
Lecture 13

CountMin Algorithm

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics

K. N. Toosi University of Technology

Spring 2021

1/14



2/14

Heavy Hitters: Previous Lecture

Definition: Given a frequency vector x = (x1, . . . , xn), the
coordinate i is a ε-HH iff

xi ≥ ε
n

∑
i=1

xi = ε∥x∥1 = εF1

Definition: Let Hε denote all ε-HHs.

The Majority algorithm is a counter-based algorithm for
computing Hε. It outputs the subset S ⊆ [n] where Hε ⊆ S
and ∣S∣ ≤ 1

ε . The algorithm works in O(1
ε ) words of space.



3/14

CountMin
▸ CountMin is a randomized data structure for

estimating the frequency of the elements in the stream.

▸ Given a stream of m items where each item ∈ {1, . . . , n},
let x = (x1, . . . , xn) be the associated frequency vector.
Note that m = ∑

n
i=1 xi. Given index i, the CountMin data

structure outputs x′i where

xi ≤ x
′

i ≤ xi + εm

with probability 1 − δ.

▸ Note that CountMin alone is not efficient in finding the
heavy hitters but using additional ideas we can use it to
find the heavy hitters.

▸ CountMin takes O(1
ε log 1

δ ) words of space.



4/14

How does CountMin work?
CountMin randomly hashes the elements [n] into buckets. For
this it uses a series of pairwise independent hash functions

hi(x) = aix + bi mod w i = 1, . . . , d

Each hash function hi hashes the elements into w buckets.
The algorithm stores the hash functions and the buckets.



5/14

Notation: Let Ci(j) denote the value j-th bucket in the
function hi.

Initialization: In the beginning, all buckets are zero.
∀i, j, Ci(j) = 0.

Stream Processing: For each x in the stream, the algorithm
increments the value of Ci(h(x)) for each i.

∀i, Ci(h(x)) ← Ci(h(x)) + 1

Query Processing Given an element y ∈ [n], the estimate for
xy is

n

min
i=1

Ci(h(y))



6/14

Example

In the above example, the true frequencies are

x1 = 2, x2 = 5, x3 = 2, x4 = 0, x5 = 5, x6 = 1, x7 = 1, x8 = 0, x9 = 2

Some of the estimates are as follows

x′1 = 3, x′2 = 7, x′4 = 1, x′5 = 6



7/14

Analysis of CountMin

Fix an element y ∈ [n] and hash function hi. Suppose
hi(y) = b.

Let random variable Xj = xj if hi(j) = b otherwise Xj = 0.

E[Ci(b)∣hi(y) = b] = E[
n

∑
j=1

Xj ∣hi(y) = b] = xy+
1

w
∑
j≠y

xj ≤ xy+
m

w

Fact: Ci(b) ≥ xy



8/14

Using Markov Inequality:

Conditioned on hi(y) = b, we have

Pr(Ci(b) ≥ xy+
2m

w
) = Pr(Ci(b)−xy ≥

2m

w
) ≤

E[Ci(b)] − xy
2m
w

≤
1

2

Since we select the hash functions hi’s independently, we have

Pr(
d

min
i=1

Ci(h(y)) ≥ xy +
2m

w
) ≤

d

∏
i=1

(
1

2
) = (

1

2
)d ≤ δ

d = Ω(log(
1

δ
)), w =

2

ε

Pr(
d

min
i=1

Ci(h(y)) ≥ xy + εm) ≤ δ



9/14

Space Complexity: CountMin stores the buckets and the hash
functions. Therefore the space needed is
wd + 2d + 1 = O(wd) = O(1

ε log(1
δ )). (Each hash function is

represented by 2 numbers.)



10/14

How to find the heavy hitters using CountMin?

Inefficient way: We find the estimates for all numbers in [n].
We query the data structure for all i ∈ [n]. Let the
approximation parameter in CountMin be λ. We also set
δ ← δ

n and (using union bound) we get

∀y ∈ [n], xy ≤ x
′

y ≤ xy + λm

with probability 1 − δ. This takes O( 1
λ log(nδ )) space.

Our goal is to find Hε. We let λ = ε
2 . We query every i ∈ [n].

If x′i ≥ εm, we include i in S (the candidate set for heavy
hitters.)

Fact: (With probability 1 − δ) if i ∈Hε then i ∈ S. Also ∣S∣ ≤ 2
ε .



11/14

More efficient way: Consider the set of dyadic intervals as
show below.

We treat each interval as an element and build the CountMin
data structure for each level. There are logn levels.

Observation 1: Number of occurrences in each level is m.
Therefore in each level there are at most 1

ε heavy hitters.

Observation 2: If the interval [u, v] is not a heavy hitter, then
none of its sub-intervals can be a heavy hitter.



12/14

Observation 3: Suppose the red numbers at the bottom level
(the leaves of the tree) are the heavy hitters. If a leaf u is a
heavy hitter its ancestors are all heavy hitters.

Algorithm: From the top we inspect the tree of the intervals.
In each level we find the heavy hitters. If an interval is not a
heavy hitter we do not inspect its sub-intervals.



13/14

Question: How many intervals do we check?

If the interval [u, v] is a heavy hitter, we check its two
children. Therefore at most k = O(1

ε logn) intervals are
checked.

Space complexity: O(1
ε log k

δ logn)



14/14


