Graph Connectivity in Sparse Subspace Clustering

Behrooz Nasihatkon

24 March 2011

Outline

(1) Subspace Clustering
(2) Sparse Subspace Clustering
(3) Graph Connectivity
4) Conclusion

Outline

(1) Subspace Clustering

- Example
- Subspace Clustering
- Applications
- Solutions
(2) Sparse Subspace Clustering
(3) Graph Connectivity

4 Conclusion

Example: Rigid Body

Frame 1:

- $\mathbf{x}_{i}=\left[\begin{array}{ll}A_{1} &]_{2 \times 4}\left[\begin{array}{c}\mathbf{X}_{i} \\ 1\end{array}\right]_{4 \times 1}, ~\end{array}\right.$

Example: Rigid Body

Frame 1:

- $\mathbf{x}_{i}=\left[\begin{array}{ll}A_{1} &]_{2 \times 4}\left[\begin{array}{c}\mathbf{X}_{i} \\ 1\end{array}\right]_{4 \times 1} \text { }, ~\end{array}\right.$

Example: Rigid Body

Frame 1:
Frame 2:

- $\mathbf{x}_{i}=\left[\begin{array}{ll}A_{1} &]_{2 \times 4}\left[\begin{array}{c}\mathbf{X}_{i} \\ 1\end{array}\right]_{4 \times 1} \\ \end{array}\right.$

Example: Rigid Body

Frame 1:
Frame 2:

- $\mathbf{x}_{i}=\left[\begin{array}{ll}A_{1} &]_{2 \times 4}\left[\begin{array}{c}\mathbf{X}_{i} \\ 1\end{array}\right]_{4 \times 1} \text { }, ~\end{array}\right.$

- $\mathbf{y}_{i}=\left[\begin{array}{ll}A_{2} &]_{2 \times 4}\left[\begin{array}{c}\mathbf{X}_{i} \\ 1\end{array}\right]_{4 \times 1}, ~\end{array}\right.$

Example: Rigid Body

Frame 1:

Frame 2:

- $\mathbf{x}_{i}=\left[\begin{array}{ll}A_{1} &]_{2 \times 4}\left[\begin{array}{c}\mathbf{X}_{i} \\ 1\end{array}\right]_{4 \times 1} \text { }, ~\end{array}\right.$

- $\mathbf{y}_{i}=\left[\begin{array}{ll}A_{2} &]_{2 \times 4}\left[\begin{array}{c}\mathbf{X}_{i} \\ 1\end{array}\right]_{4 \times 1}, ~\end{array}\right.$

Example: Rigid Body

Frame 1:

Frame 2:

- $\mathbf{x}_{i}=\left[\begin{array}{ll}A_{1} &]_{2 \times 4}\left[\begin{array}{c}\mathbf{X}_{i} \\ 1\end{array}\right]_{4 \times 1} \text { }, ~\end{array}\right.$
- $\mathbf{y}_{i}=\left[\begin{array}{ll}A_{2} &]_{2 \times 4}\left[\begin{array}{c}\mathbf{X}_{i} \\ 1\end{array}\right]_{4 \times 1} \text { }, ~\end{array}\right.$

$0\left[\begin{array}{l}\mathbf{x}_{1} \cdots \mathbf{x}_{n} \\ \mathbf{y}_{1} \cdots \mathbf{y}_{n}\end{array}\right]=\left[\begin{array}{c}A_{1} \\ A_{2}\end{array}\right]_{4 \times 4}\left[\begin{array}{c}\mathbf{X}_{1} \cdots \mathbf{X}_{n} \\ 1 \cdots 1\end{array}\right]_{4 \times n}$

Example: Rigid Body

Frame 1:

- $\mathbf{x}_{i}=\left[\begin{array}{ll}A_{1} &]_{2 \times 4}\left[\begin{array}{c}\mathbf{X}_{i} \\ 1\end{array}\right]_{4 \times 1} \text { }, ~\end{array}\right.$
- $\left[\mathrm{x}_{1} \cdots \mathrm{x}_{n}\right]=\left[A_{1}\right]_{2 \times 4}\left[\begin{array}{c}\mathrm{x}_{1} \cdots \mathrm{x}_{n} \\ 1 \cdots 1\end{array}\right]_{4 \times n}$

Frame 2:

- $\left[\begin{array}{l}\mathbf{x}_{1} \cdots \mathbf{x}_{n} \\ y_{1} \cdots \mathbf{y}_{n} \\ z_{1} \cdots \mathbf{z}_{n}\end{array}\right]=\left[\begin{array}{c}A_{1} \\ A_{2} \\ A_{3}\end{array}\right]_{6 \times 4}\left[\begin{array}{c}\mathbf{x}_{1} \cdots \mathbf{x}_{n} \\ 1 \cdots 1\end{array}\right]_{4 \times n}$

