Lecture 10

Data Stream Model: Frequency Moments

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics
K. N. Toosi University of Technology

Spring 2021

Data Stream Model

Data stream: In data stream model, input data is presented to
the algorithm as a stream of items in no particularly order.
The data stream is read only once and cannot be stored
(entirely) due to the large volume.

Examples of data streams:

>

>

>

sensor data : temperature, pressure, ...
website visits, click streams
user queries (search)

social network activities

business transactions

call center records

Data Stream Model

Streaming Algorithm is an algorithm that processes a data
stream and has small memory compared with the amount of
data it processes.

(2] 1]2]3]sfojs |2 [3[2[7]8]2 pajsz]s | 1]2]8]1)

Sublinear space usage: Assuming n is the size of input
typically a streaming algorithm has o(n) (for example log*(n),

\/n, etc) space usage.

Data Stream Model: two motivating puzzles

Missing elements in a permutation: Suppose the stream is a
permutation of {1,...,n} with one element missing. How
much space is needed to find the missing element?

7,8,3,9,1,5,2,6,10,12,11

What if 2 elements are missing?

Can we generalize to k missing elements?
Majority element: Suppose the stream is a sequence of
numbers a4, ...,a,,. Suppose one element is repeated at least

% times. How can we find the majority element?

2,3,2,1,2,9,8,2,5.2,2,4,6,2,2,5,2

Frequency Moments

Let A=aq,ao,...,a, bethe input stream where each
a; € {1,...,n}. Let x; denote the number of repetitions of i in
A. We define the k-th frequency moment of A

Example: A=2,3,2,1,2,9,8,2,5,2,2,4,6,2,2,5,2
r1=1Lxo=923=124=1,25=2,26 =1,27=0,28 = 1,29 = 1

Fy = number of distinct elements =8
F1 = Z?:lxi =17=m
Fo=Y122=12492+12+12+22+ 12+ 02+ 12+ 12 =91

— n
Foo =max], z;

Computing F}. in small space

Trivial facts:

» We can compute F; exactly in O(1) words (O(logm)
bits) of space.

» When £k is a constant, we can compute F}, exactly in
O(n) words of space.

Nontrivial facts:

» Assuming k # 1, any randomized streaming algorithm that
computes F), exactly requires 2(n) space.

» Assuming k # 1, any deterministic streaming algorithm
that computes a constant factor approximation of Fj,
requires 2(n) space.

» Both randomization and approximation is needed to
compute Fj in sublinear space.

Approximating [

The space complexity of approximating the frequency moments *

Noga Alon f Yossi Matias * Mario Szegedy *

February 22, 2002

Abstract

The frequency moments of a sequence containing m; elements of type i, for 1 < i < n, are
the numbers F;, = 3", m¥. We consider the space complexity of randomized algorithms that

approximate the numbers Fy, when the elements of the sequence are given one by one and cannot
be stored. Surprisingly, it turns out that the numbers Fy, Fy and F, can be approximated in
logarithmic space, whereas the approximation of Fy, for k > 6 requires n(1) space. Applications

to data bases are mentioned as well.

Theorem [AMS99] There is a randomized streaming algorithm
that approximates Fy within 1 + ¢ factor using O(Eig) words of
space. The algorithm succeeds with probability 3/4.

JL Lemma and Approximating F3

A=2,3,21,2,9,8,2,5,2,2,14,6,2,2,5,2

my m

e-L Lo []

Fo =l

Consequence of Lemma 2, previous lecture: Given & € R", assuming t > -% when ¢ is a large enough constant
e

then we have

Pr(lf(@)]? ~c |z]?) > 3/4

Assume we have @ and M. We can compute an approximation of Fy = H:cHz by computing ||f(:c)||2.

