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Independence

Let X4,..., X, be discrete random variables. We say
Xi,...,X, are (mutually) independent if for all values
Qi,...,q, we have

Pr(Xi=oq,..., X, =) = [[Pr(Xi =)

=1



Limited Independence

k-wise independence: Let X,...,X,, be discrete random
variables. We say X1,...,X,, are k-wise independent if for
every subset S ={sy,...,8:} € {1,...,n} of cardinality at
most k£ and all values a4, ..., a; we have

¢
Pr(Xs, =oq,..., Xy, =ap) = [[ Pr(X,, = ;)
i=1
Special Case: Let Xi,..., X, be {0,1}-valued random
variables where for each i we have Pr(X; =0) = Pr(X;=1).

We say X,..., X, are k-wise independent if for every subset
S={s1,...,80 €{1,...,n} of cardinality at most k and all
values oy, ..., ap we have

1
PT(XSl =Qq,.. .,XSE = C(Z) — (5)5



Constructing k-wise independent {0, 1}-valued
random variables using little randomness

First Idea: Assume n is even. We let X4, ..., X,, be random
(cyclic) shift of 1,0,1,0,1,0,...,1,0. We have

PT’(XZ':O):PT(Xizl):%

Question: How much randomness is used in this construction?

Answer: logn bits

But X; and X are not independent. ®

1
PT(X1=O,X2=0)=O¢Z



Second Idea: [Pair-wise Independent Random Bits] Let

Y1, ..., Y, be mutually independent random bits. We
construct n = 2™ — 1 random bits from Y7,...,Y,,. For each
non-empty subset S € [m]={1,...,m} we let

XS=ZK mod 2

reS

Claim: The random bits {Xg}gcpn are pair-wise independent.

Y

Conclusion: We can generate n pairwise random bits from
logn + 1 mutually independent random bits.

Proof: Exercise.



Third Idea: [Pair-wise Independent Random Numbers| Let p
be a prime where p > n. We choose the random numbers a
and b from Z, independently. We let

X;=(ai+b) modp
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» Vie[n],aeZ, Pr(X;=a)=

Q=

> VZ,j € [n],al,Oég € Zp, PT(XZ = Oél,Xj = 062) = (%)2



Fourth Idea: [Third Idea Generalized] Consider the field IF,,
where p is large enough. Let Yy, Y7, ..., Y, be mutually
independent samples from F,,. For a € IF,,, we define

4
X, =Y Ya' =Yy +Yia+Yoa? +... +Yed"
=0

Note all computations are done in the field IF,,

Lemma: The random variables {X,}qcr, are (£ + 1)-wise
independent.



Claim 1: For b e[y, we have Pr(X, =b) = .

Proof: Proof by induction on ¢. The case ¢ =0 is trivial.
Pr(X,=b) = Pr(Li,Yia' =)
= Yeer, Pr(Zio Yia' =b| £is Yial = ¢) Pr(Ei Yial = )

= Yeer, Pr(Yea® =b-c) (By induction hypothesis)

1
p

= % Yeer, Pr(Yeat =b-c)
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Claim 2: For all ay,...,a, € F), we have

1

PT(XaOZbO;--'uXag:bZ)ZW

Proof Sketch: Note that when Yj,...,Y} are fixed, Zfzo Y;at is
polynomial of degree at most ¢ and X, is the evaluation of
this polynomial at point a € [F),.

Fact A: A polynomial of degree d is (uniquely) determined by
its evaluation at d + 1 points.

Fact B: There are p®*! polynomial of degree at most ¢ over F,,.

Facts A and B = Pr(Xu, =bo,..., Xo, =br) = =7
i p



Vandermonde Matrix

1 a; af at\ (/Yo X,

1 ao ag a% Y X,
> ' '

1 ap ay, ay, Y, X ap

» Vandermonde matrix is full rank (has rank ¢+ 1)

> (Lemma) let M € F** be a full rank matrix and
Y =Y,,...,Y, be independent samples from [, then MY
is (¢ + 1)-wise independent.



We can generate k-wise independent (0, 1)-valued random
variables X1,..., X,, from O(k) random numbers from F,
where p > n. Therefore to able to generate every X; we need
to keep at most O(klogn) bits.

In particular, we can generate 4-wise independent
(-1, +1)-valued random variables o1, . .., 0, by keeping
O(logn) random bits.



Applications: Pairwise Independence

Problem: Estimating the number of distinct elements in the
stream A=aq,...,a,

a; €{1,...,n}

Example: A=2,3,2,1,2,9.8,2,5,2,2,4,6,2,2,5,2

Fy = number of distinct elements =8

|dea: Hash the elements [n] ={1,...,n} (randomly and
independently) to the continuous interval (0,1). Let h(z) be
the hash of = € [n]. Output mmh(x)
Justification: If F{ is high then there will an element x where
its hash h(zx) is close to zero.
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AMS Idea:

» Choose a pairwise independent hash function h from
[n]={1,...,n} to {0,1,...,p—1} where p is a prime
greater than or equal to n. Let h(z) be the hash of

xe[n].

» Let zeros(x) be the number of trailing zeros in the bit
representation of number x. For example
zeros(000011) =4 and zeros(100001) = 0.

» Given the stream A, compute z = max,,ea zeros(h(a;))

» Output 27



Space Complexity of the AMS Idea: To store the hash
function h, we only need to choose and keep two random
numbers a and p from F,,. Since p = O(n), this takes only
O(logn) bits. Also the value z is easily computable by having
access to the function A and storing at most O(logn) bits.
Therefore the algorithm requires only O(logn) bits.

Proposition 2.3 For every ¢ > 2 there exists an algorithm that, given a sequence A of members of
N, computes a number Y using O(logn) memory bits, such that the probablity that the ratio between

Y and F, is not between 1/c and c is at most 2/c.

1 Y 2
Pr(=<—<¢)>1-=
T(C_FO_C)_ c



