Lecture 12

Heavy Hitters in Data Streams

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics
K. N. Toosi University of Technology

Spring 2021

A General Framework for Data Stream Problems

We have an initially-zero vector $\boldsymbol{x} \in \mathbb{R}^{n}$ where n is large.

$$
\boldsymbol{x}=(0,0, \ldots, 0)
$$

Every stream item is an update of some coordinate in \boldsymbol{x}

$$
\left(i_{1},+2.8\right), \ldots, \overbrace{\left(i_{k}\right.}^{\text {coordinate index }}, \overbrace{+2.3)}^{\text {update value }}, \ldots,\left(i_{m},+10\right)
$$

The stream item (i, u) means the value u is added to the i-th coordinate.

$$
(i, u) \rightarrow \quad \text { add } u \text { to } x_{i}
$$

At the end, we like to have an estimate of $f(\boldsymbol{x})$ for some function f

The General Framework: Special Cases

Insert-only Model (for Graph Streams)

Every update $u=1$ and each coordinate i is updated at most one time $\left(i_{1}, 1\right),\left(i_{2}, 1\right), \ldots,\left(i_{m}, 1\right)$

Specific problems: Maximum Matching, Number of Connected Components, ...

The vector $\boldsymbol{x} \in\{0,1\}\binom{n}{2}$ represents a graph on n vertices. An stream item is the insertion of an edge e_{i}.

Insertion/Deletion Model (for Graph Streams)

Every update $u \in\{+1,-1\}$ and each coordinate i may be updated multiple times but every deletion $(u=-1)$ is preceded by an insertion $(u=+1)$.

Specific problems: Dynamic Maximum Matching, Dynamic Spanning Tree , ...

The vector $\boldsymbol{x} \in\{0,1\}\binom{n}{2}$ represents a graph on n vertices. An stream item is the insertion/deletion of an edge e_{i}.

Cash Register Model

Every update u is a positive number. Each coordinate i may be updated multiple times. $\quad\left(i_{1},+4\right),\left(i_{2},+1\right), \ldots,\left(i_{m},+6\right)$

Specific problems:

- Frequency moments $F_{k}=\sum_{i=1}^{n} x_{i}^{k}$.
(Here the vector $\boldsymbol{x} \in \mathbb{Z}^{+n}$ represents a frequency vector. Each stream item increments a coordinate of \boldsymbol{x}.)
- Finding the most frequent element: $\arg \max _{i=1}^{n} x_{i}$
- Empirical entropy $H=\sum_{i=1}^{n}-\frac{x_{i}}{F_{1}} \log \frac{x_{i}}{F_{1}}$
- Weighted graph problems

Turnstile Model

In the turnstile model, every update $u \in \mathbb{R}$ and each coordinate i may be updated multiple times.
$\left(i_{1},+4.2\right),\left(i_{2},-1.9\right), \ldots,\left(i_{m},+6.5\right)$
The strict turnstile model is like the turnstile model except that no x_{i} never goes below zero. At all times $x_{i} \geq 0$.

Specific problems:

- Estimating the ℓ_{p} norm $\|\boldsymbol{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$.
- Various matrix norms (Frobenius norm, Spectral norm, ...)
- Weighted graph problems (strict turnstile)

Sliding Window Model

In this model, we are interested in computing the $f(\boldsymbol{x})$ when the input is restricted to the last W data items.

The space of the algorithm is NOT enough to store the entire window.

Heavy Hitters

Finding the most frequent element (in the cash-register model) requires $\Omega(n)$ space in general.

We study a relaxed version of the problem:
Definition: Given a frequency vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, the coordinate i is a $\epsilon-\mathrm{HH}$ (Heavy Hitter) iff

$$
x_{i} \geq \epsilon \sum_{i=1}^{n} x_{i}=\epsilon\|\boldsymbol{x}\|_{1}=\epsilon F_{1}
$$

When $\epsilon>\frac{1}{2}$, an $\epsilon-\mathrm{HH}$ is called a majority element.
The number of coordinates that are $\epsilon-\mathrm{HH}$ is at most $\frac{1}{\epsilon}$.

Streaming Algorithms for Finding Heavy Hitters

Counter-based algorithms: these algorithm find the most frequent items by storing a subset of the elements along with a counter (an estimate) for this occurrences. A few examples:

Majority-based algorithm (Misra-Gries), Space Saving, Lossy Count

Sketch-based algorithms: these algorithm keep a summary of data which often consists of the inner products of the frequency vector and some random vector. A few examples:

CountMin, CountSketch

The majority-based algorithm

This algorithm is rediscovered many times by various people. (Boyer-Moore, Karp-Papadimitriou, Misra-Gries)

Let H_{ϵ} denote the set of coordinates that are ϵ - HH .

