Lecture 10

Data Stream Model: Frequency Moments

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics
K. N. Toosi University of Technology

Spring 2021

Data Stream Model

Data stream: In data stream model, input data is presented to the algorithm as a stream of items in no particularly order.
The data stream is read only once and cannot be stored (entirely) due to the large volume.

Examples of data streams:

- sensor data : temperature, pressure, ...
- website visits, click streams
- user queries (search)
- social network activities

- business transactions
- call center records

Data Stream Model

Streaming Algorithm is an algorithm that processes a data stream and has small memory compared with the amount of data it processes.

Sublinear space usage: Assuming n is the size of input typically a streaming algorithm has $o(n)$ (for example $\log ^{2}(n)$, \sqrt{n}, etc) space usage.

Data Stream Model: two motivating puzzles

Missing elements in a permutation: Suppose the stream is a permutation of $\{1, \ldots, n\}$ with one element missing. How much space is needed to find the missing element?

$$
7,8,3,9,1,5,2,6,10,12,11
$$

What if 2 elements are missing?
Can we generalize to k missing elements?
Majority element: Suppose the stream is a sequence of numbers a_{1}, \ldots, a_{m}. Suppose one element is repeated at least $\frac{m}{2}$ times. How can we find the majority element?

$$
2,3,2,1,2,9,8,2,5,2,2,4,6,2,2,5,2
$$

Frequency Moments

Let $A=a_{1}, a_{2}, \ldots, a_{m}$ be the input stream where each
$a_{i} \in\{1, \ldots, n\}$. Let x_{i} denote the number of repetitions of i in A. We define the k-th frequency moment of A

$$
F_{k}=\sum_{i=1}^{n} x_{i}^{k}
$$

Example: $A=2,3,2,1,2,9,8,2,5,2,2,4,6,2,2,5,2$
$x_{1}=1, x_{2}=9, x_{3}=1, x_{4}=1, x_{5}=2, x_{6}=1, x_{7}=0, x_{8}=1, x_{9}=1$
$F_{0}=$ number of distinct elements $=8$
$F_{1}=\sum_{i=1}^{n} x_{i}=17=m$
$F_{2}=\sum_{i=1}^{n} x_{i}^{2}=1^{2}+9^{2}+1^{2}+1^{2}+2^{2}+1^{2}+0^{2}+1^{2}+1^{2}=91$
$F_{\infty}=\max _{i=1}^{n} x_{i}$

Computing F_{k} in small space

Trivial facts:

- We can compute F_{1} exactly in $O(1)$ words $(O(\log m)$ bits) of space.
- When k is a constant, we can compute F_{k} exactly in $O(n)$ words of space.

Nontrivial facts:

- Assuming $k \neq 1$, any randomized streaming algorithm that computes F_{k} exactly requires $\Omega(n)$ space.
- Assuming $k \neq 1$, any deterministic streaming algorithm that computes a constant factor approximation of F_{k} requires $\Omega(n)$ space.
- Both randomization and approximation is needed to compute F_{k} in sublinear space.

Approximating F_{2}

Theorem [AMS99] There is a randomized streaming algorithm that approximates F_{2} within $1+\epsilon$ factor using $O\left(\frac{1}{\epsilon^{2}}\right)$ words of space. The algorithm succeeds with probability $3 / 4$.

JL Lemma and Approximating F_{2}

$$
\begin{gathered}
A=2,3,2,1,2,9,8,2,5,2,2,4,6,2,2,5,2 \\
\boldsymbol{x}=\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline \mathrm{m}_{1} & \mathrm{~m}_{2} & \mathrm{~m}_{3} & \mathrm{~m}_{4} & \mathrm{~m}_{5} & \mathrm{~m}_{6} & \mathrm{~m}_{7} & \mathrm{~m}_{8} \\
\hline 1 & 9 & 1 & 1 & 2 & 1 & 0 & 1 & 1 \\
\hline
\end{array} \\
\mathrm{~F}_{2}=\|\boldsymbol{x}\|^{2} \\
\hline
\end{gathered}
$$

Consequence of Lemma 2, previous lecture: Given $\boldsymbol{x} \in \mathbb{R}^{n}$, assuming $t \geq \frac{c}{\epsilon^{2}}$ when c is a large enough constant then we have

$$
\operatorname{Pr}\left(\|f(\boldsymbol{x})\|^{2} \approx \epsilon\|\boldsymbol{x}\|^{2}\right) \geq 3 / 4
$$

Assume we have \boldsymbol{x} and M. We can compute an approximation of $F_{2}=\|\boldsymbol{x}\|^{2}$ by computing $\|f(x)\|^{2}$.

But if we store M and \boldsymbol{x}, it would take a lot of space.
For now, lets assume we have stored M (later we remove this assumption.) We show how $f(\boldsymbol{x})$ is computed from the stream A.

Every item in the stream is a single update of the vector \boldsymbol{x} (it increments one of its coordinates) In the beginning, $\boldsymbol{x}=\mathbf{0}$ and $f(x)=0$.

Lets see when the i-th coordinate of \boldsymbol{x} is incremented, how does $f(\boldsymbol{x})$ change?

