Lecture 23

Fast Algorithms for Least Square Regression

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics
K. N. Toosi University of Technology

Spring 2021

Linear Regression

- d variables (model parameters)
- n linear equations (observations)
- $n \gg d$ (over-constrained system)

$$
\boldsymbol{A x}=\boldsymbol{b}, \quad \boldsymbol{A} \in \mathbb{R}^{n \times d}, \quad \boldsymbol{b} \in \mathbb{R}^{n}
$$

$$
\begin{cases}2 x_{1}+3 x_{4}-6 x_{5}+12 x_{6} & =12 \\ x_{1}-x_{2}-5 x_{3}+12 x_{4}+x_{5} & =1 \\ x_{2}+x_{3}+6 x_{5} & =10 \\ 2 x_{1}+x_{2}+x_{4}+x_{5} & =-5 \\ -2 x_{1}+3 x_{2}+2 x_{4}-9 x_{5} & =5 \\ 8 x_{1}-4 x_{2}+x_{3}+4 x_{4} & =0 \\ x_{2}+10 x_{3}+5 x_{5} & =12 \\ x_{1}-10 x_{4}-2 x_{5} & =-8\end{cases}
$$

Choose $\boldsymbol{x} \in \mathbb{R}^{d}$ so that $\boldsymbol{A x}$ is close to \boldsymbol{b}
$\boldsymbol{A} \boldsymbol{x}$ ranges over all linear combinations of d columns of \boldsymbol{A}

Finding a closest point in the column space of \boldsymbol{A} to the vector b

Least square regression

$$
\arg \min _{x}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}=\sum_{i=1}^{n}\left(b_{i}-A_{i^{\star}} \cdot \boldsymbol{x}\right)^{2}
$$

$$
\begin{gathered}
\boldsymbol{A}^{T} \boldsymbol{e}=\mathbf{0} \Rightarrow \boldsymbol{A}^{T}\left(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}^{*}\right)=\mathbf{0} \\
\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}^{*}=\boldsymbol{A}^{T} \boldsymbol{b} \Rightarrow \text { normal equation }
\end{gathered}
$$

If \boldsymbol{A} is full-rank (has d independent columns), the unique solution is

$$
\boldsymbol{x}^{*}=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1}\left(\boldsymbol{A}^{T} \boldsymbol{b}\right)
$$

If \boldsymbol{A} is not full-rank there are multiple solutions. One solution is

$$
x^{*}=\boldsymbol{A}^{\dagger} b
$$

Here \boldsymbol{A}^{\dagger} is called the Moore-Penrose pseudoinverse of \boldsymbol{A}.

$$
\boldsymbol{A}^{\dagger}=\boldsymbol{V} \boldsymbol{\Sigma}^{\dagger} \boldsymbol{U}^{T}, \quad \boldsymbol{A}=\boldsymbol{U}_{n \times d} \boldsymbol{\Sigma}_{d \times d} \boldsymbol{V}_{d \times d}^{T}
$$

Here $\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ is the SVD decomposition of \boldsymbol{A}

Assuming n is large, finding a solution \boldsymbol{x}^{*} takes a lot time (at least $n d^{2}$ time).

If we settle for an approximate solution, there is a faster randomized algorithm using sketching techniques.
T. Sarlós. Improved approximation algorithms for large matrices via random projections. 2006.

Find \boldsymbol{x} where

$$
\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2} \leq(1+\epsilon)\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2}
$$

Similar to what we had in JL lemma:
There is a matrix $S \in \mathbb{R}^{r \times n}$ with random entries (where $\left.r=\Theta\left(\frac{d}{\epsilon^{2}}\right)\right)$ such that with probability $1-\exp (-d)$ for a $\boldsymbol{x} \in \mathbb{R}^{d}$

$$
\|\boldsymbol{S}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})\|_{2} \leq(1+\epsilon)\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}
$$

\Downarrow (See the reference)

We can show with probability at least $1-1 / 4$:

$$
\min _{\boldsymbol{x}}\|\boldsymbol{S}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})\|_{2} \leq(1+\epsilon)\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2}
$$

Strategy for the exact solution:

1. Output the exact solution x to the regression problem $\min _{\mathrm{x}}\|\mathrm{Ax}-\mathrm{b}\|_{2}$.

Time complexity: $\Omega\left(n d^{2}\right)$
Strategy for the approximate solution:

1. Sample a random matrix \mathbf{S}.
2. Compute $\mathbf{S} \cdot \mathbf{A}$ and $\mathbf{S} \cdot \mathbf{b}$.
3. Output the exact solution x to the regression problem $\min _{\mathbf{x}}\|(\mathbf{S A}) \mathbf{x}-(\mathbf{S b})\|_{2}$.

Sarlos in his paper shows that using special random matrices S one can obtain the matrix product $\boldsymbol{S} \boldsymbol{A}$ in time $O(n d \log d)$.

This gives the following time complexity for the approximate strategy:

Time complexity: $O(n d \log d)+\operatorname{poly}(d / \epsilon)$

Subsequently, Clarkson and Woodruff show the following improved result.

Time complexity: $n n z(\boldsymbol{A})+\operatorname{poly}(d / \epsilon)$
Here $n n z(\boldsymbol{A})$ is the number of non-zero entries in matrix \boldsymbol{A}.