@x
—_—~—
»
9
M 1 f(=)
—_——
-0.23 -0.02 -0.22 -0.68 +0.39 +0.24 +0.36 +0.47 -1.42]||1 -1.24
%w.os +0.46 +0.68 +0.47 -0.28 +1.90 +1.13 -1.09 +2.27||2|=| 7.89
+0.89 -0.24 +0.83 +1.92 -0.47 +0.10 +0.33 -0.90 -0.99]|1 1.92
0
1
.1_

But if we store M and x, it would take a lot of space.

For now, lets assume we have stored M (later we remove this
assumption.) We show how f(x) is computed from the
stream A.

Every item in the stream is a single update of the vector x (it
increments one of its coordinates) In the beginning, = 0 and

f(x)=0.

Lets see when the i-th coordinate of x is incremented, how
does f(x) change?

Let f(x), be the j-th coordinate of f(x). f(x); is a inner
product of = and the j-th row of M (divided by \/f). When

x; is increased by 1, we need to add ﬁMﬁ to f(x);.

increment z; = add —M;; to f(x),

Vt

How the stream updates x

A=2,3,2,1,2,9,8,25,2,2,4,6,2,2,5,2

w-fofoJoJoJoJofo]ol]o]

A=2,3,2,1,2,98,2,52,2,1,6,2,2,5,2

w-fr]e]sfofofofo]r]s |

A=2.3,2,1,2,9,8,2,5,2,2,4,6,2,2,5,2

w-[tfefeJofeJofofa:]

A=23,2,1,2,9,82,5,2,2.4,6,2,2,5,2

w-fafoeJafofrfo]af]

Before the stream
arrives

Somewhere in the middle

of the stream

After the next item

At the end of the stream

So if we have M, computing f(x) from the stream is
straightforward. We only need to store M and f(x).

The vector f(x) has ¢ coordinates and therefore we need only
O(t) words to maintain it.

The coefficient matrix M is generated in the beginning but
we need to store it as the stream arrives. This takes O(nt)
words of space. ®

Recall in the end of last lecture, we mentioned that the
Gaussian coefficients can be replaced by {-1,+1} random
numbers. This not only makes the algorithm easier to

implement but also helps us in getting rid of the need to store
M. But how?

AMS'’s paper uses {—1,+1} random coefficients instead of
Gaussian random numbers.

For each coordinate of x, we pick a random number o; from
{-1,+1}. For now, suppose we have stored the vector
g = (0'1,...,Un).

Let Z =Y, 0;x;. Z is the inner product of o and . Note
that Z is gradually computed as the input stream arrives. We
analyze X = Z2.

E[X]=E[(XL 0iw:)?] = i Elo7)7} + ¥, Eloioj]vix;
Because o; and o, are independent, we get

E[X] =YY% Elo}]a} + Eis; Eloi] Eloj],

Because E[0;] =0 and E[c?] =1, we get

ElX]=Y 27 =1

Using Chebyshev Inequality, we can say

Pr(|X - E[X]| > eE[X]) = %

Because o;'s are independent,
E[X?]= E[Z"] = E[(}, 0iw:)*] =
ZE e +62E orlaia? +4) Eloo)vx?
i= 2%
Z +6 Z x;
=1

2

Var[X] = E[X?] - E?[X] <4} aja] <2F7
.3

Consequently,

Var[X 2F2 2
Pr(|X - E[X]|>€eE[X]) = EQEQ[[X]] < 62;2 -5
9

Repeat to Decrease the Variance

To decrease the variance of X, we compute s = 6%

independent copies Yi,..., Y of X and output their average
V=3(Yi+...+Y))

Note that E[Y] = E[X]=F, and Var[Y] = 1Var[X]

Pr(]Y - E[Y]| > eB[Y]) <

Pr([Y =Byl 2 eFy) € 5o <

What about the space needed to store o7

We do not need to store the random vector o = (0y,...,0,).
Why?

Notice, it is enough the random coefficients o;'s to be 4-wise
independent. We do not need them to be totally independent!
See the analysis of E[X] and E[X?2].

We can generate a set of n k-wise independent random
numbers using O(klogn) random bits.

How? This is the topic of the next lecture.

