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Abstract— This paper introduces “Copulas” analytical tool for 
multivariate modeling of stochastic harmonic generation me-
chanism. Additional stochastic harmonics can be modulated 
through the power inverters at the point of common coupling 
(PCC) under unbalanced non-linear loads. The proposed multi-
variate unbalance modeling via copulas is applied to evaluate 
aggregate harmonics injection at the PCC. Copulas have become 
a popular analytical tool in multivariate modeling, where recently 
has been applied in many fields. Here, the contributions of copu-
las to Monte Carlo method are described. It is first come up with 
modeling unbalance of three-phase active and reactive powers at 
a distribution substation. To introduce a firmer basis for the sug-
gested procedure, the investigation is carried out based on the 
measured data for pursuing further analysis that is associated 
with simulating statistical correlation between stochastic har-
monics and realistic unbalanced conditions for a static compensa-
tor (STATCOM) at the point of common coupling (PCC). 

Keywords- Copula; correlation; voltage unbalance; stochastic 
harmonics. 

I.  INTRODUCTION 
When the studied system is complex and the effects of cer-

tain sequences of events are of a particular interest, statistic-
al/stochastic simulation methods can often be the only means 
of obtaining the solution to the system model. A popular sto-
chastic simulation is the Monte Carlo method in which the si-
mulation process is repeated for different sets of system para-
meters. The key activity in the Monte Carlo simulation process 
is the selection of system parameters to obtain sample solu-
tions, which is applied to problems involving random variables 
with available probability distributions. A sample from a 
Monte Carlo simulation is similar to a sample of experimental 
observations. Therefore, the results of these studies can then be 
used as modeled samples to study mathematical models of real-
world systems or statistical studies. 

However, one of the main difficulties associated with the 
application of the analytical methods in probabilistic power 
system studies is that the random variables are often dependent. 
This needs using joint probability distribution functions, impos-
ing an additional difficulty in the already complex problems. 
Therefore, the majority of analytical approaches assume either 
independence of the random variables or somehow inaccurate 
dependencies only through the correlations. 

Using copulas is suitable for applications with multivariate 
dependency structure such as in Monte Carlo studies [1]. The 
use of copulas fits well the stochastic modeling of dependent 
chaotic variables as well as time series in power systems. They 
can efficiently be used to produce unconventional multivariate 
distributions for Monte Carlo studies. On the other hand, the 
use of copulas for modeling purposes includes two straightfor-
ward steps; first, modeling the marginal distributions along 
with their correlation matrix. The second step consists of fitting 
a proper copula. It should be noted that finding a multivariate 
distribution and fitting it to the available data could be a hard 
task, where copula enables this in principle. The use of copulas 
is practical as some good software packages have already pro-
vided its complete implementation (such as [2]-[3]). 

Relevant methods to the stochastic uncertainty analysis 
combine deterministic simulation techniques with stochastic 
analysis [4]-[14]. Furthermore, uncertainties in parameter val-
ues are only considered with major approximations, where it is 
also neglected the modeling of dependence structures between 
parameters of an integral system. The importance of these stu-
dies can be better appeared when adequate accuracy is also 
introduced in addressing the parametric uncharacteristic uncer-
tainties related to the operation of power electronic devices in 
interaction with each other and the network [11].   

This paper introduces the use of an integrated deterministic 
and probabilistic simulation algorithm in which the stochastic 
dependence structures are modeled, considering the determinis-
tic dependence and interaction of available devices in a system. 
Therefore, the key point of such an analysis is the modeling of 
stochastic dependence that can be suitably done using copulas. 
The main procedures for using copulas are presented. Mean-
while, the statistical modeling of three-phase active and reac-
tive powers containing practical measurement noises and unex-
pected chaos is considered using a copula function. The ob-
tained modeling using a copula is then used to produce a realis-
tic voltage unbalance condition at the PCC. Using copulas in a 
Monte Carlo simulation, it is estimated the correlation between 
uncharacteristic current THD produced by a STATCOM and 
the levels of exchanged reactive power. 