Example: Rigid Body

Frame 2:

Frame 1:

$$
\begin{aligned}
& \text { - }\left[\mathbf{x}_{1} \cdots \mathrm{x}_{n}\right]=\left[A_{1}\right]_{2 \times 4}\left[\begin{array}{c}
\mathbf{x}_{1} \cdots \mathrm{x}_{n} \\
1 \cdots
\end{array}\right]_{4 \times n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \mathbf{y}_{i}=\left[\begin{array}{lll}
A_{2} &]_{2 \times 4}\left[\begin{array}{c}
\mathbf{X}_{i} \\
1
\end{array}\right]_{4 \times 1}, ~
\end{array}\right. \\
& \bigcirc\left[\begin{array}{c}
\mathbf{x}_{1} \cdots \mathbf{x}_{n} \\
\mathbf{y}_{1} \cdots \mathbf{y}_{n} \\
\vdots \\
\vdots \\
\mathbf{z}_{1} \cdots \mathbf{z}_{n}
\end{array}\right]=\left[\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{F}
\end{array}\right]_{2 F \times 4}\left[\begin{array}{c}
\mathbf{x}_{1} \cdots \mathbf{x}_{n} \\
1 \cdots 1
\end{array}\right]_{4 \times n}
\end{aligned}
$$

Example: Rigid Body

$$
\left[\begin{array}{c}
\mathbf{x}_{11} \cdots \mathbf{x}_{1 n} \\
\mathbf{x}_{21} \cdots \mathbf{x}_{2 n} \\
\vdots \\
\vdots \\
\mathbf{x}_{F 1} \cdots \mathbf{x}_{F n}
\end{array}\right]_{2 F \times n}=\left[\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{F}
\end{array}\right]_{2 F \times 4}\left[\begin{array}{c}
\mathbf{X}_{1} \cdots \mathbf{X}_{n} \\
1 \cdots 1
\end{array}\right]_{4 \times n}
$$

Example: Rigid Body

$$
\left[\begin{array}{c}
\mathbf{x}_{11} \cdots \mathbf{x}_{1 n} \\
\mathbf{x}_{21} \cdots \mathbf{x}_{2 n} \\
\vdots \\
\vdots \\
\mathbf{x}_{F 1} \cdots \mathbf{x}_{F n}
\end{array}\right]_{2 F \times n}=?
$$

Subspace Clustering

- Data lying on a mixture of subspaces.

Subspace Clustering

- Data lying on a mixture of subspaces.

- Number of subspaces

Subspace Clustering

- Data lying on a mixture of subspaces.

- No. of subspaces + their dimensions

Subspace Clustering

- Data lying on a mixture of subspaces.

- No. of subspaces + dimensions $+A$ basis for each subspace

Subspace Clustering

- Data lying on a mixture of subspaces.

- No. of subspaces + dimensions + bases + data segmentation

Subspace Clustering

- Data lying on a mixture of subspaces.

- No. of subspaces + dimensions + bases + segmentation

Applications

- Motion Segmentation [Rene Vidal et al. 2008]
- Video Shot Segmentation [Le Lu and R. Vidal 2006]
- Illumination Invariant Clustering [J. Ho et al. 2003]
- Image Segmentation [Alen Yang et al. 2008]
- Image Representation and Compression [Wei Hong et al. 2005]
- Linear Hybrid Systems Identification [Rene Vidal et al. 2003]

Solutions

- Random Sample Consensus (RANSAC) [Martin Fischler and R. Bolles 1981]
- Mixture of Probabilistic PCA [Michael Tipping and c. Bishop 1999]
- Generalized PCA (GPCA) [Rene Vidal et al. 2005]
- Locally Linear Manifold Clustering (LLMC) [Alvina Goh and R. Vidal 2007]
- Agglomerative Lossy Compression (ALC) [Yi Ma et al. 2007]
- Sparse Subspace Clustering (SSC) [Ehsan Elhamifar and R. Vidal 2009]
- Low-Rank Subspace Clustering (LLR) [Guangcan Li et al. 2010]

Outline

(1) Subspace Clustering

(2) Sparse Subspace Clustering

- Sparse Representation
- Main Theorem
- Noise and Outliers
- Open Problems
(3) Graph Connectivity

4 Conclusion

Sparse Representation

- Represent \mathbf{y} as a linear combination of the smallest possible subset of the vectors $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$.

