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Abstract- In this paper, frequency of distorted signal in power
system has been estimated with particle extended Kalman filter .
Base of particle algorithm, extended Kalman filter and particle
extended Kalman filter are mentioned. For selecting state
variables, a nonlinear time-variant sinusoidal signal is developed
then a particle extended Kalman filter is applied to detect the
frequency variations. Several tests are performed to show the
performance of PEKF algorithm. Comparison of PEKF with
EKF reveals the PEKF preference. Also, these tests prove the fast
speed, good accuracy and robustness against noise. These
advantages illustrate that PEKF is more suitable for power
system applications.
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Kalman filter is a well-known observer for tracking the state
variables of system. Literature [15]-[17] used extended
Kalman filter (EKF) to improve the tracking performance.

In this paper a novel method has been proposed for tracking
frequency. Particle extended Kalman filter (PEKF) is used to
improve frequency estimation at the present of noise and
severe variation. Also, as heavier changes , robustness of the
proposed method is studied in this paper. Hence, robustness
against distribution, accuracy and speed of the proposed
method could be scale to prove good performance of the
method. In order to illustrate performance of the proposed
method, first, the sinusoidal signal is developed on space state.
Then state variables were selected for applying the particle
extended Kalman filter.

The using of frequency in power system protection and
power quality has caused that in the resent years was studied
more about it. Frequency estimation in power system has face
with several unwanted distortion contamination, such as
random noise, de component, and higher order harmonics, and
also from different forms of frequency variations. Therefore, a
frequency estimation method should have ability of tracing in
the noisy and distributed environment. Moreover above
condition, accuracy and speed are factors for comparison of
estimation methods.

Most of the researches on power system applications during
in last two decades have put more emphasis on frequency
estimation. Several methods are available on the frequency
measurement for power. The simplest method is the measuring
times between two zero crossing that indicate to half period of
signal. Noise and distribution cause Zero-crossing in power
system does not have desirable work [1]-[2]. Moreover,
Several algorithms have been developed in the past few
decades based on discrete Fourier transform (DFT) [1],[3]
least-square error technique [4],[5], adaptive notch filter
(ANF) [6],[7], orthogonal components filtered algorithm
[8],[9] and phase lock loop (PLL) [10]-[12] as frequency
estimation methods. A comparative study among these
different trackers has been outlined in [13], [14].

Where Wk and Vk are independent white proces s and
observation noises with probability distribution matrixes
NCO, Q) and NCO, R) respectively. Also Xk and zk are the
hidden state variables and the measurement respectively. Both

II. PAR TICLE E XTENDED K ALMAN FI LTER

Particle filters perform Monte Carlo based estimation based
on point mass approximations of probability densities. Each
state probability space is represented by a large number of
weighted points (known as particles) which, taken together,
approximate the uncertainty of the current system state. One
approach that has been proposed for improving particle
filtering is to combine it with another filter such as the EKF.
In this approach, each particle is updated at the measurement
time using the EKF, and then resampling is performed using
the measurement. This is like running a bank of N Kalman
filters (one for each particle) and then adding a resampling
step after each measurement. For clarifying the particle
extended filter, the system and measurement equations are
given as follows:

(2)

(I)
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(5)

f C·) and h(.) could be non-linear functions that are assumed
known.

A. Particle fi lter
The particle filter was invented to numerically implement

the Bayesian estimator. The particle filter can be summarized
in the algorithm 1:

Algorithm I: Particle Filter

I. Initialization:
• For i = 1, 2, ..., N

Assuming that the probability distribution function
(PDF) of the initia l state P(xo) is known, N initial
particles from the prior P(xo) are generated random ly.
These particles are denoted XO,i

• End For
2. For k = 1, 2, ...

• For i = 1: N
• Using the known process equation and the known

pdf of the process noise, a prio ri particles Xk,i are

achieved as fo llows:
• Assign the relative like lihood of each particle as

follows:

(4)

• End For
• For i = 1: N

• Norma lizing step: Normalize the likelihoods that are
achieved in the prev ious step as follows :

• End For

qi
qi = - N- -

L qi
i= \

• Resamp ling step: a posteriori part icles Xti have been
generated on the basis of the relative likelihoods q, .

