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Outline

» Finding an approximate median in sublinear time

» k-median clustering in sublinear time



Approximate median

Input: A large set of elements A = {ay,...,a,}. We assume D
has a total ordering.

Rank of an element: rank(x) =|{ye A|y <z}
Median: med(A) = « where rank(z) = [%].

Approximate Median: An e-approximate median of A is an
y € A where

[g] —en <rank(y) < [g] +en

median
—

SO’/‘t@d(A) = bl,bg, .. .,b[g],m,..., b[%] ,...,b[%]ﬁn,...,bn_l,bn

e—approximate medians



Finding an approximate median via sampling

Algorithm: Sample s elements from A (with replacement) and
return the median of the sample set.

Lemma: If s> E12111(§), the algorithm returns an
e-approximate median with probability at least 1 - 4.

Proof: Partition A into 3 groups:

Ap={z e A : rank(z) < [g] —en}
Ay={xeA: [g] —en <rank(z) < [g] +en}

Ag={z e A : rank(z) > [g] +en}



Observation: If less than 5 elements from both A; and Ay
are present in the sample set then the median of the sample is
an e-approximate median.

Proof: The argument is similar to what we discussed in
Lecture 4 (see page 6).

Let X; =1 if the i-th sample is from A, otherwise X; = 0.
X=X

E[X]< (%—e)s

Assume € < 0.1. By Chernoff bound,

Pr(X > g) < Pr(X > (1+e)E[X]) e T35 <



By similar argument, if we set s > 7e 2In(2) (assuming
€ < 0.1) the probability that the number of elements from Ay
in the sample set is at least 5 is bounded by §/2.

By union bound, number of elements from both Ay and Ay in
the sample set is less than 5 with probability at least 1 - 4.

Therefore with probability 1 — ¢, the output of the algorithm is
an e-approximate median of A.

Sample complexity: O(Z%1n(3))

Homework: Generalize this result to the problem of finding an
element with (approximate) rank ¢.



k-median clustering

k-median clustering problem: Given a metric (X, d) where X
is a finite set of data points and d is a distance defined over
X, in the (discrete) k-median problem, the goal is to select &
center points ¢y, ..., c; from X, so that the sum of distances
to the closest center is minimized.

X ={z1,...,x,}

min Y E{link{d(xi, ci)}

c1yeyep X S J=1
Note: In a metric space, the distance is a symmetric function
and the triangle inequality holds.

Note: If | X|=n, the metric (X, d) can be represented by a
symmetric n by n matrix.



Unlabelled Data Labelled Clusters
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Note: The problem is equivalent to the problem of minimizing
the average distance to the closest center.

min Z min {d(xz,cj)}

c1,enck X M S G100k



Continuous k-median problem
In the continuous version, the finite set of points X lie in a
continuous space (for example X c R? with the Euclidean
distance.) Here we are allowed to choose the k centers from
the entire space, not just from the given points X.
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Note: Both discrete and continuous versions of k-median
clustering are NP-hard problems. It means, assuming NP # P,
there is no polynomial time algorithm for finding an optimal

k-median clustering.



Some

algorithmic facts

Trivially, there is a O(kn**1) time algorithm for finding
an optimal k-median clustering (discrete version). why?

There are (}) = O(n*) ways for selecting the centers.
The problem is NP-hard even for points in R2.

There is a polynomial time approximation algorithm for
k-median clustering that returns a solution with cost at
most o = 2.611 times the optimal cost.

There is O(nlognlogk) time constant factor
approximation algorithm for k-median clustering when the
points lie in R¢ with constant d.



Lemma: An optimal solution for the discrete version is a
2-factor approximation solution for the continuous version.

Proof: Use triangle inequality.

Replace each optimal continuous center with its closest point
in X. See the figure below.
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Corollary: Any a-factor approximation algorithm for the
discrete version is a 2a-factor approximation algorithm for the
continuous version.



Sublinear time clustering via sampling
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Is the sample a
good
representative of
the whole data?

In general, we
need to see the
whole data to get
a good
approximation.



If we make certain assumptions about the data, we may hope
that a small sample is a good representative of the whole.

Some algorithmic results in this direction:

» There is a O(?—;kln(g)) time randomized algorithm that
returns a solution with cost at most O(OPT') + en with
probability 1 — . Here D is the diameter of the points.
Mishra, Oblinger, Pitt, 2001.

» There is a O(':—Slog‘3 k) time randomized algorithm that
returns a solution with cost O(OPT') under the
assumption that every optimal cluster is of size at least
Q(%). Meyerson et al.2004

> There is a O(%k1In(3)) time randomized algorithm that
returns a solution with cost at most O(OPT') + en with
probability 1 — 9. Czumaj, Sohler.



Mishra, Oblinger, Pitt (MOP)’s Algorithm

Assumption: Suppose there is a deterministic a-factor
approximation algorithm A for the k-median clustering
problem that runs in T'(n, k, «) time.

MOP's Idea:
» Fix e€(0,1) and 0 € (0,1).

» Pick a sample S of size at least (O‘%)len(%) from the
points X. Here D is the diameter of the input points.

» Run algorithm A on the sample S and return the solution.

Claim: With probability at least 1 -9, we have

cost(MOPAVE) < 2a cost(OPTAVE) + €



MOP's algorithm
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Main Tool:
(HAUSSLER/POLLARD) Let F be o finite
set of functions on X with 0 < f(x) < M forall f € F
and x € X. Let S = x1,...,2, be a sequence of m

ezamples drawn independently and identically from X
and let € > 0. Pr(3f € F: |Ex(f) — Es(f)] > €) < ¢

when m > 4 M (I |F| +1n ).



More details for the next lecture.



