
Lecture 1:

Basics of Algorithm Analysis

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics

K. N. Toosi University of Technology

Spring 2021



Outline

▸ Basic Definitions

▸ Input Size

▸ Time Complexity

▸ Space Complexity

▸ Randomization

▸ Approximation



Basic Definitions I

An algorithm is a sequence of simple operations (addition,
multiplication, comparison, ...) performed on input data to
produce desired results.

Input ⇒ Algorithm ⇒ Output

Examples for Input Data:

▸ A list of n integers

▸ A graph with n nodes and m edges

▸ A n by m matrix

▸ A large text

Some Specific Tasks:

▸ Sorting

▸ Finding shortest paths

▸ Rank of a matrix

▸ Most frequent word



Basic Definitions

▸ Size of input (in bits or numbers)

▸ Size of output

▸ Time complexity (worst-case, average)

▸ Space Complexity

▸ Deterministic or Randomized?

▸ Exact or Approximate



Input Size

A few examples:

▸ An integer a: Task: Check if a is a prime.

Input Size: n = log2 a bits

▸ A list of n integers:

Input Size: n numbers

▸ An undirected graph with t vertices and m edges:

Input Size: depends on the representation.

Adjacency Matrix: n = t2 bits

Adjacency list: n = t + 2m numbers

▸ A t by t matrix:

Input Size: n = t2 numbers



Time Complexity

Time complexity of an algorithm: Maximum number of basic
steps (addition, multiplication, comparison, ...) an algorithm
takes on a given input of size n

A function of the input size: T (n)

Known as the worst-case time complexity.



Big O Notation
▸ (Informally speaking) O(f (n)) includes all functions with the leading term asymptotically

smaller than or equal to f (n) after eliminating the constant coefficient.

O(n2) = {100n2, n2 + 10n, 4n log n + 2n, log2 n − 1, . . .}

n
3 ∉ O(n2), n

2
log n ∉ O(n2), 2

n ∉ O(n2)

▸ Ω(f (n)) includes all functions with the leading term asymptotically bigger than or equal to

f (n) after eliminating the constant coefficient.

Ω(n2) = {100n2, n2 + 10n, n3 + n2 + 1, 2n + 1, . . .}

2n ∉ Ω(n2), n
1.9 ∉ Ω(n2), n

2/ log n ∉ Ω(n2)

▸ o(f (n)) includes all functions with the leading term asymptotically bigger than f (n) after

eliminating the constant coefficient.

o(n) = {100n0.99, 2 log n + 10, n/ log n + 1, . . .}

n ∉ o(n), n log n ∈ o(n2), 2
n ∈ o(3n)



Typical Running Times

▸ Polynomial time: O(nc) when c is a constant.

▸ Linear time: O(n)

▸ Quadratic time: O(n2)

▸ Qubic time: O(n3)

▸ Exponential time: O(2n)

▸ Sublinear time: o(n)

▸ Logarithmic time: O(log n)

▸ Constant time: O(1)



Running Time Comparison

Source: Algorithm Design, Jon Kleinberg, Eva Tardos, 2006.



Sublinear Time: Example

Searching in a sorted array: Binary Search



Space Complexity I

The space complexity of an algorithm is the amount of
memory the algorithm uses during its execution (measured in
bits or numbers).

A function of the input size: S(n)



Space Complexity II

In the RAM Model (Random Access Memory) Model it is
assumed the entire input is saved in the memory.

⇒ Space Complexity ≥ Input Size

We shall see in the Data Stream Model and the MPC
(Massively Parallel Computation) Model the entire input is not
present in the memory.

Here the Space Complexity could be smaller than the Input
Size. Sublinear Space Complexity



Deterministic or Randomized?

A randomized algorithm in addition to the input uses a series
of random bits for its computation. The algorithm produces
the desired output with a certain success probability. It fails
with a certain probability.



Randomized algorithm: example

Problem: Given an array A of length n containing n/2 number
of a’s and n/2 number of b’s, find the position of an a.

Randomized Algorithm I: Randomly pick a position and check
if it is an a. Do this 3 times. If no a is found declare failure.

Analysis: Pr[failure] =1/2 × 1/2 × 1/2 = 1/8. The algorithm
succeeds with probability 7/8. Running time = O(1).

Assumption: Generating a random number between 0 and n
takes O(1) time.



Randomized algorithm: example continued

Randomized Algorithm II: Randomly pick a position and check
if it is an a. Repeat this until an a is found.

Analysis: Pr[failure] =0. The algorithm succeeds with
probability 1.

Expected running time =
∞

∑
i

i

2i
= 2

▸ Las Vegas Randomized Algorithm: Zero Failure Prob.

▸ Monte Carlo Randomized Algorithms: Positive Failure
Prob.



Randomized Algorithms: books



Exact or Approximation

Given data A, suppose we want to compute the nonzero
function f (A)

Exact Algorithm: The algorithm outputs f (A).

Additive Error: Algorithm outputs F where ∣F − f (A)∣ ≤ E .
Here E is called the additive error.

Multiplicative Error: Algorithm outputs F where
∣F − f (A)∣ ≤ εf (A). Here (1 ± ε) is called the approximation
factor.

(ε, δ) Approximation: The algorithms with probability 1 − δ
computes F where ∣F − f (A)∣ ≤ εf (A).



Approximate vs Exact: Counting Inversions

Problem: Counting inversions in a permutations π ∈ Sn.

The pair (i , j) is called an inversion in permutation π iff

i < j and π(i) > π(j)
π = 7, 1, 2, 3, 9, 5, 8, 4, 6, 10

K(π) = number of inversions in π

Brute-Force Strategy: Check all pairs.

Running time = O(n2)



Approximate vs Exact: Counting Inversions
Divide and Conquer Strategy:

Running Time:

T (n) = 2T (n/2) +O(n) ⇒ T (n) = O(n log n)



Approximate vs Exact: Counting Inversions

An Idea: Compute K ′(π) = ∑n
i ∣π(i) − i ∣

Lemma: K(π) ≤ K ′(π) ≤ 2K(π)

Running Time: O(n)

Streaming Space Usage: O(log n) bits



Next Lecture

Sublinear Time Algorithms: Some Examples

Two Concentration Lemmas: Markov and Chebyshev bounds


