomized algorithm A that approximates the
number of connected components in the graph G.

Let A(G) be the output of the algorithm. We have

Pr(∣A(G) − cc(G)∣ ≤ εn) ≥ 1 − δ

Algorithm A performs O(ln(1
δ) 1

ε4) number of neighbor queries.

Neighbor query: Given a vertex u and number i ∈ {1, . . . , n},
output the i-th neighbor of u if it exists otherwise output ⊥.

u ∶ (v1, . . . , vk)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
neighbors of u

6/16

Idea Behind Algorithm

Let C(u) be the connected component that contains the
vertex u. Here ∣C ∣ denotes the size of component C.

Lemma 1: cc(G) = ∑u∈V 1
∣C(u)∣ .

In the above example:

cc(G) = (1

7
+ . . . + 1

7´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
7

) + (1

2
+ 1

2
) + (1

3
+ 1

3
+ 1

3
) = 3

7/16

A slow algorithm: For each vertex u ∈ V , compute 1
∣C(u)∣ and

output the resulting summation.

BFS: Starting
from vertex 0,
we find all
vetices that are
reachable.

We check every
reachable edge.

Time
complexity for
each vertex is
O(m)

Time complexity of the slow algorithm: O(nm)

8/16

Additive Approximation of cc(G)

A deterministic algorithm with additive error: For each vertex
u ∈ V , compute 1

∣C(u)∣ but stop when the size of the component

exceeds 2
ε . In other words, we compute the following.

cc′(G) = ∑
u∈V

1

z(u) , where z(u) = min{∣C(u)∣, 2

ε
}.

Claim:
∣cc′(GG) − cc(G)∣ ≤ εn

2
.

Proof of Claim: The quantity cc′(G) overestimates cc(G).

9/16

So we have

cc′(G) − cc(G) =

= ∑
u∈V

1

min{∣C(u)∣, 2ε}
− ∑
u∈V

1

∣C(u)∣

= (∑
∣C(u)∣≤ 2

ε

1

∣C(u)∣+ ∑
∣C(u)∣> 2

ε

ε

2
)−(∑

∣C(u)∣≤ 2
ε

1

∣C(u)∣+ ∑
∣C(u)∣> 2

ε

1

∣C(u)∣)

= ∑
∣C(u)∣> 2

ε

(ε
2
− 1

∣C(u)∣)

< ∑
∣C(u)∣> 2

ε

ε

2

≤ εn
2

10/16

The running time of the deterministic algorithm: For each
vertex u, we compute min{∣C(u)∣, 2ε}.

Question: In worst-case, how many neighbor queries we need

ask to compute min{∣C(u)∣, 2ε}?

A graph with k vertices has at most 1
2k(k − 1) edges.

Therefore we need to ask at most 2
ε × 2

ε + 1 neighbor queries.

Query complexity of the deterministic algorithm: O(nε2)

11/16

A faster randomized algorithm
Consider the quantity,

cc′(G) = ∑
u∈V

1

z(u) , where z(u) = min{∣C(u)∣, 2

ε
}.

Let z′(u) = 1
z(u) . We have

cc′(G) = ∑
u∈V

z′(u), Note: z′(u) ∈ [ε
2
,1].

Randomized algorithm: Sample S ⊆ V (with replacement),
and compute

n

∣S∣ ∑u∈S
z′(u)

12/16

Analysis of the randomized algorithm:

Let i ∈ {1, . . . , ∣S∣}. Let Xi be the outcome of the i-th sample.
We have

E[Xi] =
1

n
(z′(u1) + z′(u2) + . . . + z′(un)) =

1

n
cc′(G).

Let X = ∑∣S∣i=1Xi. We have

E[X] =
∣S∣

∑
i=1

E[Xi] =
∣S∣
n
cc′(G)

Let Y be the output of the algorithm. We have Y = n
∣S∣X.

Therefore,

E[Y] = n

∣S∣E[X] = cc′(G).

13/16

Pr(∣Y −E[Y]∣ ≥ εn
2

) = Pr(∣nX∣S∣ −E[nX∣S∣]∣ ≥
εn

2
)

= Pr(∣X −E[X]∣ ≥ ε∣S∣
2

)

Additive Chernoff Bound: Suppose Y1, . . . , Yk are independent
random variables taking values in the interval [0,1]. Let Y =
∑ki=1 Yi. For any t ≥ 1,

Pr(∣Y −E[Y]∣ ≥ t) ≤ 2e−
2t2

k

Using additive Chernoff bound, we get

Pr(∣X −E[X]∣ ≥ ε∣S∣
2

) ≤ 2e−
2(ε

2 ∣S∣2
4)
∣S∣ ≤ δ ⇒ s = Ω(1

ε2
ln(1

δ
))

14/16

Y is the output of the algorithm. We just showed that

Pr(∣Y −E[Y]∣ ≥ εn
2

) ≤ δ

Since E[Y] = cc′(G),

Pr(∣Y − cc′(G)∣ ≥ εn
2

) ≤ δ

Also we have,

cc′(G) − cc(G) ≤ εn
2

Finally,

Pr(∣Y − cc(G)∣ ≥ εn) ≤ δ

15/16

Query complexity of the algorithm:

▸ We sample s = Ω(1
ε2 ln(1

δ)) vertices.

▸ For each sampled vertex u, we compute z′(u).

▸ As we saw earlier, to compute z′(u), we make at most
O(1

ε2) neighbor queries.

▸ The total number of neighbor queries is O(ln(1
δ) 1

ε4).

16/16

Final Remarks

▸ The algorithm we presented is from the following paper:

B. Chazelle, R. Rubinfeld, and L. Trevisan.
Approximating the minimum spanning tree weight in
sublinear time. SIAM J. of Computing. 2005.

▸ Estimating the number of connected components is used
in estimating the weight of the minimum spanning tree of
a graph.

▸ There are faster algorithms for estimating the number of
connected components. See the following paper.

P. Berenbrink, B. Krayenhoff, F. Mallmann-Trenn.
Estimating the number of connected components in
sublinear time. Information Processing Letters. 2014.

