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Recap of last lecture

▸ Finding an approximate median in sublinear time

▸ k-median clustering in sublinear time
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Approximate median
Input: A large set of elements A = {a1, . . . , an}. We assume D
has a total ordering.

Rank of an element: rank(x) = ∣{y ∈ A ∣ y ≤ x}∣

Median: med(A) = x where rank(x) = ⌈n2 ⌉.

Approximate Median: An ε-approximate median of A is an
y ∈ A where

⌈
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2
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ε−approximate medians
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Finding an approximate median via sampling

Algorithm: Sample s elements from A (with replacement) and
return the median of the sample set.

Lemma: If s ≥ 7
ε2 ln(2

δ ), the algorithm returns an
ε-approximate median with probability at least 1 − δ.

Proof: Partition A into 3 groups:

AL = {x ∈ A ∶ rank(x) < ⌈
n

2
⌉ − εn}

AM = {x ∈ A ∶ ⌈
n

2
⌉ − εn ≤ rank(x) ≤ ⌈

n

2
⌉ + εn}

AH = {x ∈ A ∶ rank(x) > ⌈
n

2
⌉ + εn}
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Observation: If less than s
2 elements from both AL and AH

are present in the sample set then the median of the sample is
an ε-approximate median.

Proof: The argument is similar to what we discussed in
Lecture 4 (see page 6).

Let Xi = 1 if the i-th sample is from AL, otherwise Xi = 0.
X = ∑

s
i=1Xi.

E[X] ≤ (
1

2
− ε)s

Assume ε ≤ 0.1. By Chernoff bound,

Pr(X ≥
s

2
) ≤ Pr(X ≥ (1 + ε)E[X]) ≤ e−

ε2

3
(
1
2
−ε)s ≤

δ

2
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By similar argument, if we set s ≥ 7ε−2 ln(2
δ ) (assuming

ε ≤ 0.1) the probability that the number of elements from AH
in the sample set is at least s

2 is bounded by δ/2.

By union bound, number of elements from both AL and AH in
the sample set is less than s

2 with probability at least 1 − δ.

Therefore with probability 1 − δ, the output of the algorithm is
an ε-approximate median of A.

Sample complexity: O( 1
ε2 ln(1

δ ))

Homework: Generalize this result to the problem of finding an
element with (approximate) rank t.
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k-median clustering

k-median clustering problem: Given a metric (X,d) where X
is a finite set of data points and d is a distance defined over
X, in the (discrete) k-median problem, the goal is to select k
center points c1, . . . , ck from X, so that the sum of distances
to the closest center is minimized.

X = {x1, . . . , xn}

min
c1,...,ck⊆X

n

∑
i=1

min
j=1,...,k

{d(xi, cj)}

Note: In a metric space, the distance is a symmetric function
and the triangle inequality holds.

Note: If ∣X ∣ = n, the metric (X,d) can be represented by a
symmetric n by n matrix.
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Note: The problem is equivalent to the problem of minimizing
the average distance to the closest center.

min
c1,...,ck⊆X

1

n

n

∑
i=1

min
j=1,...,k

{d(xi, cj)}
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Continuous k-median problem
In the continuous version, the finite set of points X lie in a
continuous space (for example X ⊂ Rd with the Euclidean
distance.) Here we are allowed to choose the k centers from
the entire space, not just from the given points X.

Note: Both discrete and continuous versions of k-median
clustering are NP-hard problems. It means, assuming NP ≠ P ,
there is no polynomial time algorithm for finding an optimal
k-median clustering.
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Some algorithmic facts

▸ Trivially, there is a O(knk+1) time algorithm for finding
an optimal k-median clustering (discrete version). why?

There are (
n
k
) = O(nk) ways for selecting the centers.

▸ The problem is NP-hard even for points in R2.

▸ There is a polynomial time approximation algorithm for
k-median clustering that returns a solution with cost at
most α = 2.611 times the optimal cost.