Sparse Representation

- Represent \mathbf{y} as a linear combination of the smallest possible subset of the vectors $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$.

$$
\min \|\mathbf{a}\|_{0} \quad \text { s.t. } \quad \mathbf{y}=\mathbf{X a}
$$

where $\mathbf{X}=\left[\mathbf{x}_{1} \mathbf{x}_{2} \cdots \mathbf{x}_{n}\right]$.

Sparse Representation

- Represent \mathbf{y} as a linear combination of the smallest possible subset of the vectors $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$.

$$
\min \|\mathbf{a}\|_{0} \quad \text { s.t. } \quad \mathbf{y}=\mathbf{X a}
$$

where $\mathbf{X}=\left[\mathbf{x}_{1} \mathbf{x}_{2} \cdots \mathbf{x}_{n}\right]$.

- NP-hard

Sparse Representation

- Represent \mathbf{y} as a linear combination of the smallest possible subset of the vectors $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$.

$$
\min \|\mathbf{a}\|_{0} \quad \text { s.t. } \quad \mathbf{y}=\mathbf{X a}
$$

where $\mathbf{X}=\left[\mathbf{x}_{1} \mathbf{x}_{2} \cdots \mathbf{x}_{n}\right]$.

- NP-hard
- Use L^{1}-minimization:

$$
\min \|\mathbf{a}\|_{1} \quad \text { s.t. } \quad \mathbf{y}=\mathbf{X a}
$$

Sparse Representation

- Represent \mathbf{y} as a linear combination of the smallest possible subset of the vectors $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$.

$$
\min \|\mathbf{a}\|_{0} \quad \text { s.t. } \quad \mathbf{y}=\mathbf{X a}
$$

where $\mathbf{X}=\left[\mathbf{x}_{1} \mathbf{x}_{2} \cdots \mathbf{x}_{n}\right]$.

- NP-hard
- Use L^{1}-minimization:

$$
\min \|\mathbf{a}\|_{1} \quad \text { s.t. } \quad \mathbf{y}=\mathbf{X a}
$$

- L^{1} / L^{0} equivalence

Sparse Subspace Clustering

- If we had the basis $\left[\mathbf{b}_{1} \mathbf{b}_{2} \ldots \mathbf{b}_{m}\right.$]

Sparse Subspace Clustering

- If we had the basis $\left[\mathbf{b}_{1} \mathbf{b}_{2} \ldots \mathbf{b}_{m}\right.$]

- Represent each \mathbf{x}_{i} as a sparse combination of $\left\{\mathbf{b}_{1} \mathbf{b}_{2} \ldots \mathbf{b}_{m}\right\}$

Sparse Subspace Clustering

- We do not have the basis

Sparse Subspace Clustering

- We do not have the basis

- Represent each \mathbf{x}_{i} as a sparse combination of $X-\left\{\mathbf{x}_{i}\right\}$

Main Theorem

- For each \mathbf{x}_{i} solve:

$$
\mathbf{a}^{i}=\arg \min \|\mathbf{a}\|_{1} \quad \text { s.t. } \quad \mathbf{x}_{i}=\mathbf{X} \mathbf{a}, \quad a_{i}=0
$$

Main Theorem

- For each \mathbf{x}_{i} solve:

$$
\mathbf{a}^{i}=\arg \min \|\mathbf{a}\|_{1} \quad \text { s.t. } \quad \mathbf{x}_{i}=\mathbf{X} \mathbf{a}, \quad a_{i}=0
$$

- Construct a graph whose nodes are \mathbf{x}_{i} and each node \mathbf{x}_{i} is connected to the node \mathbf{x}_{j} if the j-th element of \mathbf{a}^{i} is nonzero.

Main Theorem

- For each \mathbf{x}_{i} solve:

$$
\mathbf{a}^{i}=\arg \min \|\mathbf{a}\|_{1} \quad \text { s.t. } \quad \mathbf{x}_{i}=\mathbf{X} \mathbf{a}, \quad a_{i}=0
$$

- Construct a graph whose nodes are \mathbf{x}_{i} and each node \mathbf{x}_{i} is connected to the node \mathbf{x}_{j} if the j-th element of \mathbf{a}^{i} is nonzero.
Theorem
If the subspaces are independent, the graphs of different subspaces are disconnected.

