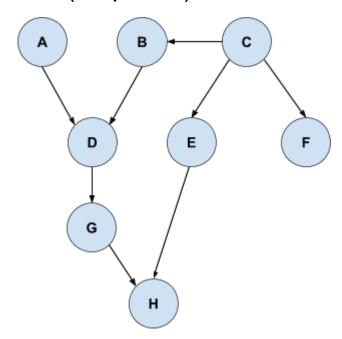
Probabilistic Graphical Models Midterm Exam	Instructor: B. Nasihatkon	K. N. TOOSI UNIVERSITY OF TECHNOLOGY
Name:	ID:	Ordibehesht 1396 - May 2017

Q1- Bayesian nets / Independence (21 points)

Consider the following Bayesian network

A) write the joint distribution in terms of conditional probability distributions (CPDs) (5 points):

$$P(A,B,C,D,E,F,G,H) =$$

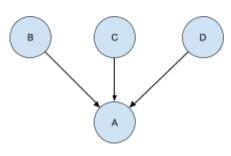


B) Which of the following statement are True, and which are False in general (i.e. can be false for some distribution with the above network) (16 points)

	True/False		True/False
$A \perp C$		$A \perp B$	
$A \perp H$		$H \perp C \mid E$	
$A \perp E$		$A \perp B \mid D$	
$C\perp G$		$H \perp F \mid C$	
$D \perp H \mid A, B$		$C \perp A \mid H$	
$H \perp F$		$F \perp A \mid H$	
$H \perp F \mid E$		$F \perp A \mid B, H$	
$H \perp F \mid E, G$		$A \perp F \mid E, H$	

Q2- Bayesian nets / Context-specific independence (32 points)

Consider the conditional probability distribution $P(A \mid B, C, D)$ in the following Bayesian network, where $A, B, C, D \in \{0, 1\}$ are all binary variables. The following piece of code contains a function that receives B,C and D as arguments and returns a 2-tuple representing the probability of A=0 and A=1 given



B,C,D. Therefore, the return value is equal to (P(A = 0 | B, C, D), P(A = 1 | B, C, D)).

```
function cpd_A_given_BCD(B,C,D)

if B == 1
    return (.2, .8)
else if C == 0
    return (.6, .4)
else if D == 1
    return (.9, .1)
else
    return (.3, .7)
```

A) Which of the following statements are True and which ones are False). Here $X \perp Y \mid Z$ means that X is independent of Y given Z **(14 Points)**.

	True/False		True/False
$A \perp B \mid C, D$		$A \perp D \mid B = 0, C = 0$	
$A \perp B \mid C = 0$		$A \perp D \mid B = 0, C = 1$	
$A \perp B \mid C = 1$		$A \perp D \mid B = 1, C = 0$	
$A \perp C \mid B = 0$		$A \perp D \mid B = 1, C = 1$	
$A \perp C \mid B = 1$		$B \perp C$	
$A \perp D \mid B = 0$		$A \perp C \mid B = 1, D = 1$	
$A \perp D \mid B = 1$		$A \perp C \mid B = 0, D = 1$	

- B) How many parameters (at least) are needed to represent a CPD P(A|B,C,D) with the above form? Why? (3 points)
- C) How many parameters are needed to represent a **general** CPD P(A|B,C,D) for binary variables A,B,C,D (not in the above form or any other special form). Why? **(3 points)**
- D) Assume that P(B = 0) = 0.4 and P(C = 0) = 0.7 and P(D = 0) = 0.2. For the above Bayesian network compute the following probabilities. You need to write the steps towards

the final answer. Do not **just** write the final solution, and do not just write the formulae **(12 points)**:

$$P(A = 0 | B = 0, C=1, D=0) =$$

$$P(A = 0, B = 0, C=1, D=0) =$$

$$P(A = 0, B = 0, C=1, D=1) =$$

$$P(A = 0, B = 0, C=1) =$$

$$P(D=0 | A = 0, B = 0, C=1) =$$

$$P(A = 0 | B = 1) =$$

Extra points! (3+3 points)

$$P(A = 0) =$$

$$P(A = 0 | B = 0) =$$

Q3- Markov Random Fields/Gibbs distribution (24 points)

Consider the following joint distribution for a Markov Random Field. $P(A,B,C,D,E,F) = \frac{1}{7}\phi_1(A,B)\phi_2(B,C,D,E)\phi_3(C,D,F)$

- A) If $A \in \{0,1\}$, $B \in \{1,2,3\}$, $C \in \{1,2\}$, $D \in \{1,2,3,4\}$, $E \in \{0,1\}$, $F \in \{0,1\}$, how many parameters are needed in general to represent the above joint distribution? why? (assume ϕ_1 , ϕ_2 and ϕ_3 do not have any specific forms) (3 points)
- B) How many parameters were needed (at least) to parameterize an arbitrary joint distribution P(A, B, C, D, E, F) (without any special structure) with the same variable domains? Why? **(2 points)**
- C) Draw the MRF graph corresponding to the above distribution. **(5 points)**

D) Which of the following statements are true and which are false (for general potential functions ϕ_1 , ϕ_2 and ϕ_3)? **(14 points)**

	True/False		True/False
$A \perp B \mid C, D, E, F$		$F \perp E \mid C$	
$A \perp C \mid B$		$A \perp D \mid B = 2, C = 1$	
$A \perp B \mid C$		$B \perp F \mid C, D$	
$A \perp F \mid C$		$B \perp E \mid C, D$	
$A \perp F \mid B, C$		$E \perp A \mid B, C$	
$A \perp F$		$E \perp F \mid B, C, D$	
$A \perp E$		$F \perp A \mid B$	

Q4- Energy Function / Graph Cuts

Consider the following energy function over the binary variables A, B, C, D

 $E(A, B, C, D) = E_{AB}(A, B) + E_{BC}(B, C) + E_{CD}(C, D) + E_{A}(A) + E_{B}(B) + E_{C}(C) + E_{D}(D)$ where

$$E_{AB}(0,0) = E_{AB}(1,1) = E_{BC}(0,0) = E_{BC}(1,1) = E_{CD}(0,0) = E_{CD}(1,1) = 0$$

$$E_{AB}(0,1) = E_{AB}(1,0) = 1$$

$$E_{BC}(0,1) = 2$$
 $E_{BC}(1,0) = 3$

$$E_{CD}(0,1) = 4$$
 $E_{CD}(1,0) = 8$

$$E_4(0) = 10$$
 $E_4(1) = 12$

$$1) = 12 E_B(0)$$

$$E_B(1) = 22$$

$$E_{CD}(0,1) = 4$$
 $E_{CD}(1,0) = 8$ $E_A(0) = 10$ $E_A(1) = 12$ $E_B(0) = 20$ $E_B(1) = 22$ $E_C(0) = 40$ $E_C(1) = 44$ $E_D(0) = 80$ $E_D(1) = 88$

$$E_D(0) = 80$$

$$E_D(1) = 88$$

1. Write the joint distribution in terms of the (unary and binary) energy terms ($E_{AB}(A,B)$, $E_{BC}(B,C)$, $E_{CD}(C,D)$, $E_{A}(A)$, $E_{B}(B)$, $E_{C}(C)$ and $E_{D}(D)$). You do not need to compute the partition function. (5 points)

$$P(A, B, C, D) = \frac{1}{Z}$$

- 2. Draw the corresponding MRF graph. (3 points)
- 3. Construct a min-cut/max-flow graph for the above energy function, by adding directed edges and their weights in the following graph (10 points)

4. Is E(A, B, C, D) submodular? Why? (5 points)