Lecture 11

k-wise independence and its applications

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics Faculty of Mathematics K. N. Toosi University of Technology

Spring 2021

Independence

Let X_1, \ldots, X_n be discrete random variables. We say X_1, \ldots, X_n are (mutually) independent if for all values $\alpha_1, \ldots, \alpha_n$ we have

$$Pr(X_1 = \alpha_1, \dots, X_n = \alpha_n) = \prod_{i=1}^n Pr(X_i = \alpha_i)$$

Limited Independence

k-wise independence: Let X_1, \ldots, X_n be discrete random variables. We say X_1, \ldots, X_n are *k*-wise independent if for every subset $S = \{s_1, \ldots, s_\ell\} \subseteq \{1, \ldots, n\}$ of cardinality at most k and all values $\alpha_1, \ldots, \alpha_\ell$ we have

$$Pr(X_{s_1} = \alpha_1, \dots, X_{s_\ell} = \alpha_\ell) = \prod_{i=1}^\ell Pr(X_{s_i} = \alpha_i)$$

Special Case: Let X_1, \ldots, X_n be $\{0, 1\}$ -valued random variables where for each i we have $Pr(X_i = 0) = Pr(X_i = 1)$. We say X_1, \ldots, X_n are k-wise independent if for every subset $S = \{s_1, \ldots, s_\ell\} \subseteq \{1, \ldots, n\}$ of cardinality at most k and all values $\alpha_1, \ldots, \alpha_\ell$ we have

$$Pr(X_{s_1} = \alpha_1, \dots, X_{s_\ell} = \alpha_\ell) = (\frac{1}{2})^\ell$$

Constructing k-wise independent $\{0,1\}$ -valued random variables using little randomness

First Idea: Assume n is even. We let X_1, \ldots, X_n be random (cyclic) shift of $1, 0, 1, 0, 1, 0, \ldots, 1, 0$. We have

$$Pr(X_i = 0) = Pr(X_i = 1)^n = \frac{1}{2}$$

Question: How much randomness is used in this construction? Answer: $\log n$ bits

But X_i and X_j are not independent. \odot

$$Pr(X_1 = 0, X_2 = 0) = 0 \neq \frac{1}{4}$$

Second Idea: [Pair-wise Independent Random Bits] Let Y_1, \ldots, Y_m be mutually independent random bits. We construct $n = 2^m - 1$ random bits from Y_1, \ldots, Y_m . For each non-empty subset $S \subseteq [m] = \{1, \ldots, m\}$ we let

$$X_S = \sum_{r \in S} Y_r \mod 2$$

Claim: The random bits $\{X_S\}_{S \subseteq [m]}$ are pair-wise independent. Proof: Exercise.

Conclusion: We can generate n pairwise random bits from $\log n + 1$ mutually independent random bits.

Third Idea: [Pair-wise Independent Random Numbers] Let p be a prime where $p \ge n$. We choose the random numbers a and b from \mathbb{Z}_p independently. We let

 $X_i = (ai + b) \mod p$

 $\forall i \in [n], \alpha \in \mathbb{Z}_p, \ Pr(X_i = \alpha) = \frac{1}{p}$

 $\forall i, j \in [n], \alpha_1, \alpha_2 \in \mathbb{Z}_p, \ Pr(X_i = \alpha_1, X_j = \alpha_2) = (\frac{1}{p})^2$

Fourth Idea: [Third Idea Generalized] Consider the field \mathbb{F}_p where p is large enough. Let Y_0, Y_1, \ldots, Y_ℓ be mutually independent samples from \mathbb{F}_p . For $a \in \mathbb{F}_p$, we define

$$X_a = \sum_{i=0}^{\ell} Y_i a^i = Y_0 + Y_1 a + Y_2 a^2 + \ldots + Y_{\ell} a^{\ell}$$

Note all computations are done in the field \mathbb{F}_p

Lemma: The random variables $\{X_a\}_{a \in \mathbb{F}_p}$ are $(\ell + 1)$ -wise independent.

Claim 1: For $b \in \mathbb{F}_p$, we have $Pr(X_a = b) = \frac{1}{p}$. Proof: Proof by induction on ℓ . The case $\ell = 0$ is trivial.

