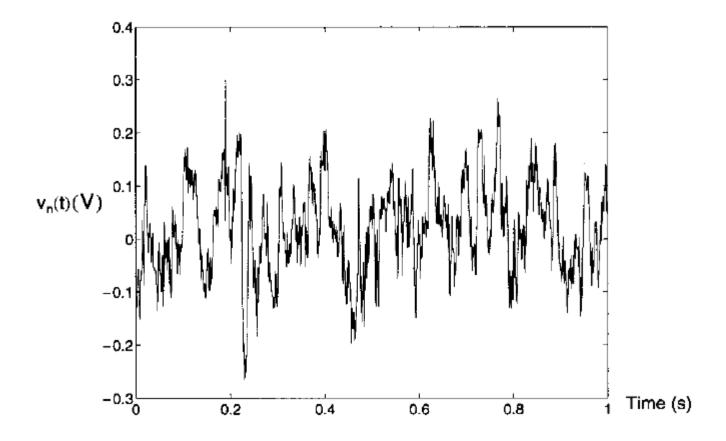
Noise Analysis and Modeling



Throughout this chapter we will assume all noise signals have a mean value of zero. We also assume that random signals are Ergodic.

Time-Domain Analysis

RMS (root mean square) Value is defined:

$$\mathbf{V}_{\mathsf{n}(\mathsf{rms})} \equiv \left[\frac{1}{\mathsf{T}}\int_{0}^{\mathsf{T}}\mathbf{v}_{\mathsf{n}}^{2}(\mathsf{t}) \; \mathsf{d}\mathsf{t}\right]^{1/2}$$

where \top is a suitable averaging time interval.

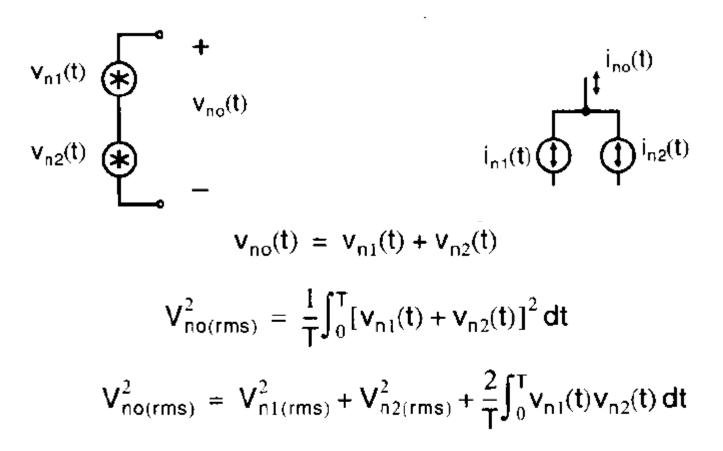
The normalized noise power is given by

$$\mathbf{P}_{diss} = \frac{\mathbf{V}_{n(rms)}^2}{1 \ \Omega} = \mathbf{V}_{n(rms)}^2$$

SNR is defined as follows:

$$SNR = 10 \log \left[\frac{\text{signal power}}{\text{noise power}} \right]$$
$$SNR = 10 \log \left[\frac{V_{x(rms)}^2}{V_{n(rms)}^2} \right] = 20 \log \left[\frac{V_{x(rms)}}{V_{n(rms)}} \right]$$

Noise Summation



Definition of correlation coefficient:

$$\mathbf{C} = \frac{\frac{1}{T} \int_{0}^{T} \mathbf{v}_{n1}(t) \mathbf{v}_{n2}(t) dt}{\mathbf{V}_{n1(rms)} \mathbf{V}_{n2(rms)}}$$

3

Noise Summation

$$V_{no(rms)}^2 = V_{n1(rms)}^2 + V_{n2(rms)}^2 + 2CV_{n1(rms)}V_{n2(rms)}$$

It can be shown that the correlation coefficient always satisfies the condition $-1 \le C \le 1$. Also, a value of $C = \pm 1$ implies the two signals are fully correlated, whereas C = 0 indicates the signals are uncorrelated.

