Question 1 - Bayesian Networks (35 points, 15 minutes)

Consider the following Bayesian Network on variables $X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{n}$.

A) Write the joint distribution in terms of the CPDs (7 points).

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{n}\right)=
$$

B) Which of the following statements are True, and which are False (in general). For each statement, write the word "True" or an Active Trail rejecting the statement. (28 points)

	True/Active Trail		True/Active Trail
$Y_{1} \perp Y_{3} \mid Y_{2}$		$Y_{n} \perp X_{n-1} \mid X_{n}$	
$X_{1} \perp X_{3} \mid X_{2}$		$Y_{n} \perp X_{n-1} \mid X_{n}, Y_{1}$	
$X_{1} \perp X_{n} \mid X_{n-1}, Y_{1}$		$X_{n} \perp Y_{1} \mid Y_{2}, Y_{n-1}$	
$X_{1} \perp X_{n} \mid X_{n-1}, Y_{n-1}$		$X_{n} \perp Y_{1} \mid Y_{2}, X_{3}$	

Question 2 - MRF (35 points, 30 minutes)

Consider an MRF on variables $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{\mathbf{n}}, \mathbf{Y}_{1}, \mathbf{Y}_{2}, \ldots, \mathbf{Y}_{\mathbf{n}}$ with the joint distribution $P\left(X_{1}, X_{2}, \ldots, X_{n^{\prime}}, Y_{1^{\prime}}, Y_{2^{\prime}}, \ldots, Y_{n}\right)=\frac{1}{Z} \prod_{i=1}^{n-1} \exp \left(1\left(Y_{i}=Y_{i+1}\right)\right) \prod_{i=1}^{n} \exp \left(\min \left(X_{i}, Y_{i}\right)\right) \prod_{i=1}^{n-1} \exp \left(1\left(X_{i} \neq X_{i+1}\right)\right)$
a) Draw the edges in the MRF graph below (5 points).

b) Assume that $X_{i^{\prime}}, Y_{i} \in\{1,2,3, \ldots, m\}$, compute $\operatorname{Pr}\left(\mathbf{X}_{1}=\mathbf{Y}_{1}, \mathbf{X}_{2}=\mathbf{Y}_{2}, \ldots, \mathbf{X}_{\mathrm{n}}=\mathbf{Y}_{\mathrm{n}}\right)$.
(Do not compute the partition function \mathbf{Z}, just write down the solution in terms of \mathbf{Z}). (30 pints)
Hint: You cannot write $\operatorname{Pr}\left(X_{1}=Y_{1}, X_{2}=Y_{2}\right)=\operatorname{Pr}\left(X_{1}=Y_{1}\right) \operatorname{Pr}\left(X_{2}=Y_{2}\right)$ as $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ are not independent. What you can do is first compute
$\operatorname{Pr}\left(X_{1}=Y_{1}=a_{1}, X_{2}=Y_{2}=a_{2}, \ldots, X_{n}=Y_{n}=a_{n}\right)$
$=P\left(X_{1}=a_{1}, X_{2}=a_{2}, \ldots, X_{n}=a_{n}, Y_{1}=a_{1}, Y_{2}=a_{2}, \ldots, Y_{n}=a_{n}\right)$
Then sum over all combinations of $\mathbf{a}_{1}, \mathbf{a}_{\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{n}}$, that is $\sum_{a_{1}=1}^{m} \sum_{a_{2}=1}^{m} \ldots \sum_{a_{n}=1}^{m}$
Hint: $\sum_{i=1}^{m} e^{i}=e\left(e^{m}-1\right) /(e-1)$

Continue solution to Question 2.

Question 3 - CRF (30 points, 30 minutes)

Consider a Conditional Random Field defined as
$P\left(Y_{1}, Y_{2}, \ldots, Y_{n} \mid X_{1}, X_{2}, \ldots, X_{n}\right)=$
$=\frac{1}{Z\left(X_{1}, X_{2}, \ldots, X_{n}\right)} \prod_{i=1}^{n-1} \exp \left(1\left(Y_{i}=Y_{i+1}\right)\right) \prod_{i=1}^{n} \exp \left(\min \left(X_{i}, Y_{i}\right)\right) \prod_{i=1}^{n-1} \exp \left(1\left(X_{i} \neq X_{i+1}\right)\right)$
on binary variables $X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{n} \in\{0,1\}$. Show that for $X_{1}=X_{2}=\ldots=X_{n}=0$, the partion function is equal to
$Z\left(X_{1}, X_{2}, \ldots, X_{n}\right)=Z(0,0, \ldots, 0)=2(e+1)^{n-1}$
Hint: First sum over \mathbf{Y}_{1}, then \mathbf{Y}_{2}, and so on.
Hint 2: Think of the value of $\exp (1(Y=0))+\exp (1(Y=1))$ for $Y=0$ and $Y=1$.

