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1 Subspace Clustering

� Clustering data from different subspaces

1.1 Application to Motion Segmentation

A set of points X1, X2, . . . ,XP in 3D of a rigid body.
At each frame f :

xfp = Af

[
Xp

1

]
 x11 · · · x1P

...
xF1 · · · xFP

 =

 A1
...
AF


2F×4

[
X1 · · · XP
1 · · · 1

]
4×P

� Data lie on a 4D linear subspace.
� Having several rigid moving objects, they lie on several affine sub-

spaces.

2 Sparse Representation

Data:X = [x1x2 · · ·xn]
Sparse Representation: x = Xs, with s sparse.

min ‖s‖0 s.t. x = Xs NP-hard!

min ‖s‖1 s.t. x = Xs

3 Sparse Subspace Clustering

min ‖s‖1 s.t. xi = X−i s
Ni = {j | sj 6= 0}
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Question: Is the corresponding graph of
each subspace connected?

Non-generic Cases:

Connectedness for Generic Cases?

4 Basics

� Add the negative of each point:

X± = X ∪ {−x |x ∈ X}

X−i = X± − {xi}

Then we have:

xi =
∑
j /∈i

ajxj aj ≥ 0

= X−ia aj � 0

The problem turns into:

minimize α
s.t.
xi = αy

y ∈ Hconvex{X−i}

5 Neighbourhood Cones
def
= Cconvex{XNi

}

Theorem. Two points are neighbours if and only if their neighbour-
hood cones intersect.

6 Projecting onto Sd−1

� Cones are reduced to Hyper-spherical Simplices
� Reduce dimensionality by 1

7 A Proof for 3D

7.1 Spherical Triangles

7.2 Residual Holes

Each connected component leaves residual holes on the sphere.

7.3 Gauss Bonnet Theorem∫
M
K dA +

∫
∂M

κgds = 2πχ(M)

Applying to a residual hole:

A +
∑
i

αi = 2π ⇒ A < 2π

� All triangles of one connected component must lie inside one resid-
ual hole of the other.

� Area of each residual hole is less than a half-sphere (2π).

8 Generic Counterexamples for ≥ 4D

� Data around two non-intersecting great circles:

[cos θk, sin θk, ±δ, ±δ]T

[±δ, ±δ, cos θk, sin θk]T , (θk = kπ/m)


