Subspace Clustering

• Clustering data from different subspaces

Application to Motion Segmentation 1.1

A set of points X_1, X_2, \ldots, X_P in 3D of a rigid body. At each frame f:

$$\mathbf{x}_{fp} = A_f \begin{bmatrix} \mathbf{X}_p \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{x}_{11} \cdots \mathbf{x}_{1P} \\ \mathbf{i} \\ \mathbf{x}_{F1} \cdots \mathbf{x}_{FP} \end{bmatrix} = \begin{bmatrix} A_1 \\ \mathbf{i} \\ A_F \end{bmatrix}_{2F \times 4} \begin{bmatrix} \mathbf{X}_1 \cdots \mathbf{X}_P \\ 1 \cdots 1 \end{bmatrix}_{4 \times P}$$

- Data lie on a 4D linear subspace.
- Having several rigid moving objects, they lie on several affine subspaces.

2 Sparse Representation

Data: $\mathbf{X} = [\mathbf{x}_1 \mathbf{x}_2 \cdots \mathbf{x}_n]$ **Sparse Representation:** x = Xs, with s sparse.

> $\min \|\mathbf{s}\|_0 \quad s.t. \ \mathbf{x} = \mathbf{X} \mathbf{s}$ NP-hard! $\min \|\mathbf{s}\|_1 \quad s.t. \ \mathbf{x} = \mathbf{X} \mathbf{s}$

3 Sparse Subspace Clustering

min $\|\mathbf{s}\|_1$ s.t. $\mathbf{x}_i = \mathbf{X}_{-i}\mathbf{s}$ $\mathcal{N}_i = \{ j \mid s_j \neq 0 \}$

*College of Engineering & Computer Science, Australian National University [†]National ICT Australia

Graph Connectivity in Sparse Subspace Clustering

Behrooz Nasihatkon*, †

Question: Is the corresponding graph of **Neighbourhood Cones** 5 each subspace connected?

Non-generic Cases:

Connectedness for Generic Cases?

Basics 4

Add the negative of each point:

$$X_{\pm} = X \cup \{-\mathbf{x} \mid \mathbf{x} \in \mathbf{X}\}$$
$$X_{-i} = X_{\pm} - \{\mathbf{x}_i\}$$

Then we have:

$$\mathbf{x}_{i} = \sum_{j \notin i} a_{j} \mathbf{x}_{j} \qquad a_{j} \ge 0$$
$$= \mathbf{X}_{-i} \mathbf{a} \qquad a_{j} \succ 0$$

The problem turns into:

Theorem. Two points are neighbours if and only if their neighbourhood cones intersect.

6

 Cones are reduced to Hyper-spherical Simplices • Reduce dimensionality by 1

Richard Hartley^{*, †}

 $\stackrel{\text{def}}{=} C_{\operatorname{convex}}\{X_{\mathcal{N}_i}\}$

Projecting onto S^{d-1}

7.2 Residual Holes

7.3

Applying to a res

• All triangles of one connected component must lie inside one residual hole of the other.

Generic Counterexamples for > 4D 8

Data around two non-intersecting great circles:

7 A Proof for 3D

7.1 Spherical Triangles

Each connected component leaves residual holes on the sphere.

Gauss Bonnet Theorem

$$\int_M K \, dA + \int_{\partial M} \kappa_g ds = 2\pi \chi(M)$$
 esidual hole:

$$1 + \sum \alpha_i = 2\pi \Rightarrow A < 2\pi$$

• Area of each residual hole is less than a half-sphere (2π).

 $[\cos \theta_k, \sin \theta_k, \pm \delta, \pm \delta]^T$ $[\pm\delta, \pm\delta, \cos\theta_k, \sin\theta_k]^T, \quad (\theta_k = k\pi/m)$

ANU College of **Engineering & Computer Science**