B. Extended kalmanfilter
Consider a nonlinear system with state and measurement

equations as (1), (2). Algorithm 2 illustrates The Extended
Kalman filter.
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Algorithm 2: Extended Kalman Filter

Step I: Predict the state with init ials:

xi = /(xk-I,0)

Step 2: Compute the error covariance:

Step 3: Compute the Kalman gain:

Step 4: Update the state estimate :

Step 5: Update the error covariance

Step 6: Return to step I with updated measurements

Where z is the measurement vector , xl; and Pl; are the
approximate state and covariance, F and H are the Jacobian
matrices of partial derivatives of f and h with respective
to xl;. At each frame, the filter predicts the current state of the
system and correct this estimated state using measurement of
the system. A Kalman gain (Kk ) is computed to find the
optimum feedback gain that minimizes the error covariance
between the priory and the posteriori estimation. The updated
estimate will then be used to predict the state for the next
frame. Manner achievement of F, H, W and V is shown as
below:

8/ ~
(6)F = 8x (xk-b ub 0)

8/ ~
(7)W =-(xk_\,uk,O)

8w

H = ~~ (xk 'O) (8)

V = ~~ (xbO) (9)



III. SIGNAL MODEL

In power system, an observed signal is contaminated with
harmonics and noise. Therefore the signal is modeled by:

C. Particle extended kalmanfilter
In a system that is nonlinear, the extended Kalman filter can

be used for state estimation, but the particle filter may give
better results at the price of additional computational effort.
Combining EKF with particle filter results a method that
involves better performance. Particle extended Kalman
algorithm is summarized in algorithm 3:

Algorithm 3: Particl e Extended Kalman Filter

N

V(t)= IAn sin(nmt+~n)+Ek
n=l

Where,

(17)

I. Initial ization : k =°
• For i = 1,2, ... , N

• Randomly genera te particles Xti aro und the prior pdf

P(xo)
• End For

2. For k = 1,2, ... do the follow ing.
• For i = 1: N

• Compute the Jaco bian matrices Fk - 1•i and Q k - l .i

of the process model to obtai n priori part icles and
covariance Pk,i using the known process
equation:

An amplitude of the n' th harmonic

<Pn phase of the n' th harmonic

n harmonic order
N highest harmonic order

t = n; ~ Sampling time and k sampling instant

co radian frequency
ck additive noise (-N(O, R))

Since the amplitude of harmonic components are low
compared to fundamental, the signal with no harmonics is
considered. Hence the signal is simplified as below:

( 10) v(t) = Asin(mkTs +~)+ E (18)

• Compute the Jacobian matrix H k,i of the
measurement mode l and then update the a priori
particles and covar iance to obta in a posteriori
particles and covariance :

Of lFk- 1i =- +, ax X= Xk- l,i

OhlH k i = - -, ax x = xk ,i

Kk . = Rk- ·Hk
T .(Hk .Rk-· Hk

T + Rk )-l
,1 , / , [ , / , 1 , 1

( I I)

( 12)

(13)

(14)

Since in this study main objective is tracking of the
fundamental frequency, for applying PEKF in estimation
problem, states variables are formed as below:

X\ (k) =mkTs (19)

x2(k) = A (20)

x3(k) = sin(rokTs +~) (21)

x4(k) = costrokTs + ~)
(22)

By consideration state variables above, {(Xk) and
h(Xk+1) in (1), (2) are written as follows:

Xk+ . = s; .+ «; .[Zk - h(xk- .)J
,1 , I , I , 1

Rk+ · = (I - Kk .n, ·)P.k- ·
, I , I , 1 ,1

( 15)

( 16)
(23)

Jacobian matrices for linearizing (23), (24) are obtained
from (6) and (8) as follows:

• Compute the relative likelihood of each
particle xt by (4) .