II. EMPLOYED COPULA ALGORITHM 
Copulas are introduced in [1] as “functions that join or 

couple multivariate distribution functions to their one-
dimensional marginal distribution functions”.   
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Figure 1. Bivariate representation for some of Archimedean and Elliptical 

copulas. The chosen shape parameters are identical. 
 

The construction of a copula based on a set of arbitrary 
marginal distribution functions can be assumed and therefore, 
the C defines a multivariate distribution function evaluated at 
x1, x2, …, xn as [15]: 

 1 1 2 2 1 2[ ( ), ( ), , ( )] ( , , , )n n nC F x F x F x F x x x=… …  (1) 

It is shown in [16] that any multivariate distribution func-
tion F can be introduced in the form of Copula representation 
(1). Further, if the marginal distributions are continuous, then 
the copula representation will be unique. The aforementioned 
copulas representation along with their uniqueness is referred 
to as Sklar’s theorem, clarifying the relations between the de-
pendence and the copula for a distribution function. It should 
be noted that constructing multivariate distributions without the 
concept of copula has some drawbacks such as: 

• Different families are necessarily needed for different 
marginal distributions.  

• Extension of multivariate distributions to thrivariate 
cases and above is unclear.  

• Measures of dependence often appear in the marginal 
distributions.  

A. Modeling the Stochastic Dependence 
There are various applications of power systems in which 

dependent random vectors and arrangements are simulated as 
evidenced by Monte Carlo algorithms. Examples of such appli-
cations are the noise modeling, reliability studies, materials and 
natural phenomena uncertainty, risk assessment, complex mod-
eling and etc. Behavior of random variables in such circums-
tances may be assumed completely dependent, linearly corre-
lated, superposed or completely independent. Choosing the 
most appropriate behavior is influenced by several factors such 
as the characteristics of the system under study and the required 
accuracy. Nevertheless, many cases in power system applica-
tions are highly dependent. Hence, copula approach is general-
ly managed as follows: 

• Estimate matrix of pairwise rank correlations,  

• Estimate marginal distributions,  

• Combine this information using a copula. 

To perform a simulation, therefore, the following informa-
tion should be specified from the measured or calculated data: 

• The copula family and any required shape parameters,  

• The rank correlations among random variables,  

• The marginal distributions for each random variable. 

The most commonly used copulas are the Gaussian copula 
for linear correlation, Gumbel copula for extreme distributions, 
and the Archimedean copula and the t-copula for dependence 
in tail [1], [17]. Contour plots of some commonly used Copulas 
are depicted in Fig. 1 for the bivariate case, including Frank, 
Clayton, Gumbel and Guassian.  

Furthermore, a realistic correlation matrix must be positive 
semi-definite, real-valued and symmetric. An important stage 
of the algorithm is the proper modeling of such a matrix based 
on realistic data; specifically when there is some data mis-
placement or the values are noisy, unavailable or unreliable. 
While there are practical methods to deal with the problems 
associated with the improper correlation matrices [18], these 
methods are generally applied to abnormal data recordings and 
become redundant in Gaussian copula construction algorithms. 

Building up the marginal distributions is another key point 
in a reliable dependency modeling. One could fit a parametric 
model separately to each dataset, and use those estimates as the 
marginal distributions. Since a parametric model may not be 
sufficiently flexible, it might be appropriate to link the margin-
al distributions by means of a nonparametric model. Mean-
while, using empirical cumulative distributions results in a dis-
crete representation that may be undesirable for a continuous 
distribution. Therefore, it is common to apply a smoothing 
technique such as kernel smoothing or to interpolate with a 
piecewise linear function [3]. 

B. Simulation Algorithm and the Copula Function 
It is preferred to simulate experiments with different copu-

las and correlations. Two main simulation strategies are the 
Archimedean and compounding methods [19]. Both methods 
can be easily implemented for more than two dimensions (mul-
tivariate case). Nonetheless, the compounding algorithms are 
computationally more straightforward than the conditional dis-
tribution approach used in Archimedean methods. Meanwhile, 
it requires generation of an additional variable which sharply 
increases the needed computations. Because the power system 
problems typically require extensive calculations, addition of 
extra variables may accentuate the complexity of the analysis. 
Therefore, like most statistical packages (e.g. [2]), the Archi-
medean construction is used in this paper. One method is brief-
ly described as follows [19]: 

1) Generate independent uniform random numbers U1, 
U2, …, Un.  