In the case of two uncorrelated signals, the mean-squared value of their sum is given by

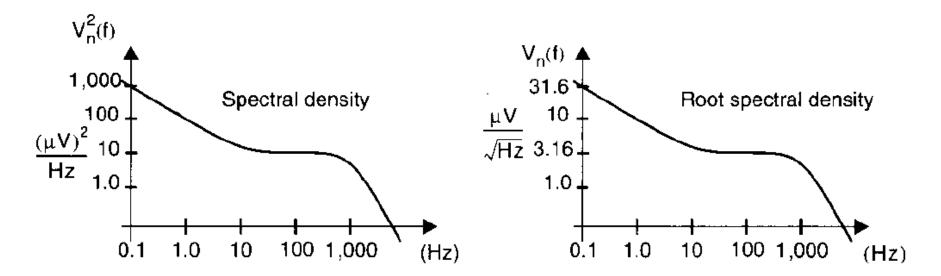
$$V_{no(rms)}^2 = V_{n1(rms)}^2 + V_{n2(rms)}^2$$

In the case of two fully correlated signals, the mean-squered value of their sum is

$$V_{no(rms)}^2 = [V_{n1(rms)} \pm V_{n2(rms)}]^2$$

Frequency-Domain Analysis

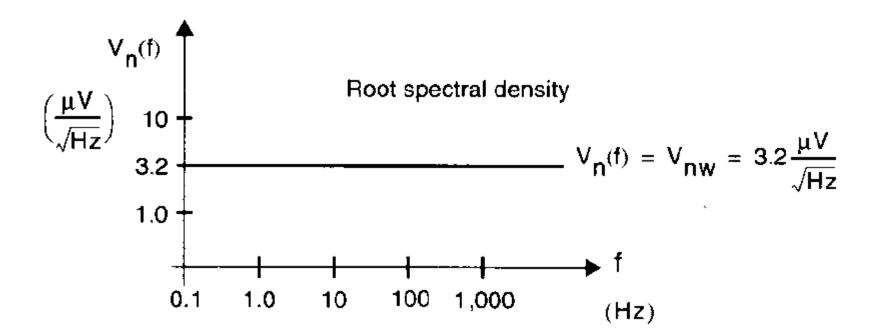
Noise Spectral Density: (PSD)



It is proven that:

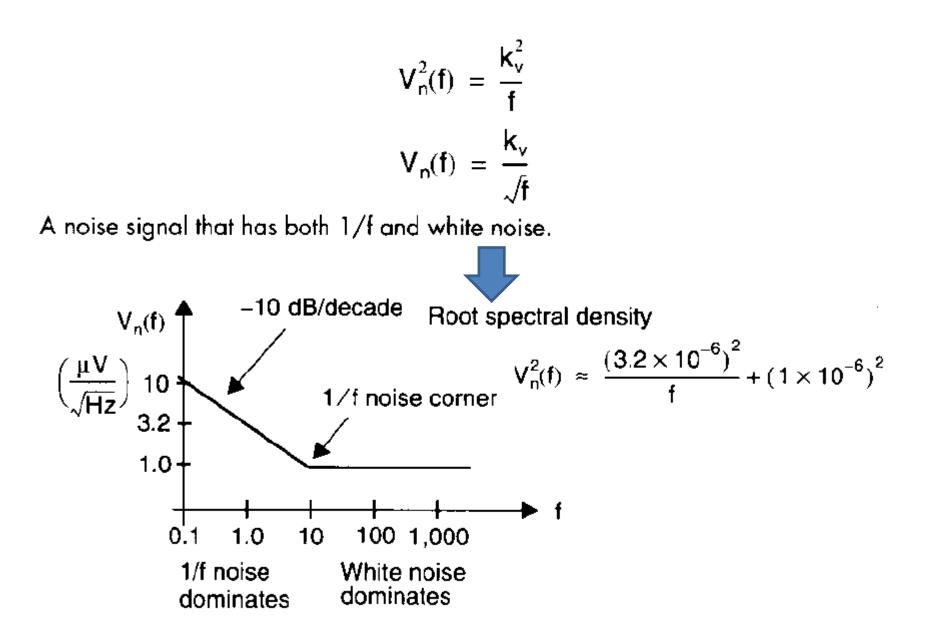
 $V_{n(rms)}^2 = \int_0^\infty V_n^2(f) \, df$

