Lecture 9

Dimensionality Reduction: Johnson-Lindenstrauss Lemma

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics Faculty of Mathematics K. N. Toosi University of Technology

Spring 2021

Distance-Preserving Dimensionality Reduction

Given n vectors $A = \{ \boldsymbol{x}_1, \dots, \boldsymbol{x}_n \}$ in \mathbb{R}^d ,

we want a fast transformation $f: \mathbb{R}^d \rightarrow \mathbb{R}^t$ so that

• (Distances are approximately preserved):

For all pairs $\boldsymbol{x}, \boldsymbol{y} \in A$, we have $\|f(\boldsymbol{x}) - f(\boldsymbol{y})\| \approx \|\boldsymbol{x} - \boldsymbol{y}\|$

• (The dimension is reduced considerably)

 $t \ll d$

Such a transformation will be very useful in practice (when the input dimension is large)

Two applications

Faster clustering algorithms: As an example, recall that for the k-center problem we had a 2-factor approximation algorithm with running time O(nkd) (when the points lie in \mathbb{R}^d .)

Using the transformation $f:\mathbb{R}^d\to\mathbb{R}^t,$ we first compute f(x) for all $x\in A$

Then we run the k-center alg. on $A' = \{f(x_1), \ldots, f(x_n)\}$

Running time = $\underbrace{\text{time of transformation}}_{O(nkt)}$ + $\underbrace{\text{time of clustering } A'}_{O(nkt)}$

Approximation quality ≈ 2

Approximate nearest neighbor queries: Most exact nearest neighbor data structures have time complexity $n^{O(d)}$

How to reduce the dimension?

 A bad idea: Randomly select a small subset of dimensions. Restrict every *x* to the selected dimensions. In other words, choose S ⊆ {1,...,d} randomly. f(*x*) = *x*_S

Example:

$$\mathbf{x}_1 = \overbrace{(1,0,\ldots,0)}^d, \mathbf{x}_2 = \overbrace{(0,1,0,\ldots,0)}^d, ||x - y|| = 1$$

 $S = \{3, 5, 20, 25\}$
 $f(\mathbf{x}_1) = (0,0,0,0), f(\mathbf{x}_2) = (0,0,0,0), ||f(x) - f(y)|| = 0$

 Dimensionality reduction methods such as PCA do not preserve the pairwise distances.

Johnson-Lindenstrauss Lemma

JL Lemma (existential formulation): Let $\epsilon \in (0, \frac{1}{2})$. Given a set of n vectors $A = \{x_1, \ldots, x_n\} \in \mathbb{R}^d$, there is a mapping $f : \mathbb{R}^d \to \mathbb{R}^t$ where $t = O(\frac{\log n}{\epsilon^2})$ where

$$\forall x, y \in A, \ (1-\epsilon) \| \boldsymbol{x} - \boldsymbol{y} \| \le \| f(\boldsymbol{x}) - f(\boldsymbol{y}) \| \le (1+\epsilon) \| \boldsymbol{x} - \boldsymbol{y} \|$$

JL lemma is essentially tight with respect to the target dimension t:

Noga Alon has shown that any such mapping requires $t = \Omega(\frac{\log n}{\epsilon^2 \log \frac{1}{\epsilon}})$

Larsen and Nelson have shown that any linear mapping requires $t = \Omega\bigl(\frac{\log n}{\epsilon^2}\bigr)$

