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Stochastic Modeling for the Next Day
Domestic Demand Response Applications

M. Tavakoli Bina, Senior Member, IEEE, and Danial Ahmadi

Abstract—Demand response (DR) refers to the consumers' activ