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Independence

Let X1, . . . ,Xn be discrete random variables. We say
X1, . . . ,Xn are (mutually) independent if for all values
α1, . . . , αn we have

Pr(X1 = α1, . . . ,Xn = αn) =
n

∏
i=1

Pr(Xi = αi)
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Limited Independence

k-wise independence: Let X1, . . . ,Xn be discrete random
variables. We say X1, . . . ,Xn are k-wise independent if for
every subset S = {s1, . . . , s`} ⊆ {1, . . . , n} of cardinality at
most k and all values α1, . . . , α` we have

Pr(Xs1 = α1, . . . ,Xs` = α`) =
`

∏
i=1

Pr(Xsi = αi)

Special Case: Let X1, . . . ,Xn be {0,1}-valued random
variables where for each i we have Pr(Xi = 0) = Pr(Xi = 1).
We say X1, . . . ,Xn are k-wise independent if for every subset
S = {s1, . . . , s`} ⊆ {1, . . . , n} of cardinality at most k and all
values α1, . . . , α` we have

Pr(Xs1 = α1, . . . ,Xs` = α`) = (
1

2
)`
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Constructing k-wise independent {0, 1}-valued

random variables using little randomness

First Idea: Assume n is even. We let X1, . . . ,Xn be random
(cyclic) shift of 1,0,1,0,1,0, . . . ,1,0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

. We have

Pr(Xi = 0) = Pr(Xi = 1) = 1
2

Question: How much randomness is used in this construction?

Answer: logn bits

But Xi and Xj are not independent. /

Pr(X1 = 0,X2 = 0) = 0 ≠
1

4
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Second Idea: [Pair-wise Independent Random Bits] Let
Y1, . . . , Ym be mutually independent random bits. We
construct n = 2m − 1 random bits from Y1, . . . , Ym. For each
non-empty subset S ⊆ [m] = {1, . . . ,m} we let

XS =∑
r∈S

Yr mod 2

Claim: The random bits {XS}S⊆[m] are pair-wise independent.

Proof: Exercise.

Conclusion: We can generate n pairwise random bits from
logn + 1 mutually independent random bits.
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Third Idea: [Pair-wise Independent Random Numbers] Let p
be a prime where p ≥ n. We choose the random numbers a
and b from Zp independently. We let

Xi = (ai + b) mod p

▸ ∀i ∈ [n], α ∈ Zp, P r(Xi = α) =
1
p

▸ ∀i, j ∈ [n], α1, α2 ∈ Zp, P r(Xi = α1,Xj = α2) = (1
p)

2
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Fourth Idea: [Third Idea Generalized] Consider the field Fp

where p is large enough. Let Y0, Y1, . . . , Y` be mutually
independent samples from Fp. For a ∈ Fp, we define

Xa =
`

∑
i=0

Yia
i = Y0 + Y1a + Y2a

2 + . . . + Y`a
`

Note all computations are done in the field Fp

Lemma: The random variables {Xa}a∈Fp are (` + 1)-wise
independent.
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Claim 1: For b ∈ Fp, we have Pr(Xa = b) =
1
p .

Proof: Proof by induction on `. The case ` = 0 is trivial.

Pr(Xa = b) = Pr(∑
`
i=0 Yia

i = b)

= ∑c∈Fp
Pr(∑

`
i=0 Yia

i = b ∣ ∑
`−1
i=0 Yia

i = c)Pr(∑
`−1
i=0 Yia

i = c)

= ∑c∈Fp
Pr(Y`a` = b − c)

1
p (By induction hypothesis)

= 1
p ∑c∈Fp

Pr(Y`a` = b − c)

= 1
p ∑c∈Fp

1
p =

1
p



9/15

Claim 2: For all a0, . . . , a` ∈ Fp, we have

Pr(Xa0 = b0, . . . ,Xa` = b`) =
1

p`+1

Proof Sketch: Note that when Y0, . . . , Y` are fixed, ∑
`
i=0 Yia

i is
polynomial of degree at most ` and Xa is the evaluation of
this polynomial at point a ∈ Fp.

Fact A: A polynomial of degree d is (uniquely) determined by
its evaluation at d + 1 points.

Fact B: There are p`+1 polynomial of degree at most ` over Fp.

Facts A and B ⇒ Pr(Xa0 = b0, . . . ,Xa` = b`) =
1

p`+1
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Vandermonde Matrix

▸ Vandermonde matrix is full rank (has rank ` + 1)

▸ (Lemma) let M ∈ Fn×`
p be a full rank matrix and

Y = Y0, . . . , Y` be independent samples from Fp then MY
is (` + 1)-wise independent.
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We can generate k-wise independent (0,1)-valued random
variables X1, . . . ,Xn from O(k) random numbers from Fp

where p ≥ n. Therefore to able to generate every Xi we need
to keep at most O(k logn) bits.

In particular, we can generate 4-wise independent
(−1,+1)-valued random variables σ1, . . . , σn by keeping
O(logn) random bits.
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Applications: Pairwise Independence

Problem: Estimating the number of distinct elements in the
stream A = a1, . . . , am

ai ∈ {1, . . . , n}

Example: A = 2,3,2,1,2,9,8,2,5,2,2,4,6,2,2,5,2

F0 = number of distinct elements = 8

Idea: Hash the elements [n] = {1, . . . , n} (randomly and
independently) to the continuous interval (0,1). Let h(x) be
the hash of x ∈ [n]. Output 1

minh(x)

Justification: If F0 is high then there will an element x where
its hash h(x) is close to zero.
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AMS Idea:

▸ Choose a pairwise independent hash function h from
[n] = {1, . . . , n} to {0,1, . . . , p − 1} where p is a prime
greater than or equal to n. Let h(x) be the hash of
x ∈ [n].

▸ Let zeros(x) be the number of trailing zeros in the bit
representation of number x. For example
zeros(000011) = 4 and zeros(100001) = 0.

▸ Given the stream A, compute z =maxai∈A zeros(h(ai))

▸ Output 2z
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Space Complexity of the AMS Idea: To store the hash
function h, we only need to choose and keep two random
numbers a and p from Fp. Since p = O(n), this takes only
O(logn) bits. Also the value z is easily computable by having
access to the function h and storing at most O(logn) bits.
Therefore the algorithm requires only O(logn) bits.

Pr(
1

c
≤
Y

F0

≤ c) ≥ 1 −
2

c