▸ There is O(n logn log k) time constant factor
approximation algorithm for k-median clustering when the
points lie in Rd with constant d.
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Lemma: An optimal solution for the discrete version is a
2-factor approximation solution for the continuous version.

Proof: Use triangle inequality.

Replace each optimal continuous center with its closest point
in X. See the figure below.

a ≤ b + c, c ≤ b

⇒ a ≤ 2b

Corollary: Any α-factor approximation algorithm for the
discrete version is a 2α-factor approximation algorithm for the
continuous version.
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Sublinear time clustering via sampling

Is the sample a
good
representative of
the whole data?

In general, we
need to see the
whole data to get
a good
approximation.
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If we make certain assumptions about the data, we may hope
that a small sample is a good representative of the whole.

Some algorithmic results in this direction:

▸ There is a polynomial-time randomized algorithm with
query complexity Õ(D

2

ε2 k ln(nδ )) that returns a solution
with cost at most O(OPT ) + εn with probability 1 − δ.
Here D is the diameter of the points. Mishra, Oblinger,
Pitt, 2001.

▸ There is a O(k
3

ε2 log3 k) time randomized algorithm that
returns a solution with cost O(OPT ) under the
assumption that every optimal cluster is of size at least
Ω(nεk ). Meyerson et al.2004
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Mishra, Oblinger, Pitt (MOP)’s Algorithm

Assumption: Suppose there is a deterministic α-factor
approximation algorithm A for the k-median clustering
problem that runs in T (n, k,α) time.

MOP’s Idea:

▸ Fix ε ∈ (0,1) and δ ∈ (0,1).

▸ Pick a sample S of size s ≥ (αD)
2

ε2 k ln(nδ ) from the points
X. Here D is the diameter of the input points.

▸ Run algorithm A on the sample S and return the solution.

Let A(S) be the solution (k centers) reported by the
approximation algorithm A on the sample set S.
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cost(OPT (X)avg) =
1

n
min

c1,...,ck⊆X
∑
x∈X

min
j=1,...,k

{d(x, cj)}

cost(A(S)avg) = 1
s ∑x∈S mincj∈A(S){d(x, cj)}

Claim: With probability at least 1 − δ, we have

cost(A(S)avg) ≤ 2α cost(OPT (X)avg) + ε
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Fact: (Haussler/Pollard) Let F be a finite set of functions on
X with 0 ≤ f(x) ≤M for all f ∈ F and x ∈X. Let x1, . . . , xm
be a sequence of m samples drawn independently and
identically from X and let ε > 0. Let

ET (f) =
1

∣T ∣
∑
x∈T

f(x) (the average of f on T )

If m ≥ M2

2ε2 ln(2∣F ∣

δ ) then

Pr(∃f ∈ F where ∣EX(f) −ES(f)∣ ≥ ε) ≤ δ.

Proof: Use additive Chernoff bound (Homework).
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Observation: Every choice of k centers {c1, . . . , ck} ⊆X
defines a function

fc1,...,ck(x) = min
j=1,...,k

{d(x, cj)}

costX({c1, . . . , ck}
avg) =

1

∣X ∣
∑
x∈X

fc1,...,ck(x) = EX(fc1,...,ck)

Observation: Let

M = max
{c1,...,ck}⊆X,x∈X

{fc1,...,ck(x)}.

We have M ≤D where D is the diameter of X (largest
distance in X.)
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According to Haussler/Pollard if we set the number of samples

s ≥ D2

2ε2 ln(2∣F ∣

δ ) where

F = {fc1,...,ck ∣ {c1, . . . , ck} ⊆X}, ∣F ∣ = (
n

k
)

then with probability 1 − δ for all fc1,...,ck ∈ F we have

∣EX(fc1,...,ck) −ES(fc1,...,ck)∣ ≤ ε.

In other words, if we replace X with the sample set S, the
(average) cost of any clustering on S (using a set of centers)
will be close to the corresponding (average) cost on X. In
particular it means good centers for S will be good centers for
X (with some additive error.)