Main Theorem

- For each \mathbf{x}_{i} solve:

$$
\mathbf{a}^{i}=\arg \min \|\mathbf{a}\|_{1} \quad \text { s.t. } \quad \mathbf{x}_{i}=\mathbf{X} \mathbf{a}, \quad a_{i}=0
$$

- Construct a graph whose nodes are \mathbf{x}_{i} and each node \mathbf{x}_{i} is connected to the node \mathbf{x}_{j} if the j-th element of \mathbf{a}^{i} is nonzero.
Theorem
If the subspaces are independent, the graphs of different subspaces are disconnected.
- Find the connected components

Main Theorem

- For each \mathbf{x}_{i} solve:

$$
\mathbf{a}^{i}=\arg \min \|\mathbf{a}\|_{1} \quad \text { s.t. } \quad \mathbf{x}_{i}=\mathbf{X} \mathbf{a}, \quad a_{i}=0
$$

- Construct a graph whose nodes are \mathbf{x}_{i} and each node \mathbf{x}_{i} is connected to the node \mathbf{x}_{j} if the j-th element of \mathbf{a}^{i} is nonzero.
Theorem
If the subspaces are independent, the graphs of different subspaces are disconnected.
- Find the connected components
- In practice spectral clustering using $\left[\mathbf{a}^{1} \mathbf{a}^{2} \ldots \mathbf{a}^{n}\right]$

Example

Figure: An example of an SSC graph

Noise and Outliers

- Noise

$$
\begin{aligned}
& \min \|\mathbf{a}\|_{1}+\lambda\|\mathbf{e}\|_{2} \\
& \text { s.t. } \\
& \qquad \begin{array}{l}
\mathbf{x}_{i}=\mathbf{X}_{-i} \mathbf{a}+\mathbf{e} \\
\quad a_{i}=0
\end{array}
\end{aligned}
$$

Noise and Outliers

- Noise

$$
\begin{aligned}
& \min \|\mathbf{a}\|_{1}+\lambda\|\mathbf{e}\|_{2} \\
& \text { s.t. } \\
& \qquad \begin{aligned}
\mathbf{x}_{i} & =\mathbf{X}_{-i} \mathbf{a}+\mathbf{e} \\
a_{i} & =0
\end{aligned}
\end{aligned}
$$

- Outliers

$$
\begin{aligned}
& \min \|\mathbf{a}\|_{1}+\lambda\|\mathbf{e}\|_{1} \\
& \text { s.t. } \\
& \qquad \begin{array}{l}
\mathbf{x}_{i}=\mathbf{X}_{-i} \mathbf{a}+\mathbf{e} \\
a_{i}=0
\end{array}
\end{aligned}
$$

Open Problems

- Noise and Outliers
- Extension to manifolds
- Graph Connectivity in each subspace

Outline

(1) Subspace Clustering
(2) Sparse Subspace Clustering
(3) Graph Connectivity

- Example
- Preparation
- 2D Case
- 3D Case
- N-D Case

4 Conclusion

A Simple Example

Preparation

Adding Negative Points

- $\mathbf{x}_{i}=\sum_{j \neq i} a_{j} \mathbf{x}_{j}$

Preparation

Adding Negative Points

- $\mathbf{x}_{i}=\sum_{j \neq i} a_{j} \mathbf{x}_{j}$

Preparation

Adding Negative Points

- $\mathbf{x}_{i}=\sum_{j \neq i} a_{j} \mathbf{x}_{j}$
- $a_{j} \mathbf{x}_{j}=-a_{j}\left(-\mathbf{x}_{j}\right)$

Preparation

- $\mathbf{x}_{i}=\sum_{j \neq i} a_{j} \mathbf{x}_{j}$
- $a_{j} \mathbf{x}_{j}=-a_{j}\left(-\mathbf{x}_{j}\right)$
- $a_{j} \geq 0$

Preparation

$$
\begin{aligned}
& \mathbf{a}^{i}=\arg \min \|\mathbf{a}\|_{1} \\
& \text { s.t. } \\
& \quad \mathbf{x}_{i}=\mathbf{X} \mathbf{a} \\
& a_{i}=0
\end{aligned}
$$

$\mathbf{a}^{i}=\arg \min \mathbf{1}^{T} \mathbf{a}$
s.t.

$$
\begin{aligned}
& \mathbf{x}_{i}=\mathbf{X}_{ \pm} \mathbf{a}, \\
& \mathbf{a} \succeq \mathbf{0} \\
& a_{i}=0
\end{aligned}
$$

Geometry of Polytopes

- L^{1} minimization and geometry of polytopes [David Donoho 2005]

Geometry of Polytopes

- L^{1} minimization and geometry of polytopes [David Donoho 2005]

$$
\mathbf{x}_{i}=\mathbf{X}_{-i} \mathbf{b}=\mathbf{X}_{-i} \frac{\mathbf{b}}{\|\mathbf{b}\|_{1}} \cdot\|\mathbf{b}\|_{1}
$$