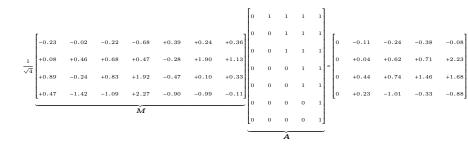
Construction of the mapping f: Let M be a $t \times d$ matrix where every entry M_{ij} is an independent random sample from the normal standard distribution N(0,1). In other words, each $M_{ij} \sim N(0,1)$

$$\frac{1}{\sqrt{t}} \underbrace{\begin{bmatrix} M_{11} & \dots & M_{1d} \\ M_{21} & \dots & M_{2d} \\ \vdots & \vdots & \vdots \\ M_{t1} & \dots & M_{td} \end{bmatrix}}_{M} \underbrace{\begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \dots & \vdots \\ x_{d1} & x_{d2} & \dots & x_{dn} \end{bmatrix}}_{A} = \begin{bmatrix} \vdots & \vdots & \vdots \\ f(\boldsymbol{x}_1) & \vdots & f(\boldsymbol{x}_n) \\ \vdots & \vdots & \vdots \end{bmatrix}$$

Let $M^{(i)}$ be the *i*-th row of M.

$$f(\boldsymbol{x}) = \frac{1}{\sqrt{t}} \boldsymbol{M} \boldsymbol{x} = (\frac{1}{\sqrt{t}} \boldsymbol{M}^{(1)} \boldsymbol{.} \boldsymbol{x}, \ldots, \frac{1}{\sqrt{t}} \boldsymbol{M}^{(t)} \boldsymbol{.} \boldsymbol{x})$$

An example: n = 5, d = 7, t = 4



Lemma 1: If $t \ge \frac{c \log n}{\epsilon^2}$ for a large enough constant c then with probability at least 3/4 for all pairs $\boldsymbol{x}, \boldsymbol{y} \in A$, we have

$$\|f(\boldsymbol{x}) - f(\boldsymbol{y})\| \in [(1-\epsilon)\|\boldsymbol{x} - \boldsymbol{y}\|, (1+\epsilon)\|\boldsymbol{x} - \boldsymbol{y}\|]$$

$$\|f(\boldsymbol{x}) - f(\boldsymbol{y})\| \approx_{\epsilon} \|\boldsymbol{x} - \boldsymbol{y}\|$$

Lets consider a special case:

 $A = \{\mathbf{0}, \mathbf{x}\}$ where \mathbf{x} is a unit vector in \mathbb{R}^n . $\|\mathbf{x}\| = 1$.

We want $||f(\boldsymbol{x}) - f(\boldsymbol{0})|| = ||f(\boldsymbol{x})|| \approx_{\epsilon} 1.$

Lemma 2: Given $\boldsymbol{x} \in \mathbb{R}^d$ where $\|\boldsymbol{x}\| = 1$, assuming $t \ge \frac{c \log(\frac{1}{\delta})}{\epsilon^2}$ when c is a large enough constant then we have $Pr(\|f(\boldsymbol{x})\|^2 \in [1-\epsilon, 1+\epsilon]) \ge 1-\delta$

Before proving Lemma 2, we show Lemma 1 is a consequence of Lemma 2.

Observation 1: Since f(x) - f(y) = f(x - y) (the mapping f is linear) then it is enough to show that for any arbitrary vector $z \in \mathbb{R}^d$ we have

$$\|f(oldsymbol{z})\|pprox_\epsilon\|oldsymbol{z}\|$$

Observation 2: Let $z' = \frac{z}{\|z\|}$. The vector z' is a unit vector. If we have $\|f(z')\| \approx_{\epsilon} 1$ then (by linearity of f) we have

$$||f(z)|| = ||f(||z||z')|| = |||z||f(z')|| = ||z|||f(z')|| \approx_{\epsilon} ||z||$$

Observation 3: There are $\binom{n}{2}$ pair of vectors in A. From Lemma 2 and the above observations we have for a pair $\boldsymbol{x}, \boldsymbol{y} \in A$, if $t \ge \frac{c \log(\frac{1}{\delta})}{\epsilon^2}$ then $\|f(\boldsymbol{x}) - f(\boldsymbol{y})\| \approx_{\epsilon} \|\boldsymbol{x} - \boldsymbol{y}\|$ with probability $1 - \delta$.

Setting $\delta = \frac{1}{4n^2}$, from the union bound, the statement is true for all pairs in A with probability at least $1 - \binom{n}{2} \frac{1}{4n^2} > 3/4$.

