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Linear Regression

» d variables (model parameters)
» n linear equations (observations)

» n > d (over-constrained system)

Ax=b, AcR™  peR"
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Least square regression

argmin |Az - bl|s = Y (b; - Ap.x)?

i=1

column-space of A

ATe=0= AT(b-Ax*)=0

AT Ax* = ATb = normal equation



If A is full-rank (has d independent columns), the unique
solution is

z* = (ATA)(ATb)

If A is not full-rank there are multiple solutions. One solution
is

x* = A'b

Here AT is called the Moore-Penrose pseudoinverse of A.

At =viUT, A = UnxiZixaViea

Here UX VT is the SVD decomposition of A



Assuming n is large, finding a solution x* takes a lot time (at
least nd? time).

If we settle for an approximate solution, there is a faster
randomized algorithm using sketching techniques.

T. Sarlés. Improved approximation algorithms for large
matrices via random projections. 2006.

Find 2 where

|Ax -b|2 < (1+€)||Ax* - b2



Similar to what we had in JL lemma:

There is a matrix S € R™" with random entries (where
r=0(4%)) such that with probability 1 - exp(-d) for a z ¢ R?

|S(Az - b)|, < (1+¢)| Az - b,

| (See the reference)

We can show with probability at least 1 - 1/4:

min | S(Az - b)[2 < (1 +¢€)||Az™ - b|



Strategy for the exact solution:

1. Output the exact solution x to the regression problem
ming | Ax — b |2
Time complexity: Q(nd?)
Strategy for the approximate solution:

1. Sample a random matrix S.
2. Compute S- A and S-b.

3. Output the exact solution = to the regression problem
miny [[(SA)x — (Sb)]|a.



Sarlos in his paper shows that using special random matrices S
one can obtain the matrix product S A in time O(ndlogd).

This gives the following time complexity for the approximate
strategy:

Time complexity: O(ndlogd) + poly(d/e)

Subsequently, Clarkson and Woodruff show the following
improved result.

Time complexity: nnz(A) + poly(d/e)

Here nnz(A) is the number of non-zero entries in matrix A.



