Graph Connectivity in Sparse Subspace Clustering

Behrooz Nasihatkon*,

Question: Is the corresponding graph of each subspace connected?

Non-generic Cases:

Connectedness for Generic Cases?
4 Basics

- Add the negative of each point:

$$
X_{ \pm}=X \cup\{-\mathbf{x} \mid \mathbf{x} \in \mathbf{X}\}
$$

Then we have:

$$
\mathbf{x}_{i}=\sum_{\substack{j \notin i \\ \mathbf{v}}} a_{j} \mathbf{x}_{j} \quad a_{j} \geq 0
$$

The problem turns into:

> minimize α s.t. $\mathbf{x}_{i}=\alpha \mathbf{y}$ $\mathbf{y} \in H$ conn

Richard Hartley*,
5 Neighbourhood Cones
$\stackrel{\text { lef }}{=} C_{\text {convex }}\left\{X_{\mathcal{N}}\right\}$

Theorem. Two points are neighbours if and only if their neighbourood cones intersect.

6 Projecting onto S^{d-1}

- Cones are reduced to Hyper-spherical Simplices
- Reduce dimensionality by 1

7 A Proof for 3D
7.1 Spherical Triangles

7.2 Residual Holes

Each connected component leaves residual holes on the sphere

7.3 Gauss Bonnet Theorem

$$
\int_{M} K d A+\int_{\partial M} \kappa_{g} d s=2 \pi \chi(M)
$$

Applying to a residual hole:

$$
A+\sum \alpha_{i}=2 \pi \Rightarrow A<2 \pi
$$

All triangles of one connected component must lie inside one residual hole of the other
Area of each residual hole is less than a half-sphere (2π).
8 Generic Counterexamples for \geq 4D

- Data around two non-intersecting great circles:

$$
\left[\cos \theta_{k}, \sin \theta_{k}, \pm \delta, \pm \delta\right]^{T}
$$

$$
\left[\pm \delta, \pm \delta, \cos \theta_{k}, \sin \theta_{k}\right]^{T}, \quad\left(\theta_{k}=k \pi / m\right)
$$

ANU College of
Engineering \& Computer Science