• End For
• For i = 1: N

• Sca le the likelihoods is obta ined as shown in (5) .
• End For
• Resampling step: on the basis of the relative likelih oods

qi refine Xti and Pt i'
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h(Xk) = x2(k)x3 (k) (24)



o 0
1 0
o cos(x](k))
o -sin(x] (k))

Sin(~, (k)) J
cos(x](k))

(25) ..
c
'" 0Cii

M] = X4 (k) cos(x](k)) - X3 (k) sin(x] (k))

M 2 =-x4(k)sin(x] (k))-x3(k)cos(x] (k))

..
i:I
~ -0.5

Measurement equation is shown as follows:

(26)

-1.50 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.06 0.09 0.1

Time (sec)

(a)

(b)

460 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.06 0.09 0.1

Time (sec)

Fig. I. a) Actual Signal for Test I
b) Estimated Frequency with PEKF and EKF and Real Frequency
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Tracking time Steady state error (Hz)

Test Signals PEKF EKF PEKF EKF

Test Signal I - 0.5cycle - 3cycle .00001 0.0003

Test Signal 2 - Icycle - 2cycle 0 0

Test Signal 3 - L5cycle Not
Tracking 0.001 00

V. CONC LUSION

In this paper is used particle extended Kalman filter for
tracking the frequency of power system. . State space model
of the nonlinear time-varying system is developed using exact
analytical equations. For showing the performance of particle
extended Kalman filter, several tests as different level noise
and variation of the frequency have been applied, then
compared with extended Kalman filter. Simulation results
show that PEKF has better accuracy and speed than EKF.
Also, robustness against noise and severe variation of state are
the other special features of PEKF method.

TABLE I
Tracking time and steady state error for three test signals

By using (18)-(26), PEKF is applied for tracking frequency
as it is shown simulation section.

IV. SIMULATION RESULTS

In simulation, different noise level and step change in the
fundamental frequency is considered to test the performance
of particle extended Kalman filter for tracking frequency. For
all tests, fundamental frequency and amplitude are considered
50 Hz and I Pu, respectively. Hence state variables Xl and
X 2 are initialized 50 Hz and I Pu. Also, step change in
frequency for all tests is applying at 0.2 second. For PEKF
algorithm, 100 particles in each sample time are considered.

a) Test Signal I: 2 Hz step-down changes in frequency with
low noise: The frequency of the signal is suddenly decreased
from 50 Hz to 48 Hz. Signal-to-noise ratio (SNR) for this case
is 50 dB. Fig. 1 illustrates actual signal and the tracking of
frequency with both methods EKF and PEKF. As it is reveals
that PEKF has estimated frequency fast and accurately than
EKF. Very fast estimation of frequency with PEKF is
considerable in Fig (1)-(b). Hence, this test confirms the fast
speed of PEKF method.

b) Test Signal 2: I Hz step-up change in frequency with
high noise: The frequency of the signal change from 50 Hz to
51 Hz with 10 dB measurement noise. The contaminated
signal with high level noise and estimated frequency with
PEKF and EKF have been shown in Fig. 2. In this test, PEKF
has been better performance than EKF, too. However, severe
noise effect on both performance. Therefore, ability of
tracking in present of strong noise is confirmed by this test.

c) Test Signal 3: Severe step-down (8Hz) in frequency with
high noise: At 0.2 sec, in present of high level noise (10 dB
SNR), frequency of actual signal varied from 50 Hz to 42 Hz.
Results of this test are shown Fig. 3. It is shown that PEKF
succeeds to estimate new frequency. However EKF method
has lacking ability to track the frequency. This test reveals that
PEKF robust against severe change.

These tests confirm the high robustness of particle extended
Kalman filter against noise and variation of state. Tracking
time and steady state error are mentioned in Table I for both
methods PEKF and EKF.
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Fig. 2. a) Actual Signal for Test 2
b) Estimated Frequency with PEKF and EKF and Real Frequency
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