Therefore we get the statement of Lemma 1.

Proof of Lemma 2

Basic facts regarding Gaussian distribution:

The Gaussian distribution N(μ, σ²) with mean μ and variance σ² has the following probability density function

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{x-\mu^2}{2\sigma^2}}$$

• If
$$X \sim N(\mu_1, \sigma_1^2)$$
 and $Y \sim N(\mu_2, \sigma_2^2)$ then

$$cX \sim N(c\mu_1, c^2\sigma_1^2)$$

$$X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Consider $\boldsymbol{x} \in \mathbb{R}^d$ where $\|\boldsymbol{x}\| = 1$.

Let Y_i be the *i*-th oordinate of Mx. Note that $f(x) = \frac{1}{\sqrt{t}}Mx$.

Observation: $Y_i = (G_1, \ldots, G_d) \cdot \boldsymbol{x}$ where each G_i is an independent sample from N(0, 1). In other words,

$$Y = G_1 x_1 + \ldots + G_d x_d$$

 Y_i is a linear combination of independent Gaussians. Therefore

$$Y_i \sim N(0, x_1^2 + \ldots + x_d^2) = N(0, 1)$$

We need to analyze Y_i^2 since $Y = ||f(x)||^2 = \frac{1}{t}(Y_1^2 + ... + Y_t^2)$

$$E[Y_i^2] = Var[Y_i] + E^2[Y_i] = 1 \implies E[Y] = 1$$

So, in expectation, Y = ||f(x)|| is exactly 1. Very good but not enough.

We need to bound the probability $Pr(Y > 1 + \epsilon)$.

 $Y = \frac{1}{t} \sum_{i}^{t} Y_{i}^{2}$ is the sum of independent random variables. We could use Chernoff but unfortunately Y_{i} is not bounded. Still similar ideas that were used in the proof of Chernoff are helpful here. For any r > 0

$$Pr(Y > 1+\epsilon) = Pr(e^{trY} > e^{tr(1+\epsilon)}) \le \underbrace{\frac{E[e^{trY}]}{e^{tr(1+\epsilon)}}}_{E[e^{rY_i^2}]} = \prod_{i=1}^t \frac{E[e^{rY_i^2}]}{e^{r(1+\epsilon)}}$$
$$E[e^{rY_i^2}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{ry^2} e^{-\frac{y^2}{2}} dy = \frac{1}{\sqrt{1-2r}} \quad \text{when } r \le \frac{1}{2}$$

Therefore for $0 < r < \frac{1}{2}$, we have

$$Pr(Y > 1 + \epsilon) \le \left(\frac{1}{e^{r(1+\epsilon)}\sqrt{1-2r}}\right)^t$$

Also one can show that
$$\frac{1}{e^{r(1+\epsilon)}\sqrt{1-2r}} \leq e^{\frac{r^2}{1-2r}}$$

Therefore we have

$$Pr(Y > 1 + \epsilon) \le e^{\frac{tr^2}{1 - 2r}}$$

We set
$$r = \frac{\epsilon}{4}$$
. Using $1 - 2r \ge \frac{1}{2}$ when $\epsilon \le \frac{1}{2}$, we get
 $Pr(Y > 1 + \epsilon) \le e^{-\frac{t\epsilon^2}{8}} \le \frac{\delta}{2} \implies t \ge \frac{8}{\epsilon^2} \ln(\frac{2}{\delta})$

Similarly we can show

$$Pr(Y < 1 - \epsilon) \le e^{-\frac{t\epsilon^2}{8}} \le \frac{\delta}{2}$$

Therefore having $t \geq \frac{8}{\epsilon^2} \ln(\frac{2}{\delta})$ we get

$$Pr(1 - \epsilon \le Y \le 1 + \epsilon) \ge 1 - \delta$$

Good news: JL lemma still holds when the Gaussian distribution N(0,1) is replaced with random -1,+1 coefficients.