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Data Stream Model

Data stream: In data stream model, input data is presented to
the algorithm as a stream of items in no particularly order.
The data stream is read only once and cannot be stored
(entirely) due to the large volume.

Examples of data streams:

▸ sensor data : temperature, pressure, ...

▸ website visits, click streams

▸ user queries (search)

▸ social network activities

▸ business transactions

▸ call center records
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Data Stream Model
Streaming Algorithm is an algorithm that processes a data
stream and has small memory compared with the amount of
data it processes.

Sublinear space usage: Assuming n is the size of input
typically a streaming algorithm has o(n) (for example log2

(n),
√
n, etc) space usage.
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Data Stream Model: two motivating puzzles

Missing elements in a permutation: Suppose the stream is a
permutation of {1, . . . , n} with one element missing. How
much space is needed to find the missing element?

7,8,3,9,1,5,2,6,10,12,11

What if 2 elements are missing?

Can we generalize to k missing elements?

Majority element: Suppose the stream is a sequence of
numbers a1, . . . , am. Suppose one element is repeated at least
m
2 times. How can we find the majority element?

2,3,2,1,2,9,8,2,5,2,2,4,6,2,2,5,2
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Frequency Moments

Let A = a1, a2, . . . , am be the input stream where each
ai ∈ {1, . . . , n}. Let xi denote the number of repetitions of i in
A. We define the k-th frequency moment of A

Fk =
n

∑
i=1
xki

Example: A = 2,3,2,1,2,9,8,2,5,2,2,4,6,2,2,5,2
x1 = 1, x2 = 9, x3 = 1, x4 = 1, x5 = 2, x6 = 1, x7 = 0, x8 = 1, x9 = 1

F0 = number of distinct elements = 8

F1 = ∑
n
i=1 xi = 17 =m

F2 = ∑
n
i=1 x2i = 12 + 92 + 12 + 12 + 22 + 12 + 02 + 12 + 12 = 91

F∞ = maxni=1 xi
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Computing Fk in small space

Trivial facts:

▸ We can compute F1 exactly in O(1) words (O(logm)

bits) of space.

▸ When k is a constant, we can compute Fk exactly in
O(n) words of space.

Nontrivial facts:

▸ Assuming k ≠ 1, any randomized streaming algorithm that
computes Fk exactly requires Ω(n) space.

▸ Assuming k ≠ 1, any deterministic streaming algorithm
that computes a constant factor approximation of Fk
requires Ω(n) space.

▸ Both randomization and approximation is needed to
compute Fk in sublinear space.
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Approximating F2

Theorem [AMS99] There is a randomized streaming algorithm
that approximates F2 within 1 + ε factor using O( 1

ε2 ) words of
space. The algorithm succeeds with probability 3/4.
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JL Lemma and Approximating F2

Consequence of Lemma 2, previous lecture: Given x ∈ Rn, assuming t ≥ c
ε2

when c is a large enough constant

then we have

Pr(∥f(x)∥
2
≈ε ∥x∥

2
) ≥ 3/4

Assume we have x and M . We can compute an approximation of F2 = ∥x∥2 by computing ∥f(x)∥2.

1√
3

M
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
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⎦
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But if we store M and x, it would take a lot of space.

For now, lets assume we have stored M (later we remove this
assumption.) We show how f(x) is computed from the
stream A.

Every item in the stream is a single update of the vector x (it
increments one of its coordinates) In the beginning, x = 0 and
f(x) = 0.

Lets see when the i-th coordinate of x is incremented, how
does f(x) change?

Let f(x)j be the j-th coordinate of f(x). f(x)j is a inner
product of x and the j-th row of M (divided by

√
t). When

xi is increased by 1, we need to add 1√
t
Mji to f(x)j.

increment xi ⇒ add
1
√
t
Mji to f(x)j
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How the stream updates x
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So if we have M , computing f(x) from the stream is
straightforward. We only need to store M and f(x).

The vector f(x) has t coordinates and therefore we need only
O(t) words to maintain it.

The coefficient matrix M is generated in the beginning but
we need to store it as the stream arrives. This takes O(nt)
words of space. /

Recall in the end of last lecture, we mentioned that the
Gaussian coefficients can be replaced by {−1,+1} random
numbers. This not only makes the algorithm easier to
implement but also helps us in getting rid of the need to store
M . But how?
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AMS’s paper uses {−1,+1} random coefficients instead of
Gaussian random numbers.

For each coordinate of x, we pick a random number σi from
{−1,+1}. For now, suppose we have stored the vector
σ = (σ1, . . . , σn).

Let Z = ∑
n
i=1 σixi. Z is the inner product of σ and x. Note

that Z is gradually computed as the input stream arrives. We
analyze X = Z2.

E[X] = E[(∑
n
i=1 σixi)2] = ∑

n
i=1E[σ2

i ]x
2
i +∑i≠j E[σiσj]xixj

Because σi and σj are independent, we get

E[X] = ∑
n
i=1E[σ2

i ]x
2
i +∑i≠j E[σi]E[σj]xixj

Because E[σi] = 0 and E[σ2
i ] = 1, we get

E[X] = ∑
n
i=1 x2i = F2
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Using Chebyshev Inequality, we can say

Pr(∣X −E[X]∣ > εE[X]) =
V ar[X]

ε2E2[X]

Because σi’s are independent,

E[X2] = E[Z4] = E[(
n

∑
i=1
σixi)

4] =

n

∑
i=1
E[σ4

i ]x
4
i + 6∑

i,j

E[σ2
i σ

2
j ]x

2
ix

2
j + 4∑

i,j

E[σiσ
3
j ]xix

3
j

=
n

∑
i=1
x4i + 6∑

i,j

x2ix
2
j

V ar[X] = E[X2] −E2[X] ≤ 4∑
i,j

x2ix
2
j ≤ 2F 2

2

Consequently,

Pr(∣X −E[X]∣ > εE[X]) =
V ar[X]

ε2E2[X]
≤

2F 2
2

ε2F 2
2

=
2

ε2
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Repeat to Decrease the Variance

To decrease the variance of X, we compute s = 8
ε2

independent copies Y1, . . . , Ys of X and output their average
Y = 1

s(Y1 + . . . + Ys)

Note that E[Y ] = E[X] = F2 and V ar[Y ] = 1
sV ar[X]

Pr(∣Y −E[Y ]∣ ≥ εE[Y ]) ≤
V ar[Y ]

ε2E2[Y ]
≤

1

4

Pr(∣Y − F2∣ ≥ εF2) ≤
V ar[Y ]

ε2E2[Y ]
≤

1

4
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What about the space needed to store σ?

We do not need to store the random vector σ = (σ1, . . . , σn).
Why?

Notice, it is enough the random coefficients σi’s to be 4-wise
independent. We do not need them to be totally independent!
See the analysis of E[X] and E[X2].

We can generate a set of n k-wise independent random
numbers using O(k logn) random bits.

How? This is the topic of the next lecture.


