Lecture 11

k-wise independence and its applications

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics
K. N. Toosi University of Technology

Spring 2021

Independence

Let X_{1}, \ldots, X_{n} be discrete random variables. We say X_{1}, \ldots, X_{n} are (mutually) independent if for all values $\alpha_{1}, \ldots, \alpha_{n}$ we have

$$
\operatorname{Pr}\left(X_{1}=\alpha_{1}, \ldots, X_{n}=\alpha_{n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(X_{i}=\alpha_{i}\right)
$$

Limited Independence

k-wise independence: Let X_{1}, \ldots, X_{n} be discrete random variables. We say X_{1}, \ldots, X_{n} are k-wise independent if for every subset $S=\left\{s_{1}, \ldots, s_{\ell}\right\} \subseteq\{1, \ldots, n\}$ of cardinality at most k and all values $\alpha_{1}, \ldots, \alpha_{\ell}$ we have

$$
\operatorname{Pr}\left(X_{s_{1}}=\alpha_{1}, \ldots, X_{s_{\ell}}=\alpha_{\ell}\right)=\prod_{i=1}^{\ell} \operatorname{Pr}\left(X_{s_{i}}=\alpha_{i}\right)
$$

Special Case: Let X_{1}, \ldots, X_{n} be $\{0,1\}$-valued random variables where for each i we have $\operatorname{Pr}\left(X_{i}=0\right)=\operatorname{Pr}\left(X_{i}=1\right)$. We say X_{1}, \ldots, X_{n} are k-wise independent if for every subset $S=\left\{s_{1}, \ldots, s_{\ell}\right\} \subseteq\{1, \ldots, n\}$ of cardinality at most k and all values $\alpha_{1}, \ldots, \alpha_{\ell}$ we have

$$
\operatorname{Pr}\left(X_{s_{1}}=\alpha_{1}, \ldots, X_{s_{\ell}}=\alpha_{\ell}\right)=\left(\frac{1}{2}\right)^{\ell}
$$

Constructing k-wise independent $\{0,1\}$-valued random variables using little randomness

First Idea: Assume n is even. We let X_{1}, \ldots, X_{n} be random
(cyclic) shift of $\underbrace{1,0,1,0,1,0, \ldots, 1,0}_{n}$. We have
$\operatorname{Pr}\left(X_{i}=0\right)=\operatorname{Pr}\left(X_{i}=1\right)=\frac{1}{2}$
Question: How much randomness is used in this construction?
Answer: $\log n$ bits

But X_{i} and X_{j} are not independent. ©

$$
\operatorname{Pr}\left(X_{1}=0, X_{2}=0\right)=0 \neq \frac{1}{4}
$$

Second Idea: [Pair-wise Independent Random Bits] Let Y_{1}, \ldots, Y_{m} be mutually independent random bits. We construct $n=2^{m}-1$ random bits from Y_{1}, \ldots, Y_{m}. For each non-empty subset $S \subseteq[m]=\{1, \ldots, m\}$ we let

$$
X_{S}=\sum_{r \in S} Y_{r} \quad \bmod 2
$$

Claim: The random bits $\left\{X_{S}\right\}_{S \subseteq[m]}$ are pair-wise independent.
Proof: Exercise.

Conclusion: We can generate n pairwise random bits from $\log n+1$ mutually independent random bits.

Third Idea: [Pair-wise Independent Random Numbers] Let p be a prime where $p \geq n$. We choose the random numbers a and b from \mathbb{Z}_{p} independently. We let

$$
X_{i}=(a i+b) \bmod p
$$

- $\forall i \in[n], \alpha \in \mathbb{Z}_{p}, \operatorname{Pr}\left(X_{i}=\alpha\right)=\frac{1}{p}$
- $\forall i, j \in[n], \alpha_{1}, \alpha_{2} \in \mathbb{Z}_{p}, \operatorname{Pr}\left(X_{i}=\alpha_{1}, X_{j}=\alpha_{2}\right)=\left(\frac{1}{p}\right)^{2}$

Fourth Idea: [Third Idea Generalized] Consider the field \mathbb{F}_{p} where p is large enough. Let $Y_{0}, Y_{1}, \ldots, Y_{\ell}$ be mutually independent samples from \mathbb{F}_{p}. For $a \in \mathbb{F}_{p}$, we define

$$
X_{a}=\sum_{i=0}^{\ell} Y_{i} a^{i}=Y_{0}+Y_{1} a+Y_{2} a^{2}+\ldots+Y_{\ell} a^{\ell}
$$

Note all computations are done in the field \mathbb{F}_{p}

Lemma: The random variables $\left\{X_{a}\right\}_{a \in \mathbb{F}_{p}}$ are $(\ell+1)$-wise independent.

Claim 1: For $b \in \mathbb{F}_{p}$, we have $\operatorname{Pr}\left(X_{a}=b\right)=\frac{1}{p}$.
Proof: Proof by induction on ℓ. The case $\ell=0$ is trivial.