Description of the result: The majority-based algorithm outputs the subset $S \subseteq[n]$ where $H_{\epsilon} \subseteq S$ and $|S| \leq \frac{1}{\epsilon}$. The algorithm works in $O\left(\frac{1}{\epsilon}\right)$ words of space.

Given an additional pass over the stream, the algorithm can eliminate all elements in S that are not in H_{ϵ}.

Finding the majority element

Lets consider a special case: $\epsilon \in\left(\frac{1}{2}, 1\right]$. In this case $\left|H_{\epsilon}\right| \leq 1$.
Stream : $a, b, a, a, a, f, a, h, a, j, k, t, a, b, a, a, a, a, c, a$
length of stream $=20, x_{a}=12(a$ is the majority element $)$

Algorithm: Keep an (element, counter) pair (v, c). In the beginning, $v=\varnothing$ and $c=0$.

For item x in the stream do the following:

- If $v=\varnothing$, set $v \leftarrow x$ and $c \leftarrow 1$.
- Otherwise if $v \neq x, c \leftarrow c-1$. If $c=0$ then $v \leftarrow \varnothing$.
- Otherwise if $v=x, c \leftarrow c+1$

$$
\text { Stream }=a, b, a, a, a, f, a, h, a, j, k, t, a, b, a, a, a, a, c, a
$$

element	counter	next item
	0	a
a	1	b
	0	a
a	1	a
a	2	a
a	3	f
a	2	a
a	3	h
a	2	a
a	3	j
a	2	k
a	1	t
	0	a
a	1	b
	0	a
a	1	a
a	2	a
a	3	a
a	4	c
a	3	a
a	4	

In case the stream does not have a majority the algorithm might return a non-majority element.

Generalization of the idea: Suppose we keep k element-counter pairs.

$$
\left(v_{1}, c_{1},\right),\left(v_{2}, c_{2}\right), \ldots,\left(v_{k}, c_{k}\right)
$$

In the beginning, each $v_{i}=\varnothing$ and $c_{i}=0$.
For item x in the stream do the following:

- If there is $v_{i}=\varnothing$, set $v_{i} \leftarrow x$ and $c_{i} \leftarrow 1$.
- Otherwise if there is $v_{i}=x$, set $c_{i} \leftarrow c_{i}+1$.
- Otherwise, for all $i, c_{i} \leftarrow c_{i}-1$. If there is $c_{i}=0$ set $v_{i} \leftarrow \varnothing$.

At the end, let S be the set of elements where their corresponding counters is non-zero. The algorithm outputs S as the candidates for heavy hitters.

Example

stream length $=32 \quad$ number of counters $k=3$

element	counter	element	counter	element	counter	next item
	0		0		0	f
f	1		0		0	g
f	1	g	1		0	h
f	1	g	1	h	1	d
	0		0		0	c
c	1		0		0	c
c	2		0		0	d
c	2	d	1		0	a
c	2	d	1	a	1	b
c	1		0		0	t
c	1	t	1		0	a
c	1	t	1	a	1	w
	0		0		0	a
a	1		0		0	5
a	1	5	1		0	a
a	2	5	1		0	b
a	2	5	1	b	1	a
a	3	5	1	b	1	b
a	3	5	1	b	2	c
a	2		0	b	1	n
a	2	n	1	b	1	a
a	3	n	1	b	1	c
a	2		0		0	c
a	2	c	1		0	a
a	3	c	1		0	a
a	4	c	1		0	b
a	4	c	1	b	1	f
a	3		0		0	c
a	3	c	1		0	a
a	4	c	1		0	c
a	4	c	2		0	c
a	4	c	3		0	c
a	4	c	4		0	

Claim: The candidate set S contains all elements in H_{ϵ} where $\epsilon=\frac{1}{k}$.

Proof: Consider $a \in H_{\epsilon}$. We have $x_{a} \geq \frac{m}{k}$. Recall $m=F_{1}$ is the length of the stream. We claim the element a should be in S at the end. Note that every time the algorithm decreases the values of the k counters upon seeing a new element x, it is as if it throws away $k+1$ different elements from the stream. This can be done at most $\frac{m}{k+1}$ times. Since $x_{a} \geq \frac{m}{k}>\frac{m}{k+1}$, some occurrences of a remain at the end. Therefore the element a should be in candidate set S.

Claim: For $a \in S$, let x_{a}^{\prime} be the value of the corresponding counter. We have

$$
x_{a}-\frac{m}{k+1} \leq x_{a}^{\prime} \leq x_{a}
$$

