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Distance-Preserving Dimensionality Reduction

Given n vectors A = {x1, . . . ,xn} in Rd,

we want a fast transformation f ∶ Rd → Rt so that

▸ (Distances are approximately preserved):

For all pairs x,y ∈ A, we have ∥f(x) − f(y)∥ ≈ ∥x − y∥

▸ (The dimension is reduced considerably)

t≪ d

Such a transformation will be very useful in practice (when the
input dimension is large)
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Two applications

Faster clustering algorithms: As an example, recall that for the
k-center problem we had a 2-factor approximation algorithm
with running time O(nkd) (when the points lie in Rd.)

Using the transformation f ∶ Rd → Rt, we first compute f(x)
for all x ∈ A

Then we run the k-center alg. on A′ = {f(x1), . . . , f(xn)}

Running time = time of transformation´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶+ time of clustering A′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O(nkt)

Approximation quality ≈ 2

Approximate nearest neighbor queries: Most exact nearest
neighbor data structures have time complexity nO(d)
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How to reduce the dimension?

▸ A bad idea: Randomly select a small subset of dimensions.
Restrict every x to the selected dimensions. In other
words, choose S ⊆ {1, . . . , d} randomly. f(x) = xS

Example:

x1 =
d

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(1,0, . . . ,0),x2 =

d
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(0,1,0, . . . ,0), ∥x − y∥ = 1

S = {3,5,20,25}

f(x1) = (0,0,0,0), f(x2) = (0,0,0,0), ∥f(x) − f(y)∥ = 0

▸ Dimensionality reduction methods such as PCA do not
preserve the pairwise distances.
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Johnson-Lindenstrauss Lemma

JL Lemma (existential formulation): Let ε ∈ (0, 12). Given a
set of n vectors A = {x1, . . . ,xn} ∈ Rd, there is a mapping
f ∶ Rd → Rt where t = O( logn

ε2 ) where

∀x, y ∈ A, (1 − ε)∥x − y∥ ≤ ∥f(x) − f(y)∥ ≤ (1 + ε)∥x − y∥

JL lemma is essentially tight with respect to the target
dimension t:

Noga Alon has shown that any such mapping requires
t = Ω( logn

ε2 log 1
ε

)

Larsen and Nelson have shown that any linear mapping
requires t = Ω( logn

ε2 )
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Construction of the mapping f : Let M be a t × d matrix
where every entry Mij is an independent random sample from
the normal standard distribution N(0,1). In other words, each
Mij ∼ N(0,1)

1√
t

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M11 . . . M1d

M21 . . . M2d

⋮ ⋮ ⋮
Mt1 . . . Mtd

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 . . . x1n
x21 x22 . . . x2n
⋮ ⋮ . . . ⋮
xd1 xd2 . . . xdn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

=
⎡⎢⎢⎢⎢⎢⎣

⋮ ⋮ ⋮
f(x1) ⋮ f(xn)
⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎦

Let M (i) be the i-th row of M .

f(x) = 1√
t
Mx = ( 1√

t
M (1).x, . . . ,

1√
t
M (t).x)
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An example: n = 5, d = 7, t = 4

1
√

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.23 −0.02 −0.22 −0.68 +0.39 +0.24 +0.36

+0.08 +0.46 +0.68 +0.47 −0.28 +1.90 +1.13

+0.89 −0.24 +0.83 +1.92 −0.47 +0.10 +0.33

+0.47 −1.42 −1.09 +2.27 −0.90 −0.99 −0.11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1 1

0 0 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 1 1

0 0 0 0 1

0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −0.11 −0.24 −0.38 −0.08

0 +0.04 +0.62 +0.71 +2.23

0 +0.44 +0.74 +1.46 +1.68

0 +0.23 −1.01 −0.33 −0.88

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Lemma 1: If t ≥ c logn
ε2 for a large enough constant c then with

probability at least 3/4 for all pairs x,y ∈ A, we have

∥f(x) − f(y)∥ ∈ [(1 − ε)∥x − y∥, (1 + ε)∥x − y∥]

∥f(x) − f(y)∥ ≈ε ∥x − y∥
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Lets consider a special case:

A = {0,x} where x is a unit vector in Rn. ∥x∥ = 1.

We want ∥f(x) − f(0)∥ = ∥f(x)∥ ≈ε 1.

