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Two-Stage opamp
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1. 100 mV < VDS(SAT) < 200mV
2. VDS > 2VDS(SAT)

3. (both Mi and Mj are npmos or 
pmos)

4.(Transistors are from different 
types)

Guidelines for Biasing of the Two-Stage opamp
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Frequency Response (first-order model)
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It is proven that:
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Since a first order transfer function is assumed for the Opamp, 
therefore it does not have stability problem.



Using opamp in closed-loop configurations
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Hence for the closed-loop amplifier, we have:
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Using opamp in closed-loop configurations
(Eample#1)
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After performing an accurate analysis, we have:
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Using opamp in closed-loop configurations
(Eample#1)
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Using opamp in closed-loop configurations
(Eample#2)
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Frequency Response (second-order model)
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Frequency Response (second-order model)
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Frequency Response (second-order model)
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•As gm7 increases, the separation between the first and second poles increase.
•Increasing CC moves the dominant pole to a lower frequency without affecting 
the second pole.
•Hence, the use of a Miller capacitance for compensation is often called “pole-
splitting compensation”.
•The pole-splitting makes the opamp more stable.
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Example1
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Consider a two-stage opamp with the following characteristics:

pF2CpF,0.3CpF,0.1C
k15Rk,10R
V
mA3g,

V
mA1g

C21

21

m7m1






a) Calculate A0 , ωp1, ωp2, ωz, and A(s).
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b) Plot the Bode diagram of A(s).
c) What is the phase margin if we use the opamp in a closed-loop configuration with 
feedback coefficient of β=1?

Fّor β=1 PM=66, ωt=525 M Rad/s
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d) What is the phase margin for β=0.1?

Fّor β=0.1 PM=89, ωt=49.5 M Rad/s
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Fّor β=0.1 PM=89, ωt=49.5 M Rad/s

Fّor β=1 PM=66, ωt=525 M Rad/s

It is considered that for greater values of β, the stability of the closed-loop
system decreases.

It is considered that for greater values of β, the bandwidth of the closed-loop
system increases.
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Example2

18

Consider a two-stage opamp with the following characteristics:

pF1CpF,0.3CpF,0.1C
k15Rk,10R
V
mA3g,

V
mA1g

C21

21

m7m1






a) Calculate A0 , ωp1, ωp2, ωz, and A(s).
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b) What is the phase margin for feedback coefficient of β=1?
c) What is the phase margin for feedback coefficient of β=0.1?

Fّor β=1 PM=63, ωt=1.04 G Rad/s

Fّor β=0.1 PM=89, ωt=99 M Rad/s

It is considered that if CC is decreased, the bandwidth of the system is increased 
while the stability problem is worsened.
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Fّor β=1 PM=63, ωt=1.04 G Rad/s

Fّor β=0.1 PM=89, ωt=99 M Rad/s

Comparison between the Example1 and Example2

Fّor β=0.1 PM=89, ωt=49.5 M Rad/s

Fّor β=1 PM=66, ωt=525 M Rad/s

Example1: (CC=2 pF)

Example2: (CC=1 pF)

The compensation of the opamp of Example2 is performed better than that of 
the Example1 because it leads to a higher bandwidth and enough phase 
margin.



Frequency Response (second-order model)

21

C

m
z

m
p

Cm
p C

g
CC

g
CRRg

7

21

7
2

217
1 ,,1 




 

•A problem arises due to the right-half-plane zero, ωz . It introduces negative 
phase shift (phase lag).
•The right-half-plane zero makes the stability more difficult.
•Fortunately by using the resistor, RC, in series with CC, this problem is mitigated.



Right-Half-Plane Zero Problem
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There are three approaches to solve the right-half-plane zero problem as 
follows:

1. zero cancellation
2. pole-zero cancellation
3. lead compensation



Zero cancellation, Pole-zero cancellation
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In order to eliminate the right-half0plane zero, we should choose the value 
of RC as follows: 

Pole-zero cancellation is performed if ωp2=ωz. After a few manipulation, the 
condition for pole-zero cancellation is obtained as follows:



Lead compensation
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The pole-zero cancellation method is not reliable because C2 is often not 
known a priori. David Johns recommends the lead compensation method 
as follows: 
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