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{a}=b\right)=\operatorname{Pr}\left(\sum_{i=0}^{\ell} Y_{i} a^{i}=b\right) \\
& =\sum_{c \in \mathbb{F}_{p}} \operatorname{Pr}\left(\sum_{i=0}^{\ell} Y_{i} a^{i}=b \mid \sum_{i=0}^{\ell-1} Y_{i} a^{i}=c\right) \operatorname{Pr}\left(\sum_{i=0}^{\ell-1} Y_{i} a^{i}=c\right)
\end{aligned}
$$

$$
=\sum_{c \in \mathbb{F}_{p}} \operatorname{Pr}\left(Y_{\ell} a^{\ell}=b-c\right) \frac{1}{p}
$$

(By induction hypothesis)
$=\frac{1}{p} \sum_{c \in \mathbb{F}_{p}} \operatorname{Pr}\left(Y_{\ell} a^{\ell}=b-c\right)$
$=\frac{1}{p} \sum_{c \in \mathbb{F}_{p}} \frac{1}{p}=\frac{1}{p}$

Claim 2: For all $a_{0}, \ldots, a_{\ell} \in \mathbb{F}_{p}$, we have

$$
\operatorname{Pr}\left(X_{a_{0}}=b_{0}, \ldots, X_{a_{\ell}}=b_{\ell}\right)=\frac{1}{p^{\ell+1}}
$$

Proof Sketch: Note that when Y_{0}, \ldots, Y_{ℓ} are fixed, $\sum_{i=0}^{\ell} Y_{i} a^{i}$ is polynomial of degree at most ℓ and X_{a} is the evaluation of this polynomial at point $a \in \mathbb{F}_{p}$.

Fact A: A polynomial of degree d is (uniquely) determined by its evaluation at $d+1$ points.

Fact B : There are $p^{\ell+1}$ polynomial of degree at most ℓ over \mathbb{F}_{p}.

$$
\text { Facts } \mathrm{A} \text { and } \mathrm{B} \Rightarrow \operatorname{Pr}\left(X_{a_{0}}=b_{0}, \ldots, X_{a_{\ell}}=b_{\ell}\right)=\frac{1}{p^{\ell+1}}
$$

Vandermonde Matrix

$$
\left(\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{\ell} \\
1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{\ell} \\
1 & a_{3} & a_{3}^{2} & \cdots & a_{3}^{\ell} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_{p} & a_{p}^{2} & \cdots & a_{p}^{\ell}
\end{array}\right)\left(\begin{array}{c}
Y_{0} \\
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{l}
\end{array}\right)=\left(\begin{array}{c}
X_{a_{1}} \\
X_{a_{2}} \\
X_{a_{3}} \\
\vdots \\
X_{a p}
\end{array}\right)
$$

- Vandermonde matrix is full rank (has rank $\ell+1$)
- (Lemma) let $M \in \mathbb{F}_{p}^{n \times \ell}$ be a full rank matrix and $Y=Y_{0}, \ldots, Y_{\ell}$ be independent samples from \mathbb{F}_{p} then $M Y$ is $(\ell+1)$-wise independent.

We can generate k-wise independent $(0,1)$-valued random variables X_{1}, \ldots, X_{n} from $O(k)$ random numbers from \mathbb{F}_{p} where $p \geq n$. Therefore to able to generate every X_{i} we need to keep at most $O(k \log n)$ bits.

In particular, we can generate 4 -wise independent $(-1,+1)$-valued random variables $\sigma_{1}, \ldots, \sigma_{n}$ by keeping $O(\log n)$ random bits.

Applications: Pairwise Independence

Problem: Estimating the number of distinct elements in the stream $A=a_{1}, \ldots, a_{m}$

$$
a_{i} \in\{1, \ldots, n\}
$$

Example: $A=2,3,2,1,2,9,8,2,5,2,2,4,6,2,2,5,2$
$F_{0}=$ number of distinct elements $=8$

Idea: Hash the elements $[n]=\{1, \ldots, n\}$ (randomly and independently) to the continuous interval (0,1). Let $h(x)$ be the hash of $x \in[n]$. Output $\frac{1}{\min h(x)}$

Justification: If F_{0} is high then there will an element x where its hash $h(x)$ is close to zero.

AMS Idea:

- Choose a pairwise independent hash function h from $[n]=\{1, \ldots, n\}$ to $\{0,1, \ldots, p-1\}$ where p is a prime greater than or equal to n. Let $h(x)$ be the hash of $x \in[n]$.
- Let $z \operatorname{eros}(x)$ be the number of trailing zeros in the bit representation of number x. For example $z \operatorname{eros}(000011)=4$ and $\operatorname{zeros}(100001)=0$.
- Given the stream A, compute $z=\max _{a_{i} \in A} \operatorname{zeros}\left(h\left(a_{i}\right)\right)$
- Output 2^{z}

Space Complexity of the AMS Idea: To store the hash function h, we only need to choose and keep two random numbers a and p from \mathbb{F}_{p}. Since $p=O(n)$, this takes only $O(\log n)$ bits. Also the value z is easily computable by having access to the function h and storing at most $O(\log n)$ bits. Therefore the algorithm requires only $O(\log n)$ bits.

Proposition 2.3 For every $c>2$ there exists an algorithm that, given a sequence A of members of N, computes a number Y using $O(\log n)$ memory bits, such that the probability that the ratio between Y and F_{0} is not between $1 / c$ and c is at most $2 / c$.

$$
\operatorname{Pr}\left(\frac{1}{c} \leq \frac{Y}{F_{0}} \leq c\right) \geq 1-\frac{2}{c}
$$

