Lecture 12

Heavy Hitters in Data Streams

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics Faculty of Mathematics K. N. Toosi University of Technology

Spring 2021

A General Framework for Data Stream Problems

We have an initially-zero vector $\boldsymbol{x} \in \mathbb{R}^n$ where *n* is large.

$$x = (0, 0, \dots, 0)$$

Every stream item is an update of some coordinate in $oldsymbol{x}$

$$(i_1, +2.8), \ldots,$$
 $(i_k$ $(i_k, +2.3)$ $(i_m, +10)$

The stream item (i, u) means the value u is added to the *i*-th coordinate.

$$(i, u) \rightarrow \text{add } u \text{ to } x_i$$

At the end, we like to have an estimate of $f(\boldsymbol{x})$ for some function f

The General Framework: Special Cases

Insert-only Model (for Graph Streams)

Every update u = 1 and each coordinate i is updated at most one time $(i_1, 1), (i_2, 1), \dots, (i_m, 1)$

Specific problems: Maximum Matching, Number of Connected Components, ...

The vector $\boldsymbol{x} \in \{0,1\}^{\binom{n}{2}}$ represents a graph on n vertices. An stream item is the insertion of an edge e_i .

Insertion/Deletion Model (for Graph Streams)

Every update $u \in \{+1, -1\}$ and each coordinate *i* may be updated multiple times but every deletion (u = -1) is preceded by an insertion (u = +1).

Specific problems: Dynamic Maximum Matching, Dynamic Spanning Tree , ...

The vector $\boldsymbol{x} \in \{0,1\}^{\binom{n}{2}}$ represents a graph on n vertices. An stream item is the insertion/deletion of an edge e_i .

Cash Register Model

Every update u is a positive number. Each coordinate i may be updated multiple times. $(i_1, +4), (i_2, +1), \dots, (i_m, +6)$

Specific problems:

• Frequency moments $F_k = \sum_{i=1}^n x_i^k$.

(Here the vector $x \in \mathbb{Z}^{+n}$ represents a frequency vector. Each stream item increments a coordinate of x.)

- Finding the most frequent element: $\arg \max_{i=1}^{n} x_i$
- Empirical entropy $H = \sum_{i=1}^{n} -\frac{x_i}{F_1} \log \frac{x_i}{F_1}$
- Weighted graph problems

Turnstile Model

In the **turnstile model**, every update $u \in \mathbb{R}$ and each coordinate *i* may be updated multiple times. $(i_1, +4.2), (i_2, -1.9), \dots, (i_m, +6.5)$

The **strict turnstile model** is like the turnstile model except that no x_i never goes below zero. At all times $x_i \ge 0$.

Specific problems:

- Estimating the ℓ_p norm $\|\boldsymbol{x}\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$.
- Various matrix norms (Frobenius norm, Spectral norm, ...)
- Weighted graph problems (strict turnstile)

Sliding Window Model

In this model, we are interested in computing the f(x) when the input is restricted to the last W data items.

The space of the algorithm is NOT enough to store the entire window.

Heavy Hitters

Finding the most frequent element (in the cash-register model) requires $\Omega(n)$ space in general.

We study a relaxed version of the problem:

Definition: Given a frequency vector $\boldsymbol{x} = (x_1, \ldots, x_n)$, the coordinate *i* is a ϵ -HH (Heavy Hitter) iff

$$x_i \ge \epsilon \sum_{i=1}^n x_i = \epsilon \|\boldsymbol{x}\|_1 = \epsilon F_1$$

When $\epsilon > \frac{1}{2}$, an ϵ -HH is called a majority element.

The number of coordinates that are ϵ -HH is at most $\frac{1}{\epsilon}$.

Streaming Algorithms for Finding Heavy Hitters

Counter-based algorithms: these algorithm find the most frequent items by storing a subset of the elements along with a counter (an estimate) for this occurrences. A few examples:

Majority-based algorithm (Misra-Gries), Space Saving, Lossy Count

Sketch-based algorithms: these algorithm keep a summary of data which often consists of the inner products of the frequency vector and some random vector. A few examples:

CountMin, CountSketch

The majority-based algorithm

This algorithm is rediscovered many times by various people. (Boyer-Moore, Karp-Papadimitriou, Misra-Gries)

Let H_{ϵ} denote the set of coordinates that are ϵ -HH.

Description of the result: The majority-based algorithm outputs the subset $S \subseteq [n]$ where $H_{\epsilon} \subseteq S$ and $|S| \leq \frac{1}{\epsilon}$. The algorithm works in $O(\frac{1}{\epsilon})$ words of space.

Given an additional pass over the stream, the algorithm can eliminate all elements in S that are not in $H_{\epsilon}.$

Finding the majority element

Lets consider a special case: $\epsilon \in (\frac{1}{2}, 1]$. In this case $|H_{\epsilon}| \leq 1$.

Stream: a, b, a, a, a, f, a, h, a, j, k, t, a, b, a, a, a, a, c, a

length of stream = 20, $x_a = 12$ (a is the majority element)

Algorithm: Keep an (element, counter) pair (v, c). In the beginning, $v = \emptyset$ and c = 0.

For item x in the stream do the following:

- If $v = \emptyset$, set $v \leftarrow x$ and $c \leftarrow 1$.
- Otherwise if $v \neq x$, $c \leftarrow c 1$. If c = 0 then $v \leftarrow \emptyset$.
- Otherwise if v = x, $c \leftarrow c + 1$

Stream = a, b, a, a, a, f, a, h, a, j, k, t, a, b, a, a, a, a, c, a

element	counter	next item	
	0	а	
а	1	b	
	0	а	
а	1	а	
а	2	а	
а	3	f	
а	2	а	
а	3	h	
а	2	а	
а	3	j	
а	2	k	
а	1	t	
	0	а	
а	1	b	
	0	а	
а	1	а	
а	2	а	
а	3	а	
а	4	с	
а	3	а	
а	4		

In case the stream does not have a majority the algorithm might return a non-majority element.

Generalization of the idea: Suppose we keep k element-counter pairs.

$$(v_1, c_1,), (v_2, c_2), \dots, (v_k, c_k)$$

In the beginning, each $v_i = \emptyset$ and $c_i = 0$.

For item x in the stream do the following:

- If there is $v_i = \emptyset$, set $v_i \leftarrow x$ and $c_i \leftarrow 1$.
- Otherwise if there is $v_i = x$, set $c_i \leftarrow c_i + 1$.
- Otherwise, for all $i, c_i \leftarrow c_i 1$. If there is $c_i = 0$ set $v_i \leftarrow \emptyset$.

At the end, let S be the set of elements where their corresponding counters is non-zero. The algorithm outputs S as the candidates for heavy hitters.

Example

stream length = 32

number of counters k = 3

element	counter	element	counter	element	counter	next item
	0		0		0	f
f	1		0		0	g
f	1	g	1		0	h
f	1	g	1	h	1	d
	0		0		0	с
с	1		0		0	с
с	2		0		0	d
с	2	d	1		0	a
с	2	d	1	а	1	b
с	1		0		0	t
с	1	t	1		0	a
c	1	t	1	a	1	w
	0		0		0	a
а	1		0		0	s
а	1	s	1		0	а
а	2	5	1		0	b
а	2	s	1	b	1	a
а	3	s	1	b	1	b
а	3	s	1	b	2	c
а	2		0	b	1	n
а	2	n	1	b	1	а
а	3	n	1	b	1	c
а	2		0		0	с
а	2	с	1		0	a
а	3	c	1		0	а
а	4	c	1		0	b
а	4	с	1	b	1	f
а	3		0		0	с
а	3	c	1		0	а
а	4	c	1		0	c
а	4	c	2		0	c
а	4	c	3		0	с
a	4	c	4		0	

Claim: The candidate set S contains all elements in H_ϵ where $\epsilon = \frac{1}{k}.$

Proof: Consider $a \in H_{\epsilon}$. We have $x_a \ge \frac{m}{k}$. Recall $m = F_1$ is the length of the stream. We claim the element a should be in S at the end. Note that every time the algorithm decreases the values of the k counters upon seeing a new element x, it is as if it throws away k + 1 different elements from the stream. This can be done at most $\frac{m}{k+1}$ times. Since $x_a \ge \frac{m}{k} > \frac{m}{k+1}$, some occurrences of a remain at the end. Therefore the element a should be in candidate set S.

Claim: For $a \in S$, let x'_a be the value of the corresponding counter. We have

$$x_a - \frac{m}{k+1} \le x'_a \le x_a$$