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Abstract-Modeling of STATCOM is conventionally
performed in the time-domain. Amongst them, dq-theory is
well-known in which state-space equations are used for the
analysis. Power systems, however, use the frequency-domain
information in phasor-related studies such as load flow
analysis. Because time-domain models of FACTS controllers
cannot be directly applied to the power system analysis, an
intelligent model can usefully bridge the time-domain
information to the corresponding frequency-domain data.
This paper proposes two neural network identifiers based
on the existing time-domain average model of STATCOM.
Extended resultant bridge presents an average-neural
model of STATCOM, which can be analytically applied to
power systems. To this extent, design and development of
two neural network identifiers are performed using the
dynamic neural network (DNN) and the multi-layer
perceptron (MLP). To verify the developed models, the
exact solutions obtained from the average model of
STATCOM are compared with the outcomes of the DNN
and the MLP identifiers. Moreover performance of the two
identifiers is accordingly compared as well.

Index Terms-- DNN, FACTS controllers, MLP, modeling,
neural-averaging, STATCOM.

I. INTRODUCTION
DEREGULATED systems consider transmission

lines as the principal components of the
electricity market for both producers and consumers of
energy. At the same time, an optimal power flow (OPF)
determines the amount of energy to be transferred
through each transmission line. This further helps the
market to achieve a competitive pricing tool. Therefore,
it is necessary to develop accurate models in order to
establish a fair pricing system. In fact, if the operation of
the modelled equipments is close to that of their exact
devices, the energy pricing will be more accurate. In
particular, this would be crucial when FACTS devices are
engaged in the OPF for mitigation of congestion of
transmission systems (CTS).

Typically, in [1]-[5], FACTS devices are suggested to
alleviate and/or regulate the CTS. Additionally, the
FACTS devices are modelled as either pure reactive
elements (e.g. inductors and capacitors) or independent
voltage/current sources. However, power losses of
FACTS devices are not included in the analysis by the
introduced models, assuming negligible energy
consumption by the device itself. When the number and
capacity of the employed FACTS devices increases,

considerable energy losses is cancelled in power flow
analysis (i.e. part of the network load is cancelled). This
undermines the correctness of the process of energy
pricing management.

Meanwhile, the principal objective is to bridge the
instantaneous models to the power system single-
frequency requirement. For example, power flow analysis
is widely used in power systems in order to control active
and reactive power as well as protection systems and pre-
fault calculations. Moreover, deregulated power systems
and the CTS control are additional applications in
electricity market. This paper develops a bridging
intelligent identifier that includes power losses in the
analysis. Moreover, we assume an existing average model
of STATCOM that is based on the well-known stat-space
averaging technique [6]-[8]. The average model
appropriately takes into account the low-frequency
variations of the DC-link of the converter as well as the
power losses related to the AC-side. It should be noted
that the switches are treated as ideal.

However, one issue concerned with this model is that
for each switching period a considerable number of
differential equations have to be solved. This depends on
the switching frequency, and takes long to process the
OPF. To remedy this issue, the neural network modelling
technique is employed to link the instantaneous outcomes
of the STATCOM to the single-frequency power system
analysis. The developed model produces power losses as
well as angles and magnitudes that are suitable for phasor
analysis in steady-states. Here it is examined two
identifiers; the dynamic neural network (DNN) and the
multi-layer perceptron (MLP). The objective is to
compare the accuracy and reliability of the two
identifiers. In this paper the developed model is called
average-neutral (AN) model of STATCOM.

II. AVERAGE MODEL
Averaging technique is a common approach to the

modeling of power converters. Switch-mode converters
have a discontinuous behavior, which is very complex in
analysis. Average modeling approximates the behavior of
the converter from a periodic discontinuous system to a
periodic continuous one, maintaining smooth waveforms
by removing high order harmonics. Average model of
STATCOM is presented in [6], shown here by Fig. l(a).
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Figure 1: (a) Average circuit model of STATCOM, (b) typical internal power losses of STATCOM obtained by the average model, and

(c) adaptation of the average model connected to the power system by adding a bus for STATCOM.

