Lecture 23

Fast Algorithms for Least Square Regression

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics Faculty of Mathematics K. N. Toosi University of Technology

Spring 2021

Linear Regression

- d variables (model parameters)
- n linear equations (observations)
- $n \gg d$ (over-constrained system)

$$Ax = b$$
, $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^n$

Choose $\boldsymbol{x} \in \mathbb{R}^d$ so that $\boldsymbol{A} \boldsymbol{x}$ is close to \boldsymbol{b}

 ${old A}{old x}$ ranges over all linear combinations of d columns of ${old A}$

Finding a closest point in the column space of A to the vector b

Least square regression

$$A^{T}e = 0 \Rightarrow A^{T}(b - Ax^{*}) = 0$$

 $A^{T}Ax^{*} = A^{T}b \Rightarrow \text{normal equation}$

If \boldsymbol{A} is full-rank (has d independent columns), the unique solution is

$$\boldsymbol{x}^*$$
 = $(\boldsymbol{A}^T\boldsymbol{A})^{-1}(\boldsymbol{A}^T\boldsymbol{b})$

If \boldsymbol{A} is not full-rank there are multiple solutions. One solution is

$$x^*$$
 = $A^\dagger b$

Here A^{\dagger} is called the Moore-Penrose pseudoinverse of A.

$$A^{\dagger} = V \Sigma^{\dagger} U^{T}, \qquad A = U_{n \times d} \Sigma_{d \times d} V_{d \times d}^{T}$$

Here $U\Sigma V^T$ is the SVD decomposition of A

Assuming n is large, finding a solution x^* takes a lot time (at least nd^2 time).

If we settle for an approximate solution, there is a faster randomized algorithm using sketching techniques.

T. Sarlós. Improved approximation algorithms for large matrices via random projections. 2006.

Find $oldsymbol{x}$ where

$$\|Ax - b\|_{2} \le (1 + \epsilon) \|Ax^{*} - b\|_{2}$$

Similar to what we had in JL lemma:

There is a matrix $S \in \mathbb{R}^{r \times n}$ with random entries (where $r = \Theta(\frac{d}{c^2})$) such that with probability $1 - \exp(-d)$ for a $x \in \mathbb{R}^d$

$$\|S(Ax - b)\|_2 \le (1 + \epsilon) \|Ax - b\|_2$$

 \Downarrow (See the reference)

We can show with probability at least 1 - 1/4:

$$\min_{x} \|S(Ax - b)\|_{2} \le (1 + \epsilon) \|Ax^{*} - b\|_{2}$$

Strategy for the exact solution:

1. Output the exact solution x to the regression problem $\min_{\mathbf{x}} || \mathbf{A} \mathbf{x} - \mathbf{b} ||_2$.

Time complexity: $\Omega(nd^2)$

Strategy for the approximate solution:

- 1. Sample a random matrix ${\bf S}.$
- 2. Compute $\mathbf{S} \cdot \mathbf{A}$ and $\mathbf{S} \cdot \mathbf{b}$.
- 3. Output the exact solution x to the regression problem $\min_{\mathbf{x}} \|(\mathbf{SA})\mathbf{x} (\mathbf{Sb})\|_2.$

Sarlos in his paper shows that using special random matrices S one can obtain the matrix product SA in time $O(nd \log d)$.

This gives the following time complexity for the approximate strategy:

Time complexity: $O(nd \log d) + poly(d/\epsilon)$

Subsequently, Clarkson and Woodruff show the following improved result.

Time complexity: $nnz(\mathbf{A}) + poly(d/\epsilon)$

Here nnz(A) is the number of non-zero entries in matrix A.