Lecture 13

CountMin Algorithm

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics
K. N. Toosi University of Technology

Spring 2021

Heavy Hitters: Previous Lecture

Definition: Given a frequency vector @ = (z1,...,2,), the
coordinate 7 is a e-HH iff
n

zi>€ey xi =€zl = €eF
i=1

Definition: Let H, denote all e-HHs.
The Majority algorithm is a counter-based algorithm for

computing H.. It outputs the subset S ¢ [n] where H. ¢ S
and |S] < 1. The algorithm works in O(1) words of space.

CountMin

» CountMin is a randomized data structure for
estimating the frequency of the elements in the stream.

» Given a stream of m items where each item € {1,...,n},
let « = (x1,...,2,) be the associated frequency vector.
Note that m = Y.}", z;. Given index i, the CountMin data
structure outputs x; where

x; <xL< xp+em
with probability 1 - 9.

» Note that CountMin alone is not efficient in finding the
heavy hitters but using additional ideas we can use it to
find the heavy hitters.

> CountMin takes O(2log }) words of space.

How does CountMin work?

CountMin randomly hashes the elements [n] into buckets. For
this it uses a series of pairwise independent hash functions

hi(x) = a;x +b; mod w i=1,....d

Each hash function h; hashes the elements into w buckets.
The algorithm stores the hash functions and the buckets.

o
g
@

elements men
hy hy hg

= 2] 2> 2] =>

buckets 3 buckets [5]

-]

T =13
FERE

JTTT1 TF
[

CE TTTTIT

]

Notation: Let C;(j) denote the value j-th bucket in the
function h;.

Initialization: In the beginning, all buckets are zero.

Stream Processing: For each x in the stream, the algorithm
increments the value of C;(h(x)) for each i.

Vi, Cy(h(z)) < Cy(h(z)) +1

Query Processing Given an element y € [n], the estimate for
Ty IS

min C;(h(y))

Example

data stream = 2,3,1,2,9,5,2,2,6,2,7,2,3,5,9,5,5,5,1

2,9,2,2,2,2,9 2,3,2,2,2,2,3
1,71 11 |6
6 |5.6,5,5,5,5 1 7 19,559,555
2 |33 3 | 1,71

In the above example, the true frequencies are

1 :2,[E2 :57173:2,.1]4:0,1‘5 :571’6: 1,1’7:]_,1'8 =07[L'9=2

Some of the estimates are as follows

xy=3x5="T,x3=12=6

Analysis of CountMin

Fix an element y € [n] and hash function h;. Suppose
hi(y) =

Let random variable X; = x; if h;(j) = b otherwise X; = 0.

E[C;(D)[hi(y) =b] = Zn: X;lhi(y) = xy+% Z z; < xw@

J=1 J*y w

Fact: C;(b) >z,

Using Markov Inequality:

Conditioned on h;(y) = b, we have

Pr(Cy(b) > :cw%m) = Pr(Ci(b)-z, > %m) < %

IN
N | —

Since we select the hash functions h;'s independently, we have
d 2 d 1 1
PrlminCilh(e) 2, + 25 < [1(5) = (5)" <0

1
d=Q(log(%)), w ==
) €

d
Pr(m_iln Ci(h(y)) 2zy+em) <9

Space Complexity: CountMin stores the buckets and the hash
functions. Therefore the space needed is

wd +2d+1=0(wd) = O(+1og(5)). (Each hash function is
represented by 2 numbers.)

How to find the heavy hitters using CountMin?

Inefficient way: We find the estimates for all numbers in [n].
We query the data structure for all 7 € [n]. Let the
approximation parameter in CountMin be A\. We also set

& < 2 and (using union bound) we get

Vyeln], z, <z, <z + Am
with probability 1 - 4. This takes O(3log(%)) space.
Our goal is to find H.. We let A = §. We query every i € [n].

If 2/ > em, we include 7 in S (the candidate set for heavy
hitters.)

Fact: (With probability 1 -6) if i € H, then i € S. Also |S| < 2.

More efficient way: Consider the set of dyadic intervals as
show below.

/ \
RN o 7
/\
“1_’2,3_’4]' |[5,6,7,8]|... [n—3,n—2n—1,n]

@ G

We treat each interval as an element and build the CountMin
data structure for each level. There are logn levels.

Observation 1: Number of occurrences in each level is m.
Therefore in each level there are at most % heavy hitters.

Observation 2: If the interval [u,v] is not a heavy hitter, then
none of its sub-intervals can be a heavy hitter.

Observation 3: Suppose the red numbers at the bottom level
(the leaves of the tree) are the heavy hitters. If a leaf u is a
heavy hitter its ancestors are all heavy hitters.

I [1, n) I
/ \

|[1‘ 4 | |[g+1, n]

[1,2,3,4]

Algorithm: From the top we inspect the tree of the intervals.
In each level we find the heavy hitters. If an interval is not a
heavy hitter we do not inspect its sub-intervals.

[n—3,n—2n—1,n]

Question: How many intervals do we check?
If the interval [u, v] is a heavy hitter, we check its two

children. Therefore at most k = O(%logn) intervals are
checked.

Space complexity: O(2log%logn)

References

[1] Misra, Jayadev, and David Gries. “Finding repeated elements.” Science of computer program-
ming 2.2 (1982): 143-152.

(2] Cormode, Graham, and S. Muthukrishnan. “An improved data stream summary: the count-
min sketch and its applications.” Journal of Algorithms 55.1 (2005): 58-75.

