
Lecture 12

Heavy Hitters in Data Streams

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics

K. N. Toosi University of Technology

Spring 2021

1/19



2/19

A General Framework for Data Stream Problems



3/19

We have an initially-zero vector x ∈ Rn where n is large.

x = (0,0, . . . ,0)

Every stream item is an update of some coordinate in x

(i1,+2.8), . . . ,
coordinate indexª

(ik ,

update value

+2.3) , . . . , (im,+10)

The stream item (i, u) means the value u is added to the i-th
coordinate.

(i, u) → add u to xi

At the end, we like to have an estimate of f(x) for some
function f



4/19

The General Framework: Special Cases



5/19

Insert-only Model (for Graph Streams)

Every update u = 1 and each coordinate i is updated at most
one time (i1,1), (i2,1), . . . , (im,1)

Specific problems: Maximum Matching, Number of Connected
Components, ...

The vector x ∈ {0,1}(n2) represents a graph on n vertices. An
stream item is the insertion of an edge ei.



6/19

Insertion/Deletion Model (for Graph Streams)

Every update u ∈ {+1,−1} and each coordinate i may be
updated multiple times but every deletion (u = −1) is preceded
by an insertion (u = +1).

Specific problems: Dynamic Maximum Matching, Dynamic
Spanning Tree , ...

The vector x ∈ {0,1}(n2) represents a graph on n vertices. An
stream item is the insertion/deletion of an edge ei.



7/19

Cash Register Model

Every update u is a positive number. Each coordinate i may
be updated multiple times. (i1,+4), (i2,+1), . . . , (im,+6)

Specific problems:

▸ Frequency moments Fk = ∑ni=1 xki .

(Here the vector x ∈ Z+n represents a frequency vector.
Each stream item increments a coordinate of x.)

▸ Finding the most frequent element: arg maxni=1 xi

▸ Empirical entropy H = ∑ni=1 − xi
F1

log xi
F1

▸ Weighted graph problems



8/19

Turnstile Model

In the turnstile model, every update u ∈ R and each
coordinate i may be updated multiple times.
(i1,+4.2), (i2,−1.9), . . . , (im,+6.5)

The strict turnstile model is like the turnstile model except
that no xi never goes below zero. At all times xi ≥ 0.

Specific problems:

▸ Estimating the `p norm ∥x∥p = (∑ni=1 ∣xi∣p)1/p.

▸ Various matrix norms (Frobenius norm, Spectral norm, ...)

▸ Weighted graph problems (strict turnstile)



9/19

Sliding Window Model

In this model, we are interested in computing the f(x) when
the input is restricted to the last W data items.

The space of the algorithm is NOT enough to store the entire
window.



10/19

Heavy Hitters

Finding the most frequent element (in the cash-register
model) requires Ω(n) space in general.

We study a relaxed version of the problem:

Definition: Given a frequency vector x = (x1, . . . , xn), the
coordinate i is a ε-HH (Heavy Hitter) iff

xi ≥ ε
n

∑
i=1

xi = ε∥x∥1 = εF1

When ε > 1
2 , an ε-HH is called a majority element.

The number of coordinates that are ε-HH is at most 1
ε .



11/19

Streaming Algorithms for Finding Heavy Hitters

Counter-based algorithms: these algorithm find the most
frequent items by storing a subset of the elements along with
a counter (an estimate) for this occurrences. A few examples:

Majority-based algorithm (Misra-Gries), Space Saving,
Lossy Count

Sketch-based algorithms: these algorithm keep a summary of
data which often consists of the inner products of the
frequency vector and some random vector. A few examples:

CountMin, CountSketch



12/19

The majority-based algorithm

This algorithm is rediscovered many times by various people.
(Boyer-Moore, Karp-Papadimitriou, Misra-Gries)

Let Hε denote the set of coordinates that are ε-HH.

Description of the result: The majority-based algorithm
outputs the subset S ⊆ [n] where Hε ⊆ S and ∣S∣ ≤ 1

ε . The
algorithm works in O(1

ε ) words of space.

Given an additional pass over the stream, the algorithm can
eliminate all elements in S that are not in Hε.



13/19

Finding the majority element

Lets consider a special case: ε ∈ (1
2 ,1]. In this case ∣Hε∣ ≤ 1.

Stream ∶ a, b, a, a, a, f, a, h, a, j, k, t, a, b, a, a, a, a, c, a

length of stream = 20, xa = 12 (a is the majority element)

Algorithm: Keep an (element, counter) pair (v, c). In the
beginning, v = ∅ and c = 0.

For item x in the stream do the following:

▸ If v = ∅, set v ← x and c← 1.

▸ Otherwise if v ≠ x, c← c − 1. If c = 0 then v ← ∅.

▸ Otherwise if v = x, c← c + 1



14/19

In case the stream does not have a majority the algorithm
might return a non-majority element.



15/19

Generalization of the idea: Suppose we keep k
element-counter pairs.

(v1, c1, ), (v2, c2), . . . , (vk, ck)

In the beginning, each vi = ∅ and ci = 0.

For item x in the stream do the following:

▸ If there is vi = ∅, set vi ← x and ci ← 1.

▸ Otherwise if there is vi = x, set ci ← ci + 1.

▸ Otherwise, for all i, ci ← ci − 1. If there is ci = 0 set
vi ← ∅.

At the end, let S be the set of elements where their
corresponding counters is non-zero. The algorithm outputs S
as the candidates for heavy hitters.



16/19

Example

stream length = 32 number of counters k = 3



17/19

Claim: The candidate set S contains all elements in Hε where
ε = 1

k .

Proof: Consider a ∈Hε. We have xa ≥ m
k . Recall m = F1 is the

length of the stream. We claim the element a should be in S
at the end. Note that every time the algorithm decreases the
values of the k counters upon seeing a new element x, it is as
if it throws away k + 1 different elements from the stream.
This can be done at most m

k+1 times. Since xa ≥ m
k > m

k+1 , some
occurrences of a remain at the end. Therefore the element a
should be in candidate set S.

Claim: For a ∈ S, let x′a be the value of the corresponding
counter. We have

xa −
m

k + 1
≤ x′a ≤ xa