Let $f(\boldsymbol{x})_{j}$ be the j-th coordinate of $f(\boldsymbol{x}) . f(\boldsymbol{x})_{j}$ is a inner product of \boldsymbol{x} and the j-th row of \boldsymbol{M} (divided by \sqrt{t}). When x_{i} is increased by 1 , we need to add $\frac{1}{\sqrt{t}} M_{j i}$ to $f(\boldsymbol{x})_{j}$.

$$
\text { increment } x_{i} \Rightarrow \text { add } \frac{1}{\sqrt{t}} M_{j i} \text { to } f(x)_{j}
$$

How the stream updates \boldsymbol{x}

$$
\begin{aligned}
& A=2,3,2,1,2,9,8,2,5,2,2,4,6,2,2,5,2 \\
& \boldsymbol{x}=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 4 & 1 & \circ & 1 & \circ & \circ & 1 & 1 \\
\hline
\end{array}
\end{aligned}
$$

$$
A=2,3,2,1,2,9,8,2,5,2,2,4,6,2,2,5,2
$$

$$
x=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 9 & 1 & 1 & 2 & 1 & 0 & 1 & 1 \\
\hline
\end{array}
$$

Before the stream arrives

Somewhere in the middle of the stream

After the next item

At the end of the stream

So if we have \boldsymbol{M}, computing $f(\boldsymbol{x})$ from the stream is straightforward. We only need to store \boldsymbol{M} and $f(\boldsymbol{x})$.

The vector $f(\boldsymbol{x})$ has t coordinates and therefore we need only $O(t)$ words to maintain it.

The coefficient matrix M is generated in the beginning but we need to store it as the stream arrives. This takes $O(n t)$ words of space. © ${ }^{-}$

Recall in the end of last lecture, we mentioned that the Gaussian coefficients can be replaced by $\{-1,+1\}$ random numbers. This not only makes the algorithm easier to implement but also helps us in getting rid of the need to store \boldsymbol{M}. But how?

AMS's paper uses $\{-1,+1\}$ random coefficients instead of Gaussian random numbers.

For each coordinate of \boldsymbol{x}, we pick a random number σ_{i} from $\{-1,+1\}$. For now, suppose we have stored the vector $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$.

Let $Z=\sum_{i=1}^{n} \sigma_{i} x_{i} . Z$ is the inner product of $\boldsymbol{\sigma}$ and \boldsymbol{x}. Note that Z is gradually computed as the input stream arrives. We analyze $X=Z^{2}$.
$E[X]=E\left[\left(\sum_{i=1}^{n} \sigma_{i} x_{i}\right)^{2}\right]=\sum_{i=1}^{n} E\left[\sigma_{i}^{2}\right] x_{i}^{2}+\sum_{i \neq j} E\left[\sigma_{i} \sigma_{j}\right] x_{i} x_{j}$
Because σ_{i} and σ_{j} are independent, we get
$E[X]=\sum_{i=1}^{n} E\left[\sigma_{i}^{2}\right] x_{i}^{2}+\sum_{i \neq j} E\left[\sigma_{i}\right] E\left[\sigma_{j}\right] x_{i} x_{j}$
Because $E\left[\sigma_{i}\right]=0$ and $E\left[\sigma_{i}^{2}\right]=1$, we get
$E[X]=\sum_{i=1}^{n} x_{i}^{2}=F_{2}$

Using Chebyshev Inequality, we can say

$$
\operatorname{Pr}(|X-E[X]|>\epsilon E[X])=\frac{\operatorname{Var}[X]}{\epsilon^{2} E^{2}[X]}
$$

Because σ_{i} 's are independent,

$$
\begin{gathered}
E\left[X^{2}\right]=E\left[Z^{4}\right]=E\left[\left(\sum_{i=1}^{n} \sigma_{i} x_{i}\right)^{4}\right]= \\
\sum_{i=1}^{n} E\left[\sigma_{i}^{4}\right] x_{i}^{4}+6 \sum_{i, j} E\left[\sigma_{i}^{2} \sigma_{j}^{2}\right] x_{i}^{2} x_{j}^{2}+4 \sum_{i, j} E\left[\sigma_{i} \sigma_{j}^{3}\right] x_{i} x_{j}^{3} \\
=\sum_{i=1}^{n} x_{i}^{4}+6 \sum_{i, j} x_{i}^{2} x_{j}^{2} \\
\operatorname{Var}[X]=E\left[X^{2}\right]-E^{2}[X] \leq 4 \sum_{i, j} x_{i}^{2} x_{j}^{2} \leq 2 F_{2}^{2}
\end{gathered}
$$

Consequently,

$$
\operatorname{Pr}(|X-E[X]|>\epsilon E[X])=\frac{\operatorname{Var}[X]}{\epsilon^{2} E^{2}[X]} \leq \frac{2 F_{2}^{2}}{\epsilon^{2} F_{2}^{2}}=\frac{2}{\epsilon^{2}}
$$

Repeat to Decrease the Variance

To decrease the variance of X, we compute $s=\frac{8}{\epsilon^{2}}$ independent copies Y_{1}, \ldots, Y_{s} of X and output their average $Y=\frac{1}{s}\left(Y_{1}+\ldots+Y_{s}\right)$

Note that $E[Y]=E[X]=F_{2}$ and $\operatorname{Var}[Y]=\frac{1}{s} \operatorname{Var}[X]$

$$
\begin{gathered}
\operatorname{Pr}(|Y-E[Y]| \geq \epsilon E[Y]) \leq \frac{\operatorname{Var}[Y]}{\epsilon^{2} E^{2}[Y]} \leq \frac{1}{4} \\
\operatorname{Pr}\left(\left|Y-F_{2}\right| \geq \epsilon F_{2}\right) \leq \frac{\operatorname{Var}[Y]}{\epsilon^{2} E^{2}[Y]} \leq \frac{1}{4}
\end{gathered}
$$

What about the space needed to store σ ?

We do not need to store the random vector $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$. Why?

Notice, it is enough the random coefficients σ_{i} 's to be 4 -wise independent. We do not need them to be totally independent! See the analysis of $E[X]$ and $E\left[X^{2}\right]$.

We can generate a set of $n k$-wise independent random numbers using $O(k \log n)$ random bits.

How? This is the topic of the next lecture.