White Noise

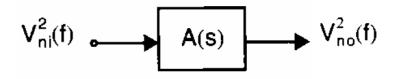


 $V_n(f) = V_{nw}$

1/f or Flicker Noise

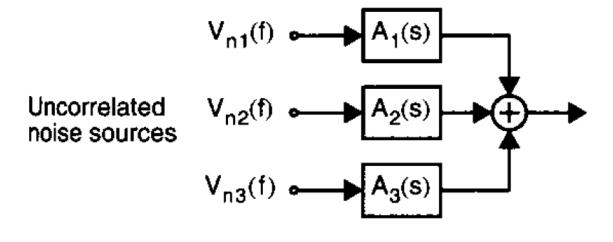


Filtered Noise



$$V_{no}^{2}(f) = |A(j2\pi f)|^{2}V_{ni}^{2}(f)$$

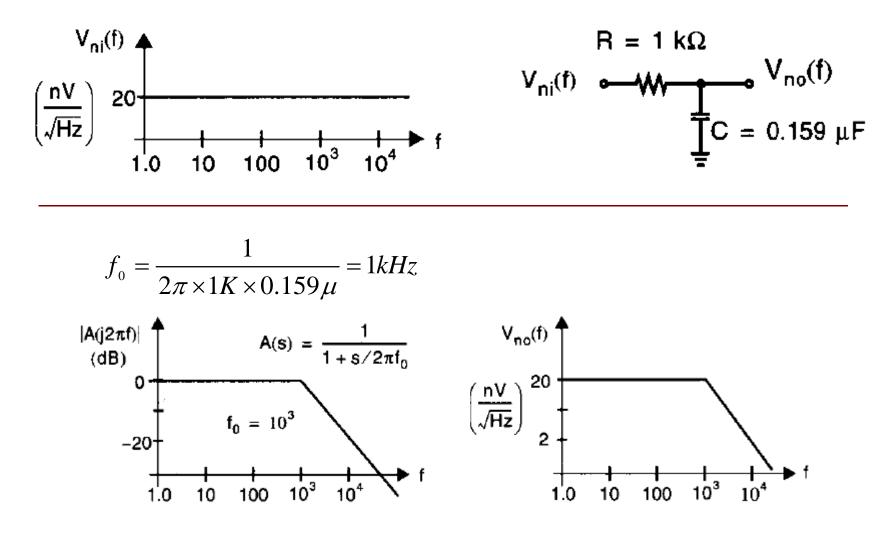
$$V_{no(rms)}^2 = \int_0^\infty |A(j2\pi f)|^2 V_{ni}^2(f) df$$



$$V_{no}^{2}(f) = \sum_{i=1, 2, 3} |A_{i}(j2\pi f)|^{2} V_{ni}^{2}(f)$$

Example

Assume a white noise at the input of the filter as shown bellow. What is the PSD of the output noise? What is the rms of the output noise?

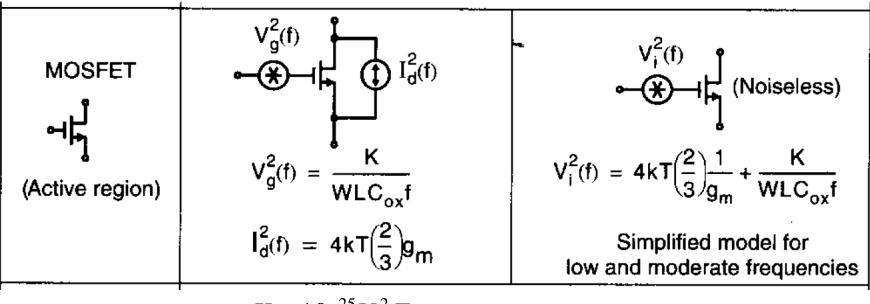


continued

$$V_{no}(f) = \frac{20 \times 10^{-9}}{\sqrt{1 + (\frac{f}{f_0})^2}}$$

$$V_{no(rms)}^{2} = \int_{0}^{+\infty} \frac{400 \times 10^{-18}}{1 + \left(\frac{f}{f_{0}}\right)^{2}} = 400 \times 10^{-18} f_{0} \arctan \frac{f}{f_{0}} \bigg|_{0}^{+\infty} = 400 \times 10^{-18} \times 1000 \times \frac{\pi}{2} = 6.28 \times 10^{-13}$$
$$V_{no(rms)} = 0.8 \mu V$$