Lemma 2: Given x ∈ Rd where ∥x∥ = 1, assuming t ≥ c log( 1
δ
)

ε2

when c is a large enough constant then we have

Pr(∥f(x)∥2 ∈ [1 − ε,1 + ε]) ≥ 1 − δ

Before proving Lemma 2, we show Lemma 1 is a consequence
of Lemma 2.

Observation 1: Since f(x) − f(y) = f(x − y) (the mapping f
is linear) then it is enough to show that for any arbitrary
vector z ∈ Rd we have

∥f(z)∥ ≈ε ∥z∥
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Observation 2: Let z′ = z
∥z∥ . The vector z′ is a unit vector. If

we have ∥f(z′)∥ ≈ε 1 then (by linearity of f) we have

∥f(z)∥ = ∥f(∥z∥z′)∥ = ∥∥z∥f(z′)∥ = ∥z∥∥f(z′)∥ ≈ε ∥z∥

Observation 3: There are (n
2
) pair of vectors in A. From

Lemma 2 and the above observations we have for a pair

x,y ∈ A, if t ≥ c log( 1
δ
)

ε2 then ∥f(x) − f(y)∥ ≈ε ∥x − y∥ with
probability 1 − δ.

Setting δ = 1
4n2 , from the union bound, the statement is true

for all pairs in A with probability at least 1 − (n
2
) 1
4n2 > 3/4.

Therefore we get the statement of Lemma 1.
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Proof of Lemma 2

Basic facts regarding Gaussian distribution:

▸ The Gaussian distribution N(µ,σ2) with mean µ and
variance σ2 has the following probability density function

f(x) = 1√
2πσ

e
x−µ2
2σ2

▸ If X ∼ N(µ1, σ2
1) and Y ∼ N(µ2, σ2

2) then

cX ∼ N(cµ1, c
2σ2

1)

X + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2)
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Consider x ∈ Rd where ∥x∥ = 1.

Let Yi be the i-th oordinate of Mx. Note that
f(x) = 1

√

t
Mx.

Observation: Yi = (G1, . . . ,Gd).x where each Gi is an
independent sample from N(0,1). In other words,

Y = G1x1 + . . . +Gdxd

Yi is a linear combination of independent Gaussians. Therefore

Yi ∼ N(0, x21 + . . . + x2d) = N(0,1)

We need to analyze Y 2
i since Y = ∥f(x)∥2 = 1

t (Y 2
1 + . . . + Y 2

t )

E[Y 2
i ] = V ar[Yi] +E2[Yi] = 1 ⇒ E[Y ] = 1
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So, in expectation, Y = ∥f(x)∥ is exactly 1. Very good but
not enough.

We need to bound the probability Pr(Y > 1 + ε).

Y = 1
t ∑

t
i Y

2
i is the sum of independent random variables. We

could use Chernoff but unfortunately Yi is not bounded. Still
similar ideas that were used in the proof of Chernoff are
helpful here. For any r > 0

Pr(Y > 1+ε) = Pr(etrY > etr(1+ε)) ≤

Markov Inequality
³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
E[etrY ]
etr(1+ε)

=
t

∏
i=1

E[erY 2
i ]

er(1+ε)

E[erY 2
i ] = 1√

2π
∫

+∞

−∞

ery
2

e−
y2

2 dy = 1√
1 − 2r

when r ≤ 1

2
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Therefore for 0 < r < 1
2 , we have

Pr(Y > 1 + ε) ≤ ( 1

er(1+ε)
√

1 − 2r
)t

Also one can show that 1
er(1+ε)

√

1−2r
≤ e r2

1−2r

Therefore we have

Pr(Y > 1 + ε) ≤ e tr2

1−2r

We set r = ε
4 . Using 1 − 2r ≥ 1

2 when ε ≤ 1
2 , we get

Pr(Y > 1 + ε) ≤ e− tε
2

8 ≤ δ
2
⇒ t ≥ 8

ε2
ln(2

δ
)
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Similarly we can show

Pr(Y < 1 − ε) ≤ e− tε
2

8 ≤ δ
2

Therefore having t ≥ 8
ε2 ln(2

δ ) we get

Pr(1 − ε ≤ Y ≤ 1 + ε) ≥ 1 − δ
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Good news: JL lemma still holds when the Gaussian
distribution N(0,1) is replaced with random −1,+1
coefficients.