In this model, L introduces the equivalent coupling
inductance between the converter and the power system.
The resistance R is part of the compensator losses related
to the interconnection of the converter to the power
system. The other part of the power losses corresponds to
the converter losses that are absorbed by the proper
modulation of the converter switches. Fig. l(b) shows
typical STATCOM power losses in P.U. against the
phase shift between the converter output and the power
system voltage ( a ) that is obtained by the average
model.

While the average model presents a time-dependent
circuit, a PQ or PV model is essential for the power flow
analysis. Hence, here it is performed adaptive analysis to
get the supplied active and reactive powers of
STATCOM ( PCON and QCON). A new bus is added for
every STATCOM as the converter AC voltage, which is
connected to an existing bus n through the commutation
reactance (XCON ) and the AC resistance (R ).

III. IDENTIFICATION OF STATCOM MODEL USING
NEURAL NETWORK

Average model of Fig. l(a) describes a state-space
model in a circuit format, which solving differential
equations will lead eventually to a steady-state solution.
Meanwhile, moving from one steady state to another
takes time to complete the transient regime that is not
suitable for the OPF. An OPF program seeks among the
feasible region for a desirable solution. Thus, it is

necessary for the OPF to be performed as fast as possible.
One approach to achieve a fast OPF is the identification
of the average model of STATCOM using the neural
network. The average model is analyzed as a reference to
generate required training data for the average-neural
model (AN).

Training data can be produced in two steps. First, Fig.
l(a) is assumed as the exact model suggested in [6].
Then, to cover operating range of STATCOM, magnitude
of the terminal voltage is varied within lVt1 E [0.7,1.2]
P.U. by small steps (e.g. 0.01 P.U. (see Fig. 1(c))). Also,
the phase angle between the converter voltage VCON
and the terminal voltage Vt ( Z(VCON,Vt) ) is varied

within a E [-1.5°,1.5°] by small steps (e.g. 0.01° ). For
the given small steps, total number of operating points
sums up to 15000 set of steady-state training data for the
STATCOM.

Second, for every operating point, the time-domain
model of Fig. l(a) is solved. Then, the steady-state
phasors are obtained from the instantaneous solution.
This is used to calculate and store the absorbing active as
well as generating/absorbing reactive powers of
STATCOM delivered to bus n. Gathering all the
calculated data leads to formation of a database for
single-frequency operation of STATCOM in power
system.

The next step will be the study and selection of a
suitable neural network identifier for the average model
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of Fig. l(a). Here we identify the average model of
STATCOM by two well-known neural network
identifiers, dynamic neural network (DNN) and multi-
layer perceptron (MLP). It is noticeable that other
identifiers should also be investigated that is left for
future studies. Outcomes of the AN identifiers of
STATCOM are then correspondingly compared.

A. The DNN neural identifier
There are various structures for the dynamic neural

network. The employed structure for identifying the AN
model is given by Fig. 2 in which the DNN includes two
layers. The hidden layer has delay blocks taken from the
neurons, which take the data history of the network into
account for the progressing output. Index e corresponds
to the exhibitory positive classes (e.g. positive input

vector Xe ), and index i relates to inhibitory negative
classes (e.g. negative input vector Xi ). Each neuron from
the exhibitory class has a delayed input from its
corresponding neuron in inhibitory class and vice versa.

Output of each neuron is applied to a non-linear neuron

activation function to be able to model non-linear
systems.