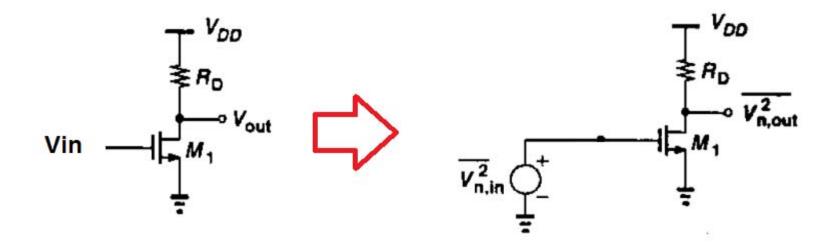
Noise Models for Circuit Elements (MOSFETS)



$$K = 10^{-25} V^2 F$$

$$I_d^2(f) = 4kT\gamma g_m$$

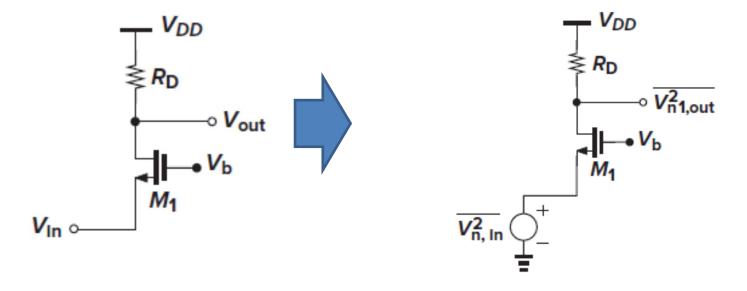
Noise Calculation of C.S Amplifier



Neglecting the flicker noise, we have:

 $\overline{V_{n,in}^2} = 4kT\left(\frac{\gamma}{g_m} + \frac{1}{g_m^2 R_D}\right)$

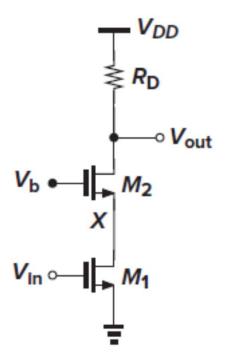
Noise Calculation of C.G Amplifier



Neglecting the flicker noise and considering the body effect, we have:

$$\overline{V_{n,in}^2} = \frac{4kT(\gamma g_m + 1/R_D)}{(g_m + g_{mb})^2}$$

Noise Calculation of Cascode Amplifier

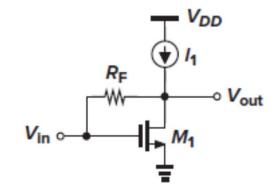


It is proven that we can neglect the noise of M2. So we have:

$$\overline{V_{n,in}^2}|_{M1,RD} = 4kT \left(\frac{\gamma}{g_{m1}} + \frac{1}{g_{m1}^2 R_D}\right)$$

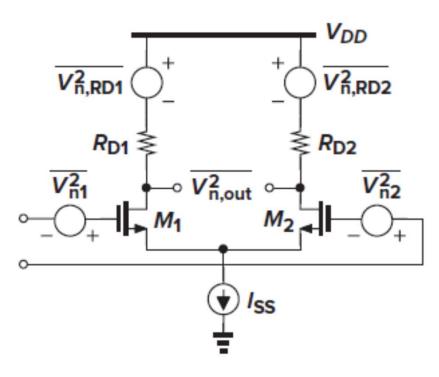
Example

Determine the input-referred noise voltage of the amplifier. Assume that I_1 is noiseless and $\lambda = 0$.



$$\overline{V_{n,in}^2} = \frac{\frac{4kT}{R_F} + 4kT\gamma g_m}{(g_m - \frac{1}{R_F})^2}$$