Assumption: In the rest of the analysis, we assume the good
event happens and all functions in F have near equal values
on X and S.
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Let c∗1, . . . , c
∗

k be the optimal centers for X.
Note, some of the centers in {c∗1, . . . , c

∗

k} might not belong to S.

Let z∗1 , . . . , z
∗

k be the optimal centers for the continuous
k-median on S.

Let z1, . . . , zk be the optimal centers for the discrete k-median
on S.

Let a1, . . . , ak be the centers found by the α-approximation
algorithm on S.
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We have the following observations:

▸ ∀fc1,...,ck ∈ F , ∣EX(fc1,...,ck) −ES(fc1,...,ck)∣ ≤ ε. (1)

▸ ES(fz∗1 ,...,z∗k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
continuous cost

≤ ES(fz1,...,zk)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
discrete cost

≤ 2ES(fz∗1 ,...,z∗k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
continuous cost

(2)

▸ ES(fz1,...,zk)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
discrete cost

≤ ES(fa1,...,ak)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
algorithm cost

≤ αES(fz1,...,zk)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
discrete cost

(3)

▸ (2), (3) ⇒

ES(fz∗1 ,...,z∗k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
continuous cost

≤ ES(fa1,...,ak)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
algorithm cost

≤ 2αES(fz∗1 ,...,z∗k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
continuous cost

(4)

▸ ES(fz∗1 ,...,z∗k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
continuous cost

≤ ES(fc∗1 ,...,c∗k) (5)
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▸ (1), (4), (5) ⇒

EX(fa1,...,ak)−ε ≤ ES(fa1,...,ak)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
algorithm cost

≤ 2αES(fc∗1 ,...,c∗k) (6)

▸ Since c∗1, . . . , c
∗

k are the optimal centers for X,

EX(fc∗1 ,...,c∗k)− ε ≤ ES(fa1,...,ak)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
algorithm cost

≤ 2αES(fc∗1 ,...,c∗k) (7)

▸ (1) ⇒

EX(fc∗1 ,...,c∗k) − ε ≤ ES(fa1,...,ak)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
algorithm cost

≤ 2α(EX(fc∗1 ,...,c∗k) + ε)

▸ EX(fc∗1 ,...,c∗k) − ε ≤ ES(fa1,...,ak)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
algorithm cost

≤ 2αEX(fc∗1 ,...,c∗k) + 2αε
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Since ∣F ∣ ≤ nk, if we replace ε by ε
2α and choose

s ≥ 2α2D2

ε2 k ln(2n
δ ), with probability at least 1 − δ, we get

EX(fc∗1 ,...,c∗k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
optimal cost on X

−
ε

2α
≤ ES(fa1,...,ak)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
algorithm cost

≤ 2α EX(fc∗1 ,...,c∗k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
optimal cost on X

+ε

⇓

EX(fc∗1 ,...,c∗k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
optimal cost on X

−ε ≤ ES(fa1,...,ak)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
algorithm cost

≤ 2α EX(fc∗1 ,...,c∗k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
optimal cost on X

+ε
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Few Remarks and Questions

▸ The running time of the final algorithm depends on
sample size s and the running time of the α-factor
approximation algorithm A.

▸ Why don’t we scale down all distances so that the
diameter of the points is reduced to 1? At first glance,
this seems to bring down the sampling complexity to

O(
α2k ln(n

δ
)

ε2 ). Why do you think this idea fails?
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Better analysis by Czumaj and Sohler

Czumaj and Sohler have shown taking O(Dε2 (k + ln(1
δ )))

sample points is enough to find a solution with the same
quality.
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Something to think about

Does the analysis work for other clustering objectives such as
k-center or k-means?

k-center clustering:

min
c1,...,ck⊆X

max
x∈X

min
j=1,...,k

{d(x, cj)}

k-means clustering:

min
c1,...,ck⊆Rd

∑
x∈X⊆Rd

min
j=1,...,k

{∥x − cj∥
2}


