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An undirected graphical model with set of nodes G and the neighbourhood
system N is called a Markov Random Field if

p(Xi |XG\{i}) = p(Xi |XNi
), (1)

where G is the set of nodes of the graph, G \ {i} represents all graph nodes
except node i, and Ni denotes the neighbours of i.

An undirected graphical model is called a Gibbs Random Field (and its joint
distribution a Gibbs distribution) if the corresponding joint distribution can be
factorized as the product of functions over cliques (= fully connected subgraphs)
of the graph

p(XG) =
1

Z

∏
C∈C

φC(XC) (2)

where C is the set of all cliques.
The Hammersley-Clifford theorem states that if the joint distribution p(XG)

is nonzero for all XG, then an undirected graphical model is a Markov random
field if and only if it is a Gibbs random field. In other words, the two models
are equivalent.

Your task in this howework is to prove the backward direction of the proof,
that is, any Gibbs distribution with property (2) for which φC(XC) > 0 for all
cliques C, will satisfy the Markov property (1).
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