| Probabilistic Graphical Models <br> Midterm Exam | Instructor: <br> B. Nasihatkon | Ordibehesht 1396-May 2017 |
| :--- | :--- | :--- |
| Name: | ID: |  |

## Q1- Bayesian nets / Independence (21 points)

Consider the following Bayesian network
A) write the joint distribution in terms of conditional probability distributions (CPDs) (5 points):
$P(A, B, C, D, E, F, G, H)=$
B) Which of the following statement are True, and which are False in general (i.e. can be
 false for some distribution with the above network) (16 points).

|  | True/False |  | True/False |
| :--- | :--- | :--- | :--- | :--- |
| $A \perp C$ |  | $A \perp B$ |  |
| $A \perp H$ |  | $H \perp C \mid E$ |  |
| $A \perp E$ |  | $A \perp B \mid D$ |  |
| $C \perp G$ |  | $H \perp F \mid C$ |  |
| $D \perp H \mid A, B$ |  | $F \perp A \mid H$ |  |
| $H \perp F$ |  | $F \perp A \mid H$ |  |
| $H \perp F \mid E$ |  | $A \perp F \mid E, H$ |  |
| $H \perp F \mid E, G$ |  |  |  |

## Q2- Bayesian nets / Context-specific independence (32 points)

Consider the conditional probability distribution $P(A \mid B, C, D)$ in the following Bayesian network, where $A, B, C, D \in\{0,1\}$ are all binary variables. The following piece of code contains a function that receives $B, C$ and $D$ as arguments and returns
 a 2-tuple representing the probability of $A=0$ and $A=1$ given
B,C,D. Therefore, the return value is equal to $(P(A=0 \mid B, C, D), P(A=1 \mid B, C, D))$.

```
function Cpd_A_given_BCD (B,C,D)
if B == 1
    return (.2, .8)
else if C == 0
    return (.6, .4)
else if D == 1
    return (.9, .1)
else
    return (.3, .7)
```

A) Which of the following statements are True and which ones are False). Here $X \perp Y \mid Z$ means that X is independent of Y given Z (14 Points).

|  | True/False |  | True/False |
| :--- | :--- | :--- | :--- |
| $A \perp B \mid C, D$ |  | $A \perp D \mid B=0, C=0$ |  |
| $A \perp B \mid C=0$ |  | $A \perp D \mid B=0, C=1$ |  |
| $A \perp B \mid C=1$ |  | $A \perp D \mid B=1, C=0$ |  |
| $A \perp C \mid B=0$ |  | $A \perp D \mid B=1, C=1$ |  |
| $A \perp C \mid B=1$ |  | $B \perp C$ |  |
| $A \perp D \mid B=0$ |  | $A \perp C \mid B=1, D=1$ |  |
| $A \perp D \mid B=1$ |  | $A \perp C \mid B=0, D=1$ |  |

B) How many parameters (at least) are needed to represent a CPD $P(A \mid B, C, D)$ with the above form? Why? (3 points)
C) How many parameters are needed to represent a general CPD $P(A \mid B, C, D)$ for binary variables $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ (not in the above form or any other special form). Why? (3 points)
D) Assume that $P(B=0)=0.4$ and $P(C=0)=0.7$ and $P(D=0)=0.2$. For the above Bayesian network compute the following probabilities. You need to write the steps towards
the final answer. Do not just write the final solution, and do not just write the formulae (12 points):
$P(A=0 \mid B=0, C=1, D=0)=$
$P(A=0, B=0, C=1, D=0)=$
$P(A=0, B=0, C=1, D=1)=$
$P(A=0, B=0, C=1)=$
$P(D=0 \mid A=0, B=0, C=1)=$
$P(A=0 \mid B=1)=$

## Extra points! (3+3 points)

$P(A=0)=$
$P(A=0 \mid B=0)=$

## Q3- Markov Random Fields/Gibbs distribution (24 points)

Consider the following joint distribution for a Markov Random Field.

$$
P(A, B, C, D, E, F)=\frac{1}{Z} \phi_{1}(A, B) \phi_{2}(B, C, D, E) \phi_{3}(C, D, F)
$$

A) If $A \in\{0,1\}, B \in\{1,2,3\}, C \in\{1,2\}, D \in\{1,2,3,4\}, E \in\{0,1\}, F \in\{0,1\}$, how many parameters are needed in general to represent the above joint distribution? why? (assume $\phi_{1}, \phi_{2}$ and $\phi_{3}$ do not have any specific forms) (3 points)
B) How many parameters were needed (at least) to parameterize an arbitrary joint distribution $P(A, B, C, D, E, F)$ (without any special structure) with the same variable domains? Why? (2 points)
C) Draw the MRF graph corresponding to the above distribution. (5 points)
D) Which of the following statements are true and which are false (for general potential functions $\phi_{1}, \phi_{2}$ and $\phi_{3}$ )? (14 points)

|  | True/False |  | True/False |
| :--- | :--- | :--- | :--- |
| $A \perp B \mid C, D, E, F$ |  | $F \perp E \mid C$ |  |
| $A \perp C \mid B$ |  | $A \perp D \mid B=2, C=1$ |  |
| $A \perp B \mid C$ |  | $B \perp F \mid C, D$ |  |
| $A \perp F \mid C$ |  | $B \perp E \mid C, D$ |  |
| $A \perp F \mid B, C$ |  | $E \perp A \mid B, C$ |  |
| $A \perp F$ |  | $F \perp F \mid B, C, D$ |  |
| $A \perp E$ |  | $F \perp A \mid B$ |  |

## Q4- Energy Function / Graph Cuts

Consider the following energy function over the binary variables $A, B, C, D$
$E(A, B, C, D)=E_{A B}(A, B)+E_{B C}(B, C)+E_{C D}(C, D)+E_{A}(A)+E_{B}(B)+E_{C}(C)+E_{D}(D)$ where
$E_{A B}(0,0)=E_{A B}(1,1)=E_{B C}(0,0)=E_{B C}(1,1)=E_{C D}(0,0)=E_{C D}(1,1)=0$
$E_{A B}(0,1)=E_{A B}(1,0)=1$
$E_{B C}(0,1)=2 \quad E_{B C}(1,0)=3$
$E_{C D}(0,1)=4 \quad E_{C D}(1,0)=8$
$E_{A}(0)=10 \quad E_{A}(1)=12$

$$
E_{B}(1)=22
$$

$E_{C}(0)=40 \quad E_{C}(1)=44$

$$
E_{B}(0)=20
$$

$E_{D}(0)=80$
$E_{D}(1)=88$

1. Write the joint distribution in terms of the (unary and binary) energy terms ( $E_{A B}(A, B), E_{B C}(B, C), E_{C D}(C, D), E_{A}(A), E_{B}(B), E_{C}(C)$ and $\left.E_{D}(D)\right)$. You do not need to compute the partition function. (5 points)
$P(A, B, C, D)=\frac{1}{Z}$
2. Draw the corresponding MRF graph. (3 points)
3. Construct a min-cut/max-flow graph for the above energy function, by adding directed edges and their weights in the following graph (10 points)

$\mathrm{T}=1$
4. Is $E(A, B, C, D)$ submodular? Why? (5 points)
