Question 1 - Bayesian Networks (30 points, 20 minutes)

Consider the following Bayesian Network on variables $\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}, \mathbf{X}_{4}, \mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}, \mathbf{Y}_{4}$.

A) Write the joint distribution in terms of the CPDs. (6 points)
$P\left(X_{1}, X_{2}, X_{3}, X_{4}, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)=$
B) Which of the following statements are True, and which are False (in general). For each statement, write the word "True" or an Active Trail rejecting the statement. (24 points)

	True/Active Trail		True/Active Trail
$X_{1} \perp X_{2}$		$X_{1} \perp X_{4} \mid Y_{1}$	
$X_{1} \perp X_{2} \mid Y_{1}$		$X_{1} \perp X_{4} \mid Y_{3}$	
$X_{1} \perp X_{2} \mid Y_{1}, Y_{2}$		$X_{1} \perp X_{4} \mid Y_{3}, Y_{4}$	
$Y_{1} \perp Y_{3} \mid X_{2}$		$X_{1} \perp X_{4} \mid Y_{1}, Y_{2}, Y_{3}, Y_{4}$	

Question 2 - Maximum Entropy Markov Model (40 points, 30 minutes)
A Maximum Entropy Markov Model (MEMM) has the following directed graph, where the variables $\mathbf{X}_{\mathbf{i}}$ represent the states and the variables $\mathbf{O}_{\mathbf{i}}$ are the observations.

A) Write down the joint distribution (up to time \mathbf{t}) in terms of the CPDs (5 points).
$P\left(X_{1}, X_{2}, \ldots, X_{t}, O_{1}, O_{2}, \ldots, O_{t}\right)=$
B) Notice that in most applications the observations $\mathbf{O}_{\mathbf{i}}$ are always known, both at training and testing (inference) stages. Show that an MEMM can be regarded as a discriminative model by writing the following conditional distribution in terms of the CPDs. Write the full derivations. What CPDs are not used? (10 points)
$\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{t}} \mid \mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{o}_{\mathrm{t}}\right)=$
C) We intend to find $P\left(X_{t} \mid \mathbf{O}_{1}, \mathbf{O}_{2}, \ldots, \mathbf{O}_{\mathrm{t}}\right)$ recursively. First, show that this distribution is readily available for $\mathbf{t}=1$ as one of the CPDs. (3 points)
D) Now, find $\mathbf{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{O}_{1}, \mathbf{O}_{2}, \ldots, \mathbf{O}_{\mathrm{t}+1}\right)$ in terms of the $\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{O}_{1}, \mathbf{O}_{2}, \ldots, \mathbf{O}_{\mathrm{t}}\right)$ and some CPDs. To do this, first write $\mathbf{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{O}_{1}, \mathbf{O}_{2}, \ldots, \mathbf{O}_{\mathrm{t}+1}\right)$ in terms of $P\left(X_{t+1}, X_{t} \mid \mathbf{O}_{1}, O_{2}, \ldots, \mathbf{O}_{\mathrm{t}+1}\right)$. (4 points)

$$
P\left(X_{t+1} \mid \mathbf{O}_{1}, \mathbf{O}_{2}, \ldots, \mathbf{O}_{t+1}\right)=\quad P\left(\mathbf{X}_{t+1}, X_{t} \mid \mathbf{O}_{1}, \mathbf{O}_{2}, \ldots, \mathbf{O}_{t+1}\right)
$$

E) Now break $\mathbf{P}\left(\mathbf{X}_{\mathbf{t + 1}}, \mathbf{X}_{\mathrm{t}} \mid \mathbf{O}_{1}, \mathbf{O}_{2}, \ldots, \mathbf{O}_{\mathrm{t}+1}\right)$ into the product of $\mathbf{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{X}_{\mathrm{t}}, \mathbf{O}_{1}, \mathbf{O}_{2}, \ldots, \mathbf{O}_{\mathrm{t}+1}\right)$ and $\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{O}_{1}, \mathbf{O}_{2}, \ldots, \mathbf{O}_{\mathrm{t}+1}\right)$. Simplify the result using the conditional independence relations read from the graph. In each case mention what conditional independence relation you have used. (You may use the flow of influence, etc.). Finally, write $\mathbf{P}\left(\mathbf{X}_{\mathbf{t}+1} \mid \mathbf{O}_{1}, \mathbf{O}_{2}, \ldots, \mathbf{O}_{\mathrm{t}+1}\right)$ in terms of $\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{O}_{1}, \mathbf{O}_{2}, \ldots, \mathbf{O}_{\mathrm{t}}\right)$ and one or more CPDs. (18 points)

Question 3 - Markov Random Fields (30 points, 30 minutes)

Consider an MRF in which each variables $\mathrm{X}_{\mathrm{i}, \mathrm{j}}$ is indexed by two integers i and j . The joint distribution is in the form of

$$
\begin{aligned}
& P\left(X_{1,1}, X_{2,1}, X_{2,2}, X_{3,1}, X_{3,2}, X_{3,3}, X_{4,1}, X_{4,2}, X_{4,3}, X_{4,4}\right)= \\
& \frac{1}{3} \prod_{i=1}^{3} \prod_{j=1}^{3} \phi_{i j}\left(X_{i, j}, X_{i+1, j}, X_{i+1, j+1}\right) \prod_{i=2}^{3} \prod_{j=1} \Psi_{i j}\left(X_{i, j}, X_{i, j+1}, X_{i+1, j+1}\right)
\end{aligned}
$$

a) Draw the corresponding MRF graph. (15 points)
b) Derive $P\left(X_{2,2} \mid X_{1,1}, X_{2,1}, X_{3,1}, X_{3,2}, X_{3,3}, X_{4,1}, X_{4,2}, X_{4,3}, X_{4,4}\right)$ in terms of the potentials $\phi_{i j}$ and $\psi_{i j}$. Simplify as much as possible. Assume that all potentials are strictly positive. (15 points)

