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Sampling from streams: (Reservoir sampling)
Suppose we have a data stream A = a1, a2, . . . , am. We want
to sample a data item from the stream where

Pr( sampling ai) =
1

m
.

When the length of stream m is known: we just need to pick a
random number r ∈ [m] and then sample ar.

When m is unknown: Let s denote the current sampled item.
Before the stream s = ∅. For i ≥ 1, we replace ai with the
current sample s with probability 1

i , otherwise we keep the
current sample.

Pr( sampling ai) =
1

i
×

i

i + 1
×
i + 1

i + 2
× . . . ×

m − 1

m
=

1

m
.



3/17

`1 sampling: positive updates
We have an initially zero vector x ∈ Rn. We receive a stream
of positive updates to the coordinates of x.

After the stream, we would like to have a sample coordinate
i ∈ [n] where

Pr( sampling i) =
xi

∑
n
j=1 xj

=
xi

∥x∥1

Pr( sampling coordinate 1) = 5
20

Pr( sampling coordiante 2) = 0

Pr( sampling coordinate 3) = 1
20

...
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`1 sampling: positive updates
Set the current sample coordinate t← ∅.
Set the current sum s = 0.

Given an update (i, u):
Add u to s. With probability u

s set t← i.

At the end of stream, return t as the sampled coordinate.

Analysis: To make the analysis easier, we can assume every
coordinate is updated once. We are allowed to make this
assumption because we can relabel the coordinate numbers
and assume the underlying vector has a larger dimension.
Consider the following example.

. . . (7(1),+3) . . . (7(2),+9) . . . (7(3),+6) . . .

P r(i) = Pr(i(1)) + Pr(i(2)) + Pr(i(3)) + . . .
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Now we can assume every coordinate is updated at most one
time. Let u1, . . . , um be the sequence of updates.

Suppose coordinate i is updated at position j in the stream.
Let sj = u1 + . . . + uj.

Pr(i) =
xi
sj
×
sj
sj+1

× . . .
sm−1
sm

=
xi
sm

=
xi

∥x∥1
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What if we allow negative updates as well?

(2,+3), (5,+4), (2,−1), (4,+9), (3,+1), (2,+3), (6,+2), (2,−4)

Can we still pick a random coordinate (using little memory)
without saving the entire vector?

This is a special case of a more general problem called `p
sampling. There is a solution for it that uses O(log2 n) bits of
memory but we do not cover this in this course. See the
references.
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`0 sampling
Again assume we have an initially zero vector x ∈ Rn that is
changed by a stream of both positive and negative updates to
its coordinates. At the end of the stream, we like to pick a
non-zero coordinate in x uniformly at random (regardless of
the weight of the coordinate). In other words,

Pr(sampling non-zero coordinate i) =
1

∥x∥0

Pr( sampling coordinate 1) = 1
5

Pr( sampling coordiante 2) = 0

Pr( sampling coordinate 3) = 1
5

...
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Sparse vectors

In order to describe the solution for `0 sampling we need to
consider a variant of the sparse recovery problem.

Definition: A vector x ∈ Rn with few non-zero entries is called
a sparse vector. When x has at most k non-zero entries it is
called k-sparse.

Number of non-zero coordinates in x is shown by ∥x∥0.
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A data stream problem: recovering a sparse vector

Suppose we have an initially zero vector x ∈ Rn. We get a
stream of updates (addition and subtraction) to the coordinates
of x.

After the updates, we would like to answer the following ques-
tions: (Let s ≥ 0 be a positive integer.)

▸ Is the vector x s-sparse? In other words, is ∥x∥0 ≤ s?

▸ If x is s-sparse, recover x using small space.
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A data stream problem: recovering a sparse vector
Theorem: There is a randomized algorithm that uses
O(s logn log( sδ)) bits of space that recovers x exactly (in case
if x is s-sparse) with probability 1 − δ. The algorithm might
err and report that x is not s-sparse or recover a wrong vector
y ≠ x. The probability of recovering the wrong vector is 1

n−c

for some constant c.
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This result immediately gives us a O(
√
n log2 n) space

solution for the `0 sampling problem.

Note that the algorithm may return no sample at the end but
this event happens with a small probability.
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`0 sampling: a better idea

Suppose we know N = ∥x∥0.

We sample each i ∈ [n] with probability 1
N independently.

The sampled vector in expectation has s = 1 non-zero
coordinates.

Applying the sparse recovery algorithm, we can recover the
nonzero coordinates using O(logn log 1

δ ) bits of space.
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We have two obstacles in this approach:

▸ We do not know N = ∥x∥0

▸ We need to store the random filter. In other words, we
need to remember which coordinates are picked in the
sampled vector.

We overcome both obstacles. To overcome the first obstacle,
we guess the value of ∥x∥0. We use multiple guesses (one of
them will be good enough.)

To overcome the second obstacle, we use k-wise independent
random numbers where k = O(logn). We need a few
observations and lemmas on min-wise permutations (a topic
not covered in this course.) See the references.
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We try multiple guesses for N = ∥x∥0. (for simplicity assume
n = 2k for some k)

N = 1, N = 2, N = 4, N = 8, . . . N =
n

2
, N = n

Assuming ∥x∥0 ≥ 0, consider t ∈ Z where 2t ≤ ∥x∥0 ≤ 2t+1.

If we sample the coordinates at a rate of 1
2t , in expectation

there will be O(1) non-zero coordinates in the sampled vector.
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We try every guess N = {1,2,4,8, . . . , n2 , n} in parallel.

N = 1, N = 2, N = 4, N = 8, . . . N =
n

2
, N = n

Assuming ∥x∥0 ≥ 0, consider t ∈ Z where 2t ≤ ∥x∥0 ≤ 2t+1.

If we sample the coordinates at a rate of 1
2t , in expectation

there will be O(1) non-zero coordinates in the sampled vector.
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In each iteration, we assume number of non-zero coordinates
in the sampled vector is O(1). We run a sparse recovery
procedure with parameter s = O(1). This requires O(logn)
bits of space for constant δ. One of the iterations will be
successful. Total space complexity is
O(logn × logn) = O(log2 n) bits of space.
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There is a randomized algorithm that given a stream of
positive and negative updates on a vector x ∈ Rn with
probability at least 3/4 returns a random non-zero coordinate
where each non-zero coordinate is returned with probability

1

∥x∥0
±

1

nc

With probability at most 1/4 the algorithm might return no
sample. The algorithm uses O(log2 n) bits of space.