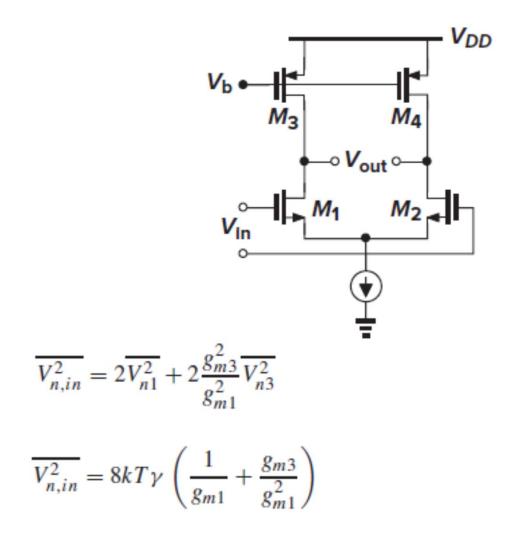
Noise Calculation of Fully Differential Amplifier



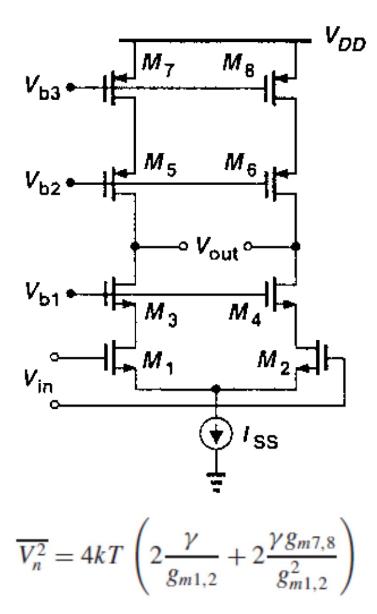
$$\overline{V_{n,in,tot}^2} = 8kT\left(\frac{\gamma}{g_m} + \frac{1}{g_m^2 R_D}\right)$$

Example

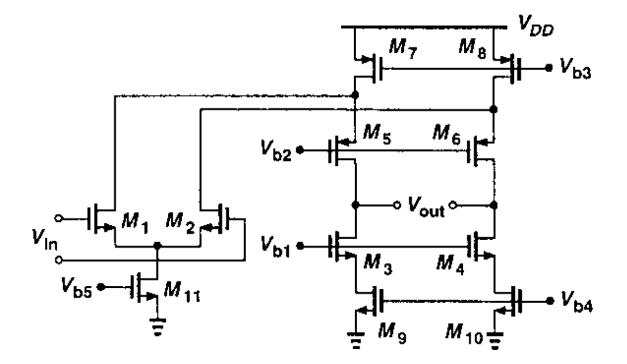
Calculate the input referred noise.



Telescopic Opamp

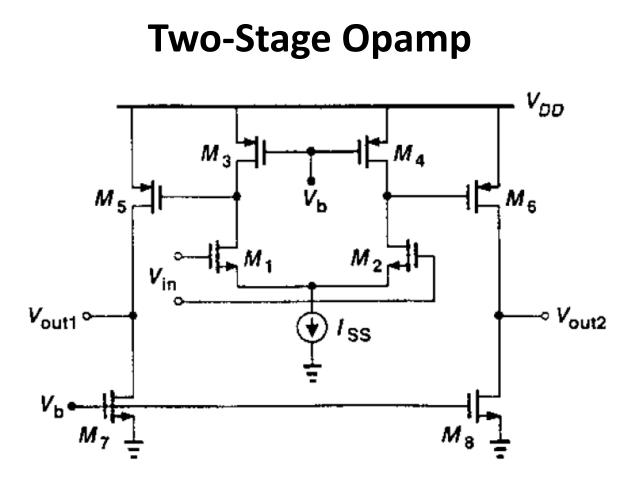


Folded-Cascode Opamp



Neglecting the flicker noise, we have:

$$\overline{V_{n,tot}^2} = 8kT\gamma \frac{1}{g_{m1}^2} \left[g_{m1} + g_{m3} + \frac{g_{m5} + g_{m7}}{g_{m5}^2 (r_{O1} || r_{O3})^2} \right]$$



Neglecting the flicker noise, we have:

$$\overline{V_{n,tot}^2} = \frac{16kT}{3} \frac{1}{g_{m1}^2} \left[g_{m1} + g_{m3} + \frac{g_{m5} + g_{m7}}{g_{m5}^2 (r_{01} || r_{03})^2} \right].$$