2) Set 1
1 1 1( )X F U−=  and c0 = 0.  
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This algorithm generates X1, X2,…, Xn, that can be 
represented by distribution functions like that of (1), the copula 
is 

 [ ]
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Equation (3) defines a class of copulas known as Archime-
dean, which allows turning a multivariate copula into a single 
univariate function. The function Φ uniquely generates the co-
pula [20].  

Meanwhile, choosing a copula to fit the available data is an 
important but difficult task [21]. Since the real data generation 
mechanism is unknown, it is possible that several candidate 
copulas either fit the data reasonably well or not. When the 
maximum likelihood method is used, the general practice will 
be fitting the data with all candidate copulas and choose the 
ones with the highest likelihood [22]. The Kendall’s process is 
a graphical-based tool for choosing a function among Archi-
medean copulas [23]. However, selection of a proper copula is 
an ongoing research area. 

Considering the maximum likelihood, the Frank copula is 
chosen in this paper because it fits the studied data well (sec-
tion III). Therefore, this copula is explained in detail. Other 
examples of possible types of copulas and their characteristics 
are presented in [19,21]. The Frank copula is a symmetric Arc-
himedean copula with the following generator 

 1( ) ln
1

tet
e

α

α
−Φ =
−

  (4) 

Where α is the dependence parameter (α ∈R ). There is a 
one-to-one correspondence between each correlation measure 
and the dependence parameter α. This relationship for the biva-
riate case is 
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Where the Dk (.) is the so-called Debye functions defined as 
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It should be mentioned that Frank copula permits negative 
as well as positive dependence. Nonetheless, other types of 
Archimedean copulas permit only non-negative correlations 
because of the limited dependence parameter space. This is 
another reason for using Frank copula in the following section. 

The above technique for random vectors can be applied to 
time series as well [24]. A moving window with a certain num-
ber of vectors is taken as a sample vector for a stationary time 
series. The marginal distributions and the copula are then esti-

mated with this sample according to the described Archime-
dean algorithm. 

In the following section two novel applications are demon-
strated. First, the recorded three-phase active and reactive pow-
ers at a distribution substation in Tehran and their stochastic 
dependence are realistically modeled using a copula. Second, a 
Monte Carlo simulation is applied to a STATCOM for estimat-
ing the correlation between uncharacteristic harmonic distor-
tion, levels of unbalance, and the exchanged reactive power at 
the PCC. 

III. STOCHASTIC MULTIVARITE MODELING OF HARMONICS 
OF STATCOM 

A. Modeling Three-phase Active and Reactive Powers 
This study considers statistical simulation of three-phase 

active and reactive powers. Both advantages and applicability 
of the copula approach is demonstrated, modeling the depen-
dence structures in power system context. To validate the pro-
posed approach, a data logger is installed at the distribution 
substation (namely Alestom 20 kV/400 V, 1 MVA) that is lo-
cated in north-west of Tehran.  

A 15000-sample Monte Carlo simulation is arranged to get 
approximations over the measured data. The marginal distribu-
tions related to three-phase active and reactive power should be 
separately modeled in the proposed copula algorithm (section 
II.B). The next step is to find out the dependence structure be-
tween active and reactive powers, between the phases and be-
tween the marginal distributions. This is necessary to imple-
ment the proposed method using copulas. This dependence is 
interpreted in the form of a 6 × 6 rank correlation matrix that is 
obtained from a positive semi-definite Spearman’s rank corre-
lation. Considering the simulation procedure, proposed in sec-
tion II.B, the three-phase active and reactive powers are simu-
lated. The Frank copula is selected, as mentioned in section 
II.B, and adjusted to fit the data using the maximum likelihood 
method. Simulations are shown in Fig. 2(a) using scatter plots 
in a form that properly demonstrates the correlations too. Fig-
ure 2(b) shows the scatter plots for the measured powers. To 
verify the copula approach, Fig. 2(a) can be compared with Fig. 
2(b) that the copula approach successfully models both the 
marginal distributions and the dependence structure of the real 
data. A goodness-of-fit test could also be used to quantitatively 
verify the adequacy of the presented modeling; however, the 
visual verification is completely adequate for our objective. 

