
Lecture 23

Fast Algorithms for Least Square

Regression

Course: Algorithms for Big Data

Instructor: Hossein Jowhari

Department of Computer Science and Statistics
Faculty of Mathematics

K. N. Toosi University of Technology

Spring 2021

1/8

2/8

Linear Regression

▸ d variables (model parameters)

▸ n linear equations (observations)

▸ n≫ d (over-constrained system)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

2x1 + 3x4 − 6x5 + 12x6 = 12
x1 − x2 − 5x3 + 12x4 + x5 = 1
x2 + x3 + 6x5 = 10
2x1 + x2 + x4 + x5 = −5
−2x1 + 3x2 + 2x4 − 9x5 = 5
8x1 − 4x2 + x3 + 4x4 = 0
x2 + 10x3 + 5x5 = 12
x1 − 10x4 − 2x5 = −8

Ax = b, A ∈ Rn×d, b ∈ Rn

Choose x ∈ Rd so that
Ax is close to b

Ax ranges over all linear
combinations of d columns of A

Finding a closest point in the
column space of A to the vector
b

3/8

Least square regression

arg min
x
∥Ax − b∥2 =

n

∑
i=1

(bi −Ai∗ .x)
2

ATe = 0⇒AT (b −Ax∗) = 0

ATAx∗ =ATb⇒ normal equation

4/8

If A is full-rank (has d independent columns), the unique
solution is

x∗ = (ATA)−1(ATb)

If A is not full-rank there are multiple solutions. One solution
is

x∗ =A�b

Here A� is called the Moore-Penrose pseudoinverse of A.

A� = V Σ�UT , A = Un×dΣd×dV
T
d×d

Here UΣV T is the SVD decomposition of A

5/8

Assuming n is large, finding a solution x∗ takes a lot time (at
least nd2 time).

If we settle for an approximate solution, there is a faster
randomized algorithm using sketching techniques.

T. Sarlós. Improved approximation algorithms for large
matrices via random projections. 2006.

Find x where

∥Ax − b∥2 ≤ (1 + ε)∥Ax∗ − b∥2

6/8

Similar to what we had in JL lemma:

There is a matrix S ∈ Rr×n with random entries (where
r = Θ(dε2)) such that with probability 1 − exp(−d) for a x ∈ Rd

∥S(Ax − b)∥2 ≤ (1 + ε)∥Ax − b∥2

⇓ (See the reference)

We can show with probability at least 1 − 1/4:

min
x
∥S(Ax − b)∥2 ≤ (1 + ε)∥Ax∗ − b∥2

7/8

Strategy for the exact solution:

Time complexity: Ω(nd2)

Strategy for the approximate solution:

8/8

Sarlos in his paper shows that using special random matrices S
one can obtain the matrix product SA in time O(nd log d).

This gives the following time complexity for the approximate
strategy:

Time complexity: O(nd log d) + poly(d/ε)

Subsequently, Clarkson and Woodruff show the following
improved result.

Time complexity: nnz(A) + poly(d/ε)

Here nnz(A) is the number of non-zero entries in matrix A.