Geometry of Polytopes

- L^{1} minimization and geometry of polytopes [David Donoho 2005]

$$
\mathbf{x}_{i}=\mathbf{X}_{-i} \mathbf{b}=\mathbf{X}_{-i} \frac{\mathbf{b}}{\|\mathbf{b}\|_{1}} \cdot\|\mathbf{b}\|_{1}
$$

$$
\begin{aligned}
& \mathbf{x}_{i}=\mathbf{X}_{-i} \mathbf{p} \alpha \\
& \text { where } \\
& \|\mathbf{p}\|=1, \mathbf{p} \succeq \mathbf{0} \\
& \quad \alpha \text { : to be minimized }
\end{aligned}
$$

Geometry of Polytopes

- L^{1} minimization and geometry of polytopes [David Donoho 2005]

$$
\mathbf{x}_{i}=\mathbf{X}_{-i} \mathbf{b}=\mathbf{X}_{-i} \frac{\mathbf{b}}{\|\mathbf{b}\|_{1}} \cdot\|\mathbf{b}\|_{1}
$$

$$
\begin{aligned}
& \mathbf{x}_{i}=\mathbf{X}_{-i} \mathbf{p} \alpha \\
& \text { where } \\
& \quad\|\mathbf{p}\|=1, \mathbf{p} \succeq \mathbf{0} \\
& \quad \alpha \text { : to be minimized }
\end{aligned}
$$

$$
\mathbf{X}_{-i} \mathbf{p} \text { : convex hull of } X_{-i}
$$

Geometry of Polytopes

Assumptions

- Indivisible subspaces?

Assumptions

NICTA

- Indivisible subspaces?
- Degenerate Cases

Assumptions

- Indivisible subspaces?
- Degenerate Cases

Assumption
No d points lie in a (d-1)-dimensional subspace.

Assumptions

- Indivisible subspaces?
- Degenerate Cases

Assumption
No d points lie in a (d-1)-dimensional subspace.

Assumption
The facet of each polytope $\left(X_{-i}\right)$ on which \mathbf{y}_{i} lies has exactly d points on it.

Neighbourhood Cones

Neighbourhood Cones

> Theorem
> Two points are neighbours iff their neighbourhood cones strictly intersect.

Projection on Unit Hypersphere

2D Case

3D Case

- residual holes for one connected component
- Topologically open disks.
- Area: < half-sphere. (\Leftarrow Gauss-Bonnet Theorem)

What about $d \geq 4$?

- No residual holes
- Search for counterexamples

Towards a Counterexample

Observations from 3D

Towards a Counterexample

Towards a Counterexample

$\geq 4 \mathrm{D}$ case

Counterexample

- Data around two great circles:
- $\left.\begin{array}{ccc}{[\cos \theta, \sin \theta,} & 0, & 0\end{array}\right]^{T}$
- $[0,0, \cos \theta, \sin \theta]^{T}$
- $X_{ \pm}=X_{C_{1}} \cup X_{C_{2}}$
- $X_{C_{1}}:\left[\begin{array}{lll}\cos \frac{k \pi}{m}, & \left.\sin \frac{k \pi}{m}, \quad \pm \delta, \quad \pm \delta\right]^{T}\end{array}\right.$
- $X_{C_{2}}:\left[\begin{array}{lll} & \pm \delta, & \pm \delta, \\ \cos \frac{k \pi}{m}, & \sin \frac{k \pi}{m}\end{array}\right]^{T}$

$\geq 4 \mathrm{D}$ case
 Counterexample

(a) $\delta=\Delta+\epsilon$

(c) $\delta=\frac{\sqrt{2}}{2}-\Delta-\epsilon$
(d) $\delta=\frac{\sqrt{2}}{2}-\Delta+\epsilon$

Figure: Orthographic projection to 3D

Is Connectivity Generic?

- In the counterexample $\operatorname{ray}\left(\mathbf{x}_{i}\right)$ hits the interior of the facet.

Is Connectivity Generic?

- In the counterexample $\mathbf{r a y}\left(\mathbf{x}_{i}\right)$ hits the interior of the facet.

Conclusion

- The importance of Subspace Clustering

Conclusion

- The importance of Subspace Clustering
- Advantages of Sparse Subspace Clustering

Conclusion

- The importance of Subspace Clustering
- Advantages of Sparse Subspace Clustering
- For $d=2$ and $d=3$ it will not fail,

Conclusion

- The importance of Subspace Clustering
- Advantages of Sparse Subspace Clustering
- For $d=2$ and $d=3$ it will not fail,
- Caution must be taken for $d \geq 4$,
- A post processing stage, etc.

Thanks

Questions?

? ? ??