Dealing with the exact data under unbalanced conditions 
can impose an uncharacteristic and stochastic behavior to the 
system, devices, or operators. For example, stochastic harmon-
ics can be imposed to power systems by power electronic 
switching devices under unbalanced applied voltages [9], [11]. 
The following section investigates the uncharacteristic harmon-
ics that is generated by a voltage source converter-based 
STATCOM under realistic unbalanced applied voltages. It 
should be noted that copula analysis of the unbalanced condi-
tion takes into account the dependence structure between the 
uncharacteristic uncertainties in the system. This study enables 
the designer to evaluate the performance of the device with 
realistic uncertainties. 
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Figure 2. Scatter plots showing the dependence structures of the three-phase active and reactive powers; (a) Simulated samples from the proposed copula ap-

proach; (b) Measured data shown for comparison. 

B. Stochastic Dependency Between Uncharacteristic 
Harmonics of a VSC and the Exchanged Reactive Power 
In practice, VSC-based applications (e.g. STATCOM) im-

pose harmonics to power systems. Interaction of harmonic dis-
tortions as well as the unbalance of the grid network could also 
produce additional frequency components. Deterministic anal-
ysis and full assessment of these interactions would be complex 
in terms of both steady-states and dynamic behavior of har-
monic levels [9]. Therefore, it is required to pursue evaluation 
of these harmonic interactions through a proper combination of 
both measurements and statistical simulation studies. This pa-
per presents a primary methodology for analyzing such interac-
tions. To demonstrate the method using a practical application, 
a STATCOM is considered in which selective harmonic elimi-
nation (SHE) modulation technique is used for reactive power 
compensation. The SHE techniques use pre-calculated switch-
ing instants under ideal switching conditions along with fixed 
DC-link voltage, which give several advantages compared to 
the conventional carrier-based PWM schemes [25]. 

Considering the SHE, the pre-calculated chopping angles 
will not be optimal under distorted or unbalanced load condi-
tions in which both DC and AC sides experiencing additional 
uncharacteristic harmonics emerged on the VSC. Hence, the 
amount of uncharacteristic harmonics that is injected to the 
distribution system stochastically depends on several factors 
such as operating conditions of the VSC [9]. 

The evaluation of this stochastic dependency should em-
brace all realistic uncertainties in the network. It should also be 
taken into consideration the high sensitivity of the produced 
uncharacteristic harmonics toward the error in the optimal 
chopping angles. In this study, a Monte Carlo simulation is 
proposed based on the described Copula approach. The empha-
sis is on the estimation of the level of dependence among a 
realistic voltage unbalance of the grid network, the produced 
uncharacteristic harmonics, and the reactive power operating 
point. 

The harmonic-domain model and topology of [9] is used 

here in order to provide the required calculation efficiency and 
accuracy. It should be noted that the impedance of the conver-
ter became a two-dimensional tensor in the harmonic-domain; 
when we try to model the non-linearity caused by the switching 
activity of the converter. The AC system on the high voltage 
side of the transformer is rated at 20 kV. Five chopping angles 
are used to modulate the output voltage of the VSC in steady 
state. The objective function of the SHE is arranged in a way 
that the fundamental component is regulated, eliminating the 
fifth, seventh, eleventh, and thirteenth harmonics. The pro-
posed method is described as follows. 

