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Outline

▸ Finding an approximate median in sublinear time

▸ k-median clustering in sublinear time
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Approximate median
Input: A large set of elements A = {a1, . . . , an}. We assume D
has a total ordering.

Rank of an element: rank(x) = ∣{y ∈ A ∣ y ≤ x}∣

Median: med(A) = x where rank(x) = ⌈n2 ⌉.

Approximate Median: An ε-approximate median of A is an
y ∈ A where
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Finding an approximate median via sampling

Algorithm: Sample s elements from A (with replacement) and
return the median of the sample set.

Lemma: If s ≥ 7
ε2 ln(2

δ ), the algorithm returns an
ε-approximate median with probability at least 1 − δ.

Proof: Partition A into 3 groups:

AL = {x ∈ A ∶ rank(x) < ⌈
n

2
⌉ − εn}

AM = {x ∈ A ∶ ⌈
n

2
⌉ − εn ≤ rank(x) ≤ ⌈

n

2
⌉ + εn}

AH = {x ∈ A ∶ rank(x) > ⌈
n

2
⌉ + εn}
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Observation: If less than s
2 elements from both AL and AH

are present in the sample set then the median of the sample is
an ε-approximate median.

Proof: The argument is similar to what we discussed in
Lecture 4 (see page 6).

Let Xi = 1 if the i-th sample is from AL, otherwise Xi = 0.
X = ∑

s
i=1Xi.

E[X] ≤ (
1

2
− ε)s

Assume ε ≤ 0.1. By Chernoff bound,

Pr(X ≥
s

2
) ≤ Pr(X ≥ (1 + ε)E[X]) ≤ e−

ε2

3
(
1
2
−ε)s ≤

δ

2
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By similar argument, if we set s ≥ 7ε−2 ln(2
δ ) (assuming

ε ≤ 0.1) the probability that the number of elements from AH
in the sample set is at least s

2 is bounded by δ/2.

By union bound, number of elements from both AL and AH in
the sample set is less than s

2 with probability at least 1 − δ.

Therefore with probability 1 − δ, the output of the algorithm is
an ε-approximate median of A.

Sample complexity: O( 1
ε2 ln(1

δ ))

Homework: Generalize this result to the problem of finding an
element with (approximate) rank t.
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k-median clustering

k-median clustering problem: Given a metric (X,d) where X
is a finite set of data points and d is a distance defined over
X, in the (discrete) k-median problem, the goal is to select k
center points c1, . . . , ck from X, so that the sum of distances
to the closest center is minimized.

X = {x1, . . . , xn}

min
c1,...,ck⊆X

n

∑
i=1

min
j=1,...,k

{d(xi, cj)}

Note: In a metric space, the distance is a symmetric function
and the triangle inequality holds.

Note: If ∣X ∣ = n, the metric (X,d) can be represented by a
symmetric n by n matrix.
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Note: The problem is equivalent to the problem of minimizing
the average distance to the closest center.

min
c1,...,ck⊆X

1

n

n

∑
i=1

min
j=1,...,k

{d(xi, cj)}
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Continuous k-median problem
In the continuous version, the finite set of points X lie in a
continuous space (for example X ⊂ Rd with the Euclidean
distance.) Here we are allowed to choose the k centers from
the entire space, not just from the given points X.

Note: Both discrete and continuous versions of k-median
clustering are NP-hard problems. It means, assuming NP ≠ P ,
there is no polynomial time algorithm for finding an optimal
k-median clustering.
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Some algorithmic facts

▸ Trivially, there is a O(knk+1) time algorithm for finding
an optimal k-median clustering (discrete version). why?

There are (
n
k
) = O(nk) ways for selecting the centers.

▸ The problem is NP-hard even for points in R2.

▸ There is a polynomial time approximation algorithm for
k-median clustering that returns a solution with cost at
most α = 2.611 times the optimal cost.

▸ There is O(n logn log k) time constant factor
approximation algorithm for k-median clustering when the
points lie in Rd with constant d.
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Lemma: An optimal solution for the discrete version is a
2-factor approximation solution for the continuous version.

Proof: Use triangle inequality.

Replace each optimal continuous center with its closest point
in X. See the figure below.

a ≤ b + c, c ≤ b

⇒ a ≤ 2b

Corollary: Any α-factor approximation algorithm for the
discrete version is a 2α-factor approximation algorithm for the
continuous version.
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Sublinear time clustering via sampling

Is the sample a
good
representative of
the whole data?

In general, we
need to see the
whole data to get
a good
approximation.
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If we make certain assumptions about the data, we may hope
that a small sample is a good representative of the whole.

Some algorithmic results in this direction:

▸ There is a Õ(D
2

ε2 k ln(nδ )) time randomized algorithm that
returns a solution with cost at most O(OPT ) + εn with
probability 1 − δ. Here D is the diameter of the points.
Mishra, Oblinger, Pitt, 2001.

▸ There is a O(k
3

ε2 log3 k) time randomized algorithm that
returns a solution with cost O(OPT ) under the
assumption that every optimal cluster is of size at least
Ω(nεk ). Meyerson et al.2004

▸ There is a O(Dε2k ln(1
δ )) time randomized algorithm that

returns a solution with cost at most O(OPT ) + εn with
probability 1 − δ. Czumaj, Sohler.
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Mishra, Oblinger, Pitt (MOP)’s Algorithm

Assumption: Suppose there is a deterministic α-factor
approximation algorithm A for the k-median clustering
problem that runs in T (n, k,α) time.

MOP’s Idea:

▸ Fix ε ∈ (0,1) and δ ∈ (0,1).

▸ Pick a sample S of size at least (αD)
2

ε2 k ln(nδ ) from the
points X. Here D is the diameter of the input points.

▸ Run algorithm A on the sample S and return the solution.

Claim: With probability at least 1 − δ, we have

cost(MOPAV G) ≤ 2α cost(OPTAV G) + ε
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MOP’s algorithm

Main Tool:
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More details for the next lecture.


