
Fundamentals of Programming
session 17

C Arrays



Remember: count the ratings

1: Bad

2: Average

3: Good

4: Excellent



What if there are 20 numbers?

1: 

2: 
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 :

20:



What if there are 100 numbers?
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What if there are a million numbers?

1: 

2: 

3: 

 :

1000000:



C Arrays

2100

2096

2092

2088

int a[7];

Memory



C Arrays

2100

2096

2092

2088

int a[7];

a[1] = 123; 

Memory



C Arrays
123

2100

2096

2092

2088

int a[7];

a[1] = 123; 

Memory
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int a[7];

a[0] = -1; 
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Initialize Arrays

40

30

20

10

2100

2096

2092

2088

int a[7] = {10,20,30,40,50,60,70};
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Initialize Arrays
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So what?
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difference with ordinary variables
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difference with ordinary variables
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int a[7];

a[0] = -1; 
a[3] = 100;
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int i = 3;
a[i] = 200;

i += 2;
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difference with ordinary variables
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int a[7];

for (int i = 0; i < 7; i++) {
    a[i] = i*i;
}
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difference with ordinary variables
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int a[7];

for (int i = 0; i < 7; i++) {
    a[i] = i*i;
}

for (int i = 0; i < 7; i++) {
    printf("%d\n", a[i]);
}
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array1.c



Back to our problem
get students scores (all integers 
{0,1,2,...,19,20}, no fractions). For 
each number 0,1,2,....,20 print the 
number of students with this score. 
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Back to our problem
get students scores (all integers 
{0,1,2,...,19,20}, no fractions). For 
each number 0,1,2,....,20 print the 
number of students with this score. 

countarray3.c 



Change the code so that grades are 
between 0 and 100. 



Change the code so that grades are 
between 0 and 100. 



countarray4.c 



Is N a variable?

countarray4.c 



Is N a variable?

Let's look at the preprocessor output:

$ gcc -E countarray4.c

countarray4.c 











Only works for initializing to zero!



Draw a Histogram instead. 

countarray4.c 



countarray4.c countarrayhist.c 



countarrayhist.c countarrayhist2.c 



Roll a dice N times!