 $Pr(X_{a} = b) = Pr(\sum_{i=0}^{\ell} Y_{i}a^{i} = b)$ $= \sum_{c \in \mathbb{F}_{p}} Pr(\sum_{i=0}^{\ell} Y_{i}a^{i} = b \mid \sum_{i=0}^{\ell-1} Y_{i}a^{i} = c)Pr(\sum_{i=0}^{\ell-1} Y_{i}a^{i} = c)$ $= \sum_{c \in \mathbb{F}_{p}} Pr(Y_{\ell}a^{\ell} = b - c)\frac{1}{p} \qquad \text{(By induction hypothesis)}$ $= \frac{1}{p} \sum_{c \in \mathbb{F}_{p}} Pr(Y_{\ell}a^{\ell} = b - c)$ $= \frac{1}{p} \sum_{c \in \mathbb{F}_{p}} \frac{1}{p} = \frac{1}{p}$

Claim 2: For all $a_0, \ldots, a_\ell \in \mathbb{F}_p$, we have

$$Pr(X_{a_0} = b_0, \dots, X_{a_\ell} = b_\ell) = \frac{1}{p^{\ell+1}}$$

Proof Sketch: Note that when Y_0, \ldots, Y_ℓ are fixed, $\sum_{i=0}^{\ell} Y_i a^i$ is polynomial of degree at most ℓ and X_a is the evaluation of this polynomial at point $a \in \mathbb{F}_p$.

Fact A: A polynomial of degree d is (uniquely) determined by its evaluation at d + 1 points.

Fact B: There are $p^{\ell+1}$ polynomial of degree at most ℓ over \mathbb{F}_p .

Facts A and B
$$\Rightarrow$$
 $Pr(X_{a_0} = b_0, \dots, X_{a_\ell} = b_\ell) = \frac{1}{p^{\ell+1}}$

Vandermonde Matrix

$$\begin{pmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{\ell} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{\ell} \\ 1 & a_3 & a_3^2 & \cdots & a_3^{\ell} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_p & a_p^2 & \cdots & a_p^{\ell} \end{pmatrix} \begin{pmatrix} Y_0 \\ Y_1 \\ Y_2 \\ \vdots \\ Y_l \end{pmatrix} = \begin{pmatrix} X_{a_1} \\ X_{a_2} \\ X_{a_3} \\ \vdots \\ X_{ap} \end{pmatrix}$$

- Vandermonde matrix is full rank (has rank $\ell + 1$)
- (Lemma) let M ∈ ℝ^{n×ℓ}_p be a full rank matrix and
 Y = Y₀,..., Y_ℓ be independent samples from ℝ_p then MY is (ℓ + 1)-wise independent.

We can generate k-wise independent (0, 1)-valued random variables X_1, \ldots, X_n from O(k) random numbers from \mathbb{F}_p where $p \ge n$. Therefore to able to generate every X_i we need to keep at most $O(k \log n)$ bits.

In particular, we can generate 4-wise independent (-1,+1)-valued random variables $\sigma_1, \ldots, \sigma_n$ by keeping $O(\log n)$ random bits.

Applications: Pairwise Independence

Problem: Estimating the number of distinct elements in the stream $A = a_1, \ldots, a_m$

$$a_i \in \{1, \ldots, n\}$$

Example: A = 2, 3, 2, 1, 2, 9, 8, 2, 5, 2, 2, 4, 6, 2, 2, 5, 2

 F_0 = number of distinct elements = 8

Idea: Hash the elements $[n] = \{1, ..., n\}$ (randomly and independently) to the continuous interval (0, 1). Let h(x) be the hash of $x \in [n]$. Output $\frac{1}{\min h(x)}$

Justification: If F_0 is high then there will an element x where its hash h(x) is close to zero.

AMS Idea:

- Choose a pairwise independent hash function h from
 [n] = {1,...,n} to {0,1,...,p-1} where p is a prime
 greater than or equal to n. Let h(x) be the hash of
 x ∈ [n].
- Let zeros(x) be the number of trailing zeros in the bit representation of number x. For example zeros(000011) = 4 and zeros(100001) = 0.
- Given the stream A, compute $z = \max_{a_i \in A} zeros(h(a_i))$
- Output 2^z

Space Complexity of the AMS Idea: To store the hash function h, we only need to choose and keep two random numbers a and p from \mathbb{F}_p . Since p = O(n), this takes only $O(\log n)$ bits. Also the value z is easily computable by having access to the function h and storing at most $O(\log n)$ bits. Therefore the algorithm requires only $O(\log n)$ bits.

Proposition 2.3 For every c > 2 there exists an algorithm that, given a sequence A of members of N, computes a number Y using $O(\log n)$ memory bits, such that the probability that the ratio between Y and F_0 is not between 1/c and c is at most 2/c.

$$Pr(\frac{1}{c} \le \frac{Y}{F_0} \le c) \ge 1 - \frac{2}{c}$$