Probabilistic Graphical Models Final Exam - Spring 1401 (2022)	Instructor: B. Nasihatkon	
Name:	ID:	

Question 1- Junction tree, message passing (25 points)

Consider the following junction tree for performing max-sum message passing on an MRF with binary variables $A . B, C, D, E \in\{0,1\}$, and the joint distribution

$P(A, B, C, D, E)=\frac{1}{Z} \exp \left(\theta_{1}(A, B)+\theta_{2}(B, C)+\theta_{3}(C, E)+\theta_{4}(B, D)\right)$

Assume that θ_{i} is assigned to the i -th cluster $\mathrm{i}=1,2,3,4$. Further, assume that
$\theta_{1}(A, B)=\alpha A B$,
$\theta_{2}(B, C)=B+\gamma C$,
$\theta_{3}(C, E)=-1(C=E)$,
$\theta_{4}(B, D)=\lambda 1(B=D=1)$,
$\delta_{1 \rightarrow 2}(B)=2 B$
$\delta_{4 \rightarrow 2}(B)=4 B$
$\delta_{2 \rightarrow 4}(B)=3 B+3$
where $1($.$) is the indicator function. Find \delta_{2 \rightarrow 1}(B), \delta_{2 \rightarrow 3}(C), \delta_{3 \rightarrow 2}(C)$, as well as the values of α, γ, and λ.

Question 2-Graph Cuts (25 points)

Consider the following energy function over the binary variables A, B, C
$E(A, B, C)=E_{A B}(A, B)+E_{B C}(B, C)+E_{A}(A)+E_{B}(B)+E_{C}(C)$
where
$E_{A B}(0,0)=E_{A B}(1,1)=0$
$E_{A B}(0,1)=E_{A B}(1,0)=1$
$E_{B C}(0,1)=2 \quad E_{B C}(1,0)=4$
$E_{B C}(0,0)=4 \quad E_{B C}(1,1)=0$
$E_{A}(0)=-10 \quad E_{A}(1)=1 \quad E_{B}(0)=2 \quad E_{B}(1)=0$
$E_{C}(0)=4 \quad E_{C}(1)=-4$
A) Is $E(A, B, C)$ submodular? Why? (5 points)
B) Construct a min-cut/max-flow graph for an equivalent energy function such that all edge weights are positive. (20 points)

Question 3- MCMC (25 points)

Consider a Markov chain with the following state transition graph for a 1D distribution, where the numbers by the edges are transition probabilities. Derive the corresponding stationary distribution $P^{\infty}(X=i)=\pi(i)$ for $i=1,2,3$. Write down the complete derivations. Write down the complete solution.

1/18

Question 4 - Parameter learning (25 points)

Consider the following MRF on binary variables

$X, Y, Z \in\{0,1\}$, with the log-linear joint distribution
$p(X, Y, Z)=\frac{1}{Z} \exp (\alpha 1(X=Y)+\beta Y Z)$
Your task is to obtain the optimal Maximum-Likelihood values of the parameters α and β given following the training data. To do this you have to follow the steps below
a) Find the partition function Z as a function of α and β. Simplify as much as possible. (9 points)

x^{i}	y^{i}	z^{i}
0	0	0
1	0	1
1	1	0
0	1	1
0	0	1

b) Write down the log-likelihood function using part (a) and the provided data. (6 points)
c) Find the optimal values of α and β by differentiating with respect to each of these parameters and setting equal to zero. (10 points)

