Lecture 13

CountMin Algorithm

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics
K. N. Toosi University of Technology

Spring 2021

Heavy Hitters: Previous Lecture

Definition: Given a frequency vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, the coordinate i is a $\epsilon-\mathrm{HH}$ iff

$$
x_{i} \geq \epsilon \sum_{i=1}^{n} x_{i}=\epsilon\|\boldsymbol{x}\|_{1}=\epsilon F_{1}
$$

Definition: Let H_{ϵ} denote all ϵ - HHs .

The Majority algorithm is a counter-based algorithm for computing H_{ϵ}. It outputs the subset $S \subseteq[n]$ where $H_{\epsilon} \subseteq S$ and $|S| \leq \frac{1}{\epsilon}$. The algorithm works in $O\left(\frac{1}{\epsilon}\right)$ words of space.

CountMin

- CountMin is a randomized data structure for estimating the frequency of the elements in the stream.
- Given a stream of m items where each item $\in\{1, \ldots, n\}$, let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be the associated frequency vector. Note that $m=\sum_{i=1}^{n} x_{i}$. Given index i, the CountMin data structure outputs x_{i}^{\prime} where

$$
x_{i} \leq x_{i}^{\prime} \leq x_{i}+\epsilon m
$$

with probability $1-\delta$.

- Note that CountMin alone is not efficient in finding the heavy hitters but using additional ideas we can use it to find the heavy hitters.
- CountMin takes $O\left(\frac{1}{\epsilon} \log \frac{1}{\delta}\right)$ words of space.

How does CountMin work?

CountMin randomly hashes the elements [n] into buckets. For this it uses a series of pairwise independent hash functions

$$
h_{i}(x)=a_{i} x+b_{i} \quad \bmod w \quad i=1, \ldots, d
$$

Each hash function h_{i} hashes the elements into w buckets. The algorithm stores the hash functions and the buckets.

Notation: Let $C_{i}(j)$ denote the value j-th bucket in the function h_{i}.

Initialization: In the beginning, all buckets are zero.
$\forall i, j, C_{i}(j)=0$.
Stream Processing: For each x in the stream, the algorithm increments the value of $C_{i}(h(x))$ for each i.

$$
\forall i, \quad C_{i}(h(x)) \leftarrow C_{i}(h(x))+1
$$

Query Processing Given an element $y \in[n]$, the estimate for x_{y} is

$$
\min _{i=1}^{n} C_{i}(h(y))
$$

Example

$$
\text { data stream }=2,3,1,2,9,5,2,2,6,2,7,2,3,5,9,5,5,5,1
$$

In the above example, the true frequencies are

$$
x_{1}=2, x_{2}=5, x_{3}=2, x_{4}=0, x_{5}=5, x_{6}=1, x_{7}=1, x_{8}=0, x_{9}=2
$$

Some of the estimates are as follows

$$
x_{1}^{\prime}=3, x_{2}^{\prime}=7, x_{4}^{\prime}=1, x_{5}^{\prime}=6
$$

Analysis of CountMin

Fix an element $y \in[n]$ and hash function h_{i}. Suppose $h_{i}(y)=b$.

Let random variable $X_{j}=x_{j}$ if $h_{i}(j)=b$ otherwise $X_{j}=0$.

$$
E\left[C_{i}(b) \mid h_{i}(y)=b\right]=E\left[\sum_{j=1}^{n} X_{j} \mid h_{i}(y)=b\right]=x_{y}+\frac{1}{w} \sum_{j \neq y} x_{j} \leq x_{y}+\frac{m}{w}
$$

Fact: $C_{i}(b) \geq x_{y}$

Using Markov Inequality:

Conditioned on $h_{i}(y)=b$, we have

$$
\operatorname{Pr}\left(C_{i}(b) \geq x_{y}+\frac{2 m}{w}\right)=\operatorname{Pr}\left(C_{i}(b)-x_{y} \geq \frac{2 m}{w}\right) \leq \frac{E\left[C_{i}(b)\right]-x_{y}}{\frac{2 m}{w}} \leq \frac{1}{2}
$$

Since we select the hash functions h_{i} 's independently, we have

$$
\begin{gathered}
\operatorname{Pr}\left(\min _{i=1}^{d} C_{i}(h(y)) \geq x_{y}+\frac{2 m}{w}\right) \leq \prod_{i=1}^{d}\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{d} \leq \delta \\
d=\Omega\left(\log \left(\frac{1}{\delta}\right)\right), \quad w=\frac{2}{\epsilon} \\
\operatorname{Pr}\left(\min _{i=1}^{d} C_{i}(h(y)) \geq x_{y}+\epsilon m\right) \leq \delta
\end{gathered}
$$

Space Complexity: CountMin stores the buckets and the hash functions. Therefore the space needed is
$w d+2 d+1=O(w d)=O\left(\frac{1}{\epsilon} \log \left(\frac{1}{\delta}\right)\right)$. (Each hash function is represented by 2 numbers.)

How to find the heavy hitters using CountMin?

Inefficient way: We find the estimates for all numbers in $[n]$. We query the data structure for all $i \in[n]$. Let the approximation parameter in CountMin be λ. We also set $\delta \leftarrow \frac{\delta}{n}$ and (using union bound) we get

$$
\forall y \in[n], \quad x_{y} \leq x_{y}^{\prime} \leq x_{y}+\lambda m
$$

with probability $1-\delta$. This takes $O\left(\frac{1}{\lambda} \log \left(\frac{n}{\delta}\right)\right)$ space.
Our goal is to find H_{ϵ}. We let $\lambda=\frac{\epsilon}{2}$. We query every $i \in[n]$. If $x_{i}^{\prime} \geq \epsilon m$, we include i in S (the candidate set for heavy hitters.)

Fact: (With probability $1-\delta$) if $i \in H_{\epsilon}$ then $i \in S$. Also $|S| \leq \frac{2}{\epsilon}$.

More efficient way: Consider the set of dyadic intervals as show below.

We treat each interval as an element and build the CountMin data structure for each level. There are $\log n$ levels.

Observation 1: Number of occurrences in each level is m. Therefore in each level there are at most $\frac{1}{\epsilon}$ heavy hitters.

Observation 2: If the interval $[u, v]$ is not a heavy hitter, then none of its sub-intervals can be a heavy hitter.

Observation 3: Suppose the red numbers at the bottom level (the leaves of the tree) are the heavy hitters. If a leaf u is a heavy hitter its ancestors are all heavy hitters.

Algorithm: From the top we inspect the tree of the intervals. In each level we find the heavy hitters. If an interval is not a heavy hitter we do not inspect its sub-intervals.

Question: How many intervals do we check?
If the interval $[u, v]$ is a heavy hitter, we check its two children. Therefore at most $k=O\left(\frac{1}{\epsilon} \log n\right)$ intervals are checked.

Space complexity: $O\left(\frac{1}{\epsilon} \log \frac{k}{\delta} \log n\right)$

References

[1] Misra, Jayadev, and David Gries. "Finding repeated elements." Science of computer programming 2.2 (1982): 143-152.
[2] Cormode, Graham, and S. Muthukrishnan. "An improved data stream summary: the countmin sketch and its applications." Journal of Algorithms 55.1 (2005): 58-75.

