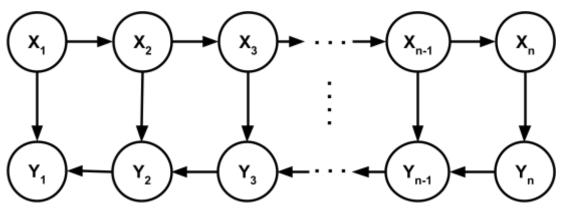


Question 1 - Bayesian Networks (35 points, 15 minutes)

Consider the following Bayesian Network on variables $X_1, X_2, ..., X_n, Y_1, Y_2, ..., Y_n$.



A) Write the joint distribution in terms of the CPDs (7 points).

 $P(X_1, X_2, ..., X_n, Y_1, Y_2, ..., Y_n) =$

B) Which of the following statements are **True**, and which are **False** (in general). For each statement, write the word "True" or an Active Trail rejecting the statement. (28 points)

	True/Active Trail		True/Active Trail
$Y_1 \perp Y_3 \mid Y_2$		$Y_n \perp X_{n-1} \mid X_n$	
$X_{1} \perp X_{3} \mid X_{2}$		$Y_{n} \perp X_{n-1} \mid X_{n'} Y_{1}$	
$X_{1} \perp X_{n} \mid X_{n-1}, Y_{1}$		$X_n \perp Y_1 \mid Y_2, Y_{n-1}$	
$X_1 \perp X_n \mid X_{n-1}, Y_{n-1}$		$X_n \perp Y_1 \mid Y_2, X_3$	

Question 2 - MRF (35 points, 30 minutes)

Consider an MRF on variables $X_1, X_2, ..., X_n, Y_1, Y_2, ..., Y_n$ with the joint distribution $P(X_1, X_2, ..., X_n, Y_1, Y_2, ..., Y_n) = \frac{1}{Z} \prod_{i=1}^{n-1} exp(1(Y_i = Y_{i+1})) \prod_{i=1}^n exp(min(X_i, Y_i)) \prod_{i=1}^{n-1} exp(1(X_i \neq X_{i+1})))$ a) Draw the edges in the MRF graph below (5 points).

$$\begin{array}{c} \begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \mathbf{Y}_3 \\ \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_3 \\ \mathbf{X}_3 \\ \mathbf{X}_3 \\ \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_3 \\ \mathbf{X}_3 \\ \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_3 \\ \mathbf{X}_1 \\ \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_1 \\ \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_1 \\ \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_1 \\ \mathbf{$$

b) Assume that X_i, Y_i ∈ {1, 2, 3, ..., m}, compute Pr(X₁ = Y₁, X₂ = Y₂, ..., X_n = Y_n). (Do not compute the partition function Z, just write down the solution in terms of Z). (30 pints)
Hint: You cannot write Pr(X₁ = Y₁, X₂ = Y₂) = Pr(X₁ = Y₁) Pr(X₂ = Y₂) as (X₁, Y₁) and (X₂, Y₂) are not independent. What you can do is first compute

$$\begin{aligned} &\mathsf{Pr}(\mathsf{X}_1 = \mathsf{Y}_1 = \mathsf{a}_1 \;, \; \mathsf{X}_2 = \mathsf{Y}_2 = \mathsf{a}_2 \;, \; \ldots \;, \; \mathsf{X}_n = \mathsf{Y}_n = \mathsf{a}_n) \\ &= \mathsf{P}(\mathsf{X}_1 = \mathsf{a}_1 \;, \; \mathsf{X}_2 = \mathsf{a}_2 \;, \; \ldots \;, \; \mathsf{X}_n = \mathsf{a}_n, \; \mathsf{Y}_1 = \mathsf{a}_1 \;, \; \mathsf{Y}_2 = \mathsf{a}_2 \;, \; \ldots \;, \; \mathsf{Y}_n = \mathsf{a}_n) \end{aligned}$$

Then sum over all combinations of $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$, that is $\sum_{a_1=1}^{m} \sum_{a_2=1}^{m} ... \sum_{a_n=1}^{m}$

Hint2: $\sum_{i=1}^{m} e^{i} = e(e^{m} - 1) / (e - 1)$

Continue solution to Question 2.

Question 3 - CRF (30 points, 30 minutes)

Consider a Conditional Random Field defined as $P(Y_1, Y_2, ..., Y_n | X_1, X_2, ..., X_n) =$ $= \frac{1}{Z(X_1, X_2, ..., X_n)} \prod_{i=1}^{n-1} exp(1(Y_i = Y_{i+1})) \prod_{i=1}^n exp(min(X_i, Y_i)) \prod_{i=1}^{n-1} exp(1(X_i \neq X_{i+1})))$

on binary variables $X_1, X_2, ..., X_n, Y_1, Y_2, ..., Y_n \in \{0,1\}$. Show that for $X_1 = X_2 = ... = X_n = 0$, the partion function is equal to

 $Z(X_1, X_2, ..., X_n) = Z(0, 0, ..., 0) = 2(e + 1)^{n-1}$

Hint: First sum over Y_1 , then Y_2 , and so on. **Hint 2:** Think of the value of exp(1(Y = 0)) + exp(1(Y = 1)) for Y=0 and Y=1.