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1.Variable Elimination (20 points) 
Assume that we are to apply variable elimination to the 
following Bayesian network.  
 

A) Draw the corresponding Markov network (4 points) 
 
 
 
 
 
 
 
 
 

B) If you are to eliminate one variable from the network above, which variable(s) 
is (are) the best to start with? Which one is the worst? Why? (4 points) 

 
 
 
 

C) To compute P(D | F), propose an optimal elimination ordering in terms of the 
algorithm efficiency. Why is this the best (or a best) order? (7 points) 

 
 
 
 
 

D) Assume that we want to eliminate B, A, D, F 
and C in order. Draw the corresponding 
induced graph​. (5 points) 

 
 

 
 
 
 

 
 

K. N. Toosi University of Technology 



 

2.Junction Tree​ (22 points) 

Consider the following junction tree 
(clique tree) 
 

A) Write down the corresponding 
message beside each arrow. (2 
points) 

 
B) Draw a Markov network (MRF) corresponding 

to the above clique tree (4 points) 
 
 
 
 

C) Write down the potential functions for the markov graph in part (B). Assume that 
there are ​only binary and ternary​ potentials and each cluster corresponds to 
exactly one​ potential function.For each potential function write down the 
corresponding cluster number (1,2,3,4 or 5). (3 points)  

 
 
 
 
 
 

D) What is the minimum number of message computations needed for the Belief 
Propagation algorithm to converge to the right solution? Write one such ordering of 
messages. (6 points).  

 
 
 
 

E) Assume that all variables are binary ( ),  where0, }∈ { 1 (E, ) xp(1(E )),  ϕ1 H = e = H  
1(.) is the indicator function, (H , , ) xp(3 A B H A H),  ϕ2 A B = e + 2 − B  

 and we are to perform ​max-sum message passing​ for(B, ) exp(2 B C B),  ϕ3 C =  +   
MAP ​estimation. Derive and then​ . Notice that the(H), δ (B),δ1→2  3→2 (A, )δ2→5 B  
functions  are​ max-sum​ messages. You can either write a formula or a tabularδi→j  
representation. (7 points) 
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3.Random walk / MCMC 
(22 points) 

Consider a markov chain with the following 
transition model for a 1D distribution  with a(X)P  
binary variable in which  and 0, },X ∈ { 1 (0 )α = T → 1 T (1 ).β =  → 0  
 

A) What are the values of and  in terms of and (1 point)(0 )T → 0 (1 )T → 1 α .β  
 
  
 
 

B) Assume that the transition probabilities and  are given. Derive theα β  
corresponding stationary distribution and  in terms of (0) π(0)P∞ =  (1) π(1)P∞ =  α
and Write down the full derivations. (8 points).β   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C) Assume . What is the corresponding stationary distribution ? (2.3, .8α = 0 β = 0 (X)P∞  
points) 
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D) Now, we want to solve the inverse problem. Assume that a special stationary 
distribution  is desired, that is, and  for a given .(X)P∞ (0)  P∞ = p (1) P∞ = 1 − p p  
We want to determine and  in terms of . Using the result from part (B),α β p  
determine the ratio in terms of p. Show that every solution with / βα ,  0, ]α β ∈ [ 1   
this ratio is an answer to our problem, and therefore for a given stationary 
distribution the solution ( is not unique. (Assume that ) (8 points), )α β  p 10 <  <   

 
 
 
 
 
 
 
 
 
 
 
 
 

E) Assume that we need to design a markov chain for which Obtain(0) .4.P∞ = p = 0  
two different solutions ( such that for the first one and for the second, )α β .1β = 0  
one  (3 points)..2β = 0   
 
 
 
 

 
 

F) ** Which of the two solutions in part (E) do you think gives a better random walk 
algorithm in terms of mixing more quickly? Give an intuitive explanation. Can you 
give an optimal solution ( for part (E)? ​(3+3 extra points), )α β  
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4.Parameter learning Bayesian 
Networks (16 points) 

Consider the following Bayesian network with all-binary 
variables ( ). Assume that the training data0, }∈ { 1  

is available, where , , ... , XX1 X2   N a , , , , ).X i = ( i bi ci di ei  
 

A) Write down the log-likelihood function in terms of the 
logarithm of CPDs​. (6 points) 

 
 
 
 
 
 
 

B) Assume that all the CPDs in this network are 
parameterized independently, except P(C | A) 
and P(E | C) which have shared parameters, i.e. 
share the same table, that is  
P(C = x | A = y) = P(E = x| C = y).  
Consider the following training data. Write the 
tabular representation of the Maximum Likelihood 
solution for each of the CPDs. (10 points) 
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5.Parameter learning MRFs (20 
points) 

Consider the following MRF, on ​binary​ variables ​A, B, C 
 with joint distribution0, }∈ { 1   

 
(A, , )   exp(w  1(A B) w  1(B ) w  1(C )  )P B C =  1

Z 1 =  +  2 = C +  3 = A  
 
where ​1(X = Y)​ is equal to 1 if X = Y and zero otherwise.  
 

A) Derive the partition function  as a function of . (4 points)Z , , ww1 w2  3  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B) Consider the training data , where Write down the, , ... , XX1 X2   N a , , ).X i = ( i bi ci  
log-likelihood function in terms of the data  and the weights .a , , )( i bi ci , , ww1 w2  3  
Simplify your answer as much as possible (4 points) 
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C) Derive the log-likelihood function for the following training 
data. Simplify your result as much as you can. (3 points) 

 
 
 
 
 
 
 
 
 
 

D) Which of the following assignments to  better describes the data? Why?, , ww1 w2  3  
(3 points) 

a) , , w (2, , )w1 w2  3 =  2 1  
b)  ( ), , w  w1 w2  3 = , ,2 1 2  

 
 
 
 

E) Take derivatives of the log-likelihood function of part (C) with respect to , andw1 w2  
, and set them equal to zero. Let and Derivew3 a e , b e ,=  w1  =  w2    e .c =  w3  

polynomial equations in terms of  for optimal  (4 points), ,a b c , , w .w1 w2  3  
 
 
 
 
 
 
 
 
 
 

F) Using the result of part (E) prove that for optimal parameters we have (2 w .w1 =  3  
points) 
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