Then, the outcomes of the activation functions are

weighted by a2 for exhibitory classes, and by b2 for
inhibitory classes. These weighted productions are

eventually applied to the linear activation function of the
output layer to get the output of the DNN. The
advantages of the DNN are non-linear modelling
capability as well as the fast network convergence
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Figure 2: The structure of the DNN that is designed to identify the average model of STATCOM.
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Figure 3: (a) Mean squared error of the trained data, (b) The output (power losses) of the DNN AN together with the exact output of

average model for 15000 trained data.



because of the inherit delays of the structure. The

following relationships describe the designed feed
forward state of the network:

X =[XX(x21)
Xi =[IX X2 ]

Net1 (t) al Xe (t) + aNet1 (t- 1) -bl Netd (t- 1) (2)

Net1 (t) b1 Xi (t) + bi Neti (t - 1) - al Net1 (t - 1) (3)

1(t) + (4)NetT1 (1) =Net Net.

O (t) = f3(t) =

1 -NetT' (t).k

l+e
(5)-NetT' (t).k

All parameters of the network are trained using the
back propagation method, and the structure is designed

by trial end error. In this research, different structures
were examined in which 25 neurons is considered for the
hidden layer alongside with one neuron for the output
layer.

Designed structure of Fig. 2 is simulated with
MATLAB, where Fig. 3(a) shows the reduction in mean
squared error of the training data, Fig. 3(b) depicts the
output of the DNN as well as the power losses analysed
by the average model, and details of zooming Fig. 3(b)

for various terminal voltages over a E [-1.5 ,1.5° ] will
be presented in the full paper. Simulation results indicate
that the AN model of STATCOM, developed by the
DNN, introduces the mean squared error of 0.12% and
mean error of 0.3775% for the trained data. This situation
confirms that the DNN is unable to develop successfully
the AN model of STATCOM because the DNN uses the
history of the response to identify the progressing output.

B. The AN model using the MLP
The MLP neural network is a global estimator, which

an initial processing on training data is taken place
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Figure 4: (a) The structure of the designed MLP neural network to identify the average model of STATCOM.
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Figure 5: (a) Mean squared error of the trained data, (b) The output (power losses) of the MLP AN together with the exact output of

average model for 15000 trained data



followed by designing its structure for the AN model.
Structure of this design is shown by Fig. 4, where three
hidden layers are proposed for the MLP neural network.
By examining and performing various tests, eight neurons
are considered for the first and the second layers and one
neuron for the third layer. Neuron functions of the first
and the second layers are considered identical as follows:

n -n
f (n)= f (n)= e (6)

Also, weighting matrices of the three layers areW,

W2 and W3, and the 2 x I input vector P includes the
terminal voltage and injected reactive power of
STATCOM to bus n as shown by Fig. 1(c). Three

vectors bI, b2 and b3 are the threshold values of the

neurons, and three outputs of the three layers are al
a2 and a3.
To train this network, again 15000 operating states are

used. Figure 9(a) demonstrates the reduction of the mean
squared error during the training process, and Fig. 5(b)
gives the response of the MLP AN model to these trained
data alongside with the exact power losses of the average
model. Simulation results show that when the AN model
of STATCOM is identified by the MLP, then the error
between the average and the AN models is considerably
low. The mean error is equal to 0.0147%, and the mean
squared error is 0.000003795%. Hence, the MLP
identifies the average model with an acceptable error,
much lower compared to the DNN.

IV. CONCLUSION
Average model of STATCOM describe its exact

operation, while high frequency ripples are ignored. This
model can be used for steady state analysis of power
systems such as load flow program. However, an
identifier is needed to bridge the time domain average
model to the frequency domain power system analysis.

This paper aims at doing this objective by designing two
neural network identifiers; the dynamic neural network
(DNN) and the multi-layer perceptron (MLP). These
neural networks are trained using up to 15000 steady
state operating data that are obtained by simulating the
average model of STATCOM. Outcomes of the two
identifiers are compared with the exact solutions of the
average model. The results show that the MLP provides
much more accurate outcomes compared to the DNN.
Therefore, the MLP identifier can be applied to the power
system planning and analysis purposes.
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