First, the three-phase active and reactive powers data, as 
simulated in Fig. 2 (a), are used to estimate the statistical beha-
vior of the voltages with realistic unbalance by a three-phase 
load flow analysis. The estimated result is shown in Fig. 3 
which demonstrates a good agreement with the measured data. 
The obtained accuracy is due to the fact that the dependence 
structure of the three-phase active and reactive powers is taken 
into account using a suitable copula. Furthermore, background 
harmonics are represented by harmonic voltage source obtained 
from the field measurements. Assume the capacitance of the 
DC-link is 2 mF, and then the resultant uncharacteristic current 
THD% is calculated for all data as shown in Figs. 4 and 5. Fig. 
4 is a surface plot in which variation of the THD over various 
reactive power loadings is depicted for each observed voltage 
unbalance factor (VUF) defined by the IEC. 
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Figure 3. Recorded vs. simulated VUF% considering stochastic dependency. 
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Figure 4. Statistical simulation of the penetrated uncharacteristic current 
THD based on the measured unbalanced powers by a surface plot. 
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Figure 5. The information of Fig. 4 by a contour plot. 
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Figure 6. Variation pattern of the correlation between uncharacteristic cur-
rent THD and the exchanged reactive power of the VSC. 
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Figure 7. Distributions of the current THD corresponding to the reactive 
power loadings of -0.8 P.U., 0.9 P.U., 0.04 P.U. and -0.1 P.U., respectively.

It is noticeable that the diversity of various probable VUF 
(causing different uncharacteristic THD) is also realistically 
modeled by the proposed procedure. Fig. 5 shows the same 
data by a contour plot in which the magnitudes of the THD are 
depicted by different colors. This can provide a sense that in 
what and how much area the THD is higher than the normal 
levels. It can be seen from Fig. 4 and 5 that a realistic voltage 
unbalance would not dramatically modifies the uncharacteristic 
THD of AC current coming out of VSC except for situations in 
which the compensator absorbs relatively small amounts of 
reactive power. Nonetheless, there are rather few observed 
VUF for which the uncharacteristic THD are significant. 

To clarify the estimated stochastic dependency further, a 
pattern of variation for the correlation coefficient between the 
uncharacteristic current THD and the VUF is shown in Fig. 6. 
This correlation is about zero for very small reactive power 
loadings; conversely, it arises for higher amounts of reactive 
power absorption or generation.   

To provide another representation of the obtained results, 
Figs. 7 (a)-(d) compares the probability distributions of the 
current THD for realistic VUF% when four different reactive 
powers are supplied by STATCOM. It can be seen from Figs. 7 
(a)-(d) that reactive powers of -0.8 P.U. and 0.9 P.U. along 
with realistic VUF% give a relatively small range of the THD 
variations less than 1%. However, reactive powers equal to 
0.04 and -0.1 P.U. along with the same realistic VUF% result 
in a considerable range of the THD variations around 55% and 
25%, respectively. 

This analysis can be easily extended to include other realis-
tic conditions. In this manner, a purely deterministic analysis 
will become more complex and the proposed stochastic simula-
tion would be more useful. All of the studied cases show that 
correlating dependent power system variables under copula 
modeling can be combined with conventional Monte Carlo 
simulations to get more realistic results. 
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Other applications of the presented method are also possi-
ble where a stochastic multivariate uncertainty exists. Consi-
dering the rapid movement of passive power systems towards 
highly active topologies forming smarter grids, it seems that the 
need for modeling of such uncertainties will increase. In fact, 
both the technical problems such as interactions between con-
verters and the grid network in the new interconnected active 
system, and the financial risks, requires an adequate representa-
tion and modeling of uncertainty in a multivariate context. This 
could be efficiently engaged by using copulas, as it is shown 
for a case study in this paper. 

IV. CONCLUSIONS 
This paper suggests a novel analysis related to the determi-

nistic-stochastic dependencies in power system devices, em-
phasizing on power electronic switching interaction with the 
grid network. In order to model stochastic dependencies in a 
multivariate Monte Carlo simulation, the copula theory has 
been proposed and briefly introduced. Two case studies are 
arranged based on the recorded measured data from a 20 
kV/400 V distribution substation located in Tehran for a one 
week period. First, the complete dependence structure of the 
three-phase active and reactive powers is modeled using a co-
pula. Verifying the modeled structure with the measured data 
as well as comparing with a jointly normal distribution, the 
proposed method demonstrated itself having useful characteris-
tics with a sufficient accuracy. Second, a Monte Carlo simula-
tion is implemented based on the described copula approach to 
estimate the level of dependency between a realistic voltage 
unbalance of the grid network, the produced uncharacteristic 
harmonics, and the reactive power loadings. The presented 
results are used to evaluate harmonic performance of a VSC-
based compensator. Future work can focus on other possible 
applications, extending to include other realistic conditions. 
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