
Lecture 8:

Sublinear time algorithms for problems in

metric spaces

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics

K. N. Toosi University of Technology

Spring 2021

1/18

2/18

Outline

▸ k-center problem

▸ Approximating the diameter

▸ Approximating the average distance

3/18

The k-center problem

X = {x1, . . . , xn}

min
c1,...,ck⊆X

max
x∈X

min
j=1,...,k

{dist(x, cj)}

Facts: k-center problem is NP-Hard even for points R2. No
polynomial-time algorithm with approximation factor better
than 2 exists unless P = NP . There is a 2-factor
approximation for k-center that runs in O(nk) time when the
distance function satisfy symmetry and triangle inequality.

4/18

An Approximation Algorithm

Algorithm: Initially choose a point x ∈X. Let cluster centers
C = {x}. Repeat the following:

Every time choose a point y ∈X that is farthest away from C
and add y to C. Stop when ∣C ∣ = k. Output C as the chosen
centers.

Lemma: cost(C) ≤ 2cost(OPT)

For proof, see the references.

5/18

Running time analysis: depends on data representation.

▸ (General metrics) when the distance function is
represented by a n × n symmetric matrix. Input size is n2.

At every stage of the algorithm, we
find the farthest point in X from C.
This takes O(n) time. (Why?)

In total, we have at most k stages.
Therefore the running time is O(nk).
Sublinear when k = o(n)

▸ (d-dimensional points) for example X ∈ Rd with the
Euclidean distance. Here the input size is O(nd).
In this case, the running time is bounded by O(ndk).
Not sublinear!

6/18

Estimating the diameter

A 1
2 -factor approximation algorithm: Select any point x ∈X.

Check all distances {dist(x,u)}u∈X . Output the maximum
distance.

Running time: O(n) for general metrics. O(nd) for X ∈ Rd

and Euclidean distance.

7/18

Average distance in a finite metric space

X = {x1, . . . , xn}

A =∑
i,j

dist(xi, xj), avg = A

(n
2
)

Assumption: The finite metric (X,dist) is given by its n × n
distance matrix.

The trivial algorithm computes the sum of distances A
exactly in O(n2) time.

8/18

Estimating the average distance

▸ As we observed earlier approximating the average of m
arbitrary values a1, . . . , am requires Ω(m) samples

▸ When the values a1, . . . , am are degrees of a m-vertex
graph, we saw that O(ε−1√m) samples was enough to
get a 2 + ε factor approximation of the average degree.

▸ How about when the values a1, . . . , am are m = (n
2
)

distances in a finite metric space defined over n points?

▸ Can we approximate the average distance using o(n2)
samples?

9/18

Estimating the average distance

Theorem [P. Indyk 1999]. When the values a1, . . . , am are
m = (n

2
) distances in a finite metric space on n points, O(n

ε3.5)
uniform independent samples are enough to get 1 + ε factor
approximation of the average distance.

Note: This gives a O(n
ε3.5) time randomized algorithm for

estimating the average distance within 1 + ε factor.

Main observation: In a finite metric space on n points if
dist(x, y) = d then there are at least n distances with value at
least d/2.

10/18

Reviewing Indyk’s analysis

Assumption: All distances fall in the range [1,D]. D is the
diameter of the metric.

Notation: Let c = 1 + ε where ε > 0.

Assumption: D is a power of c (D = ck for some k.)

We split the interval [1,Dc] into sub-intervals

I0 = [c0, c1), I1 = [c1, c2), . . . , Ik = [D,Dc)

ni = number of distances in the interval Ii

si = number of sample distances in the interval Ii

11/18

Reviewing Indyk’s analysis

Note: We are estimating the sum A = ∑i,j dist(xi, xj)

Definition: Let Ã = ∑i nici

Observation: A
1+ε ≤ Ã ≤ A

Let S be the set of sampled distances. Let s = ∣S∣ and
m = (n

2
). The algorithm outputs

A′ = m
s
∑

(i,j)∈S
dist(xi, xj).

Definition: Let Ã′ = m
s ∑i sici

Observation: A′

1+ε ≤ Ã′ ≤ A′

12/18

Observation: Therefore it is enough to show that

Ã′ = m
s

k

∑
i

sic
i ≈ Ã =

k

∑
i

nic
i

Lemma E[Ã′] = Ã

Proof E[Ã′] = m
s ∑i ciE[si] = m

s ∑i ci(
ni

ms) = Ã

Lemma V ar[Ã′] ≤ m
s ∑i nic2i

By Chebyshev Inequality,

P = Pr[∣Ã′−Ã∣ ≥ εÃ] ≤ V ar[Ã′]
ε2E2[Ã′]

≤
m
s ∑i nic2i
ε2(∑i nici)2

≤
m
s

ε2

F
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(∑i nic

2i

∑i n2
i c

2i
)

13/18

We need to bound

F = ∑i nic
2i

∑i n2
i c

2i

Here we use the properties of the metric space.

Observation: Suppose dist(x, y) =D. Then there are at least
n distances with value at least D

2 .

We show F = O(1
n)

14/18

D ∈ Ik = [D,Dc)

Corollary: by Pigeonhole Principle there must be an interval
Ik−j where 0 ≤ j ≤ logc 2 where nk−j ≥ n

logc 2

I0, . . . ,

contains at least n distances
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Ik−logc 2, . . . , Ik

Note: D
2 falls in the interval In−⌊logc 2⌋ because if we set D

2 = D
ci

Let t = αn for some α > 0. We define B = {i ∶ ni ≥ t}− {k − j}

15/18

N1 =∑
i∈B
nic

2i, N2 =∑
i∉B
nic

2i

M1 =∑
i∈B
n2
i c

2i, M2 =∑
i∉B
n2
i c

2i

F = N1 +N2

M1 +M2

≤ max{N1

M1

,
N2

M2

}

Observation: N1

M1
≤ 1
t

Observation: N2 ≤ t∑ c2i ≤ t c
2k+1

c2−1 ≤ tD
2(1+ε)2
ε

Observation: M2 ≥ (D2 n
logc 2

)2

Corollary: N2

M2
≤ 1
n
4 log2c 2α(1+ε)2

ε

16/18

Corollary: F ≤ max{N2

M2
, N1

M1
} ≤ 1

n max{4 log2c 2α(1+ε)2
ε , 1α}

We set α = Θ(ε3/2) and we obtain

F = O(1

ε3/2
1

n
)

Therefore

P = Pr[∣Ã′ − Ã∣ ≥ εÃ] ≤
m
s

ε2
F = O(

(n
2
)

snε3.5
) < 1

4

We get s = Ω(n
ε3.5) is enough.

17/18

References

▸ P. Indyk. Sublinear time algorithms for metric space
problems. STOC 99.

▸ T. Gonzales. Clustering to minimize the maximum
inter-cluster distance. Theoretical Computer Science.
1985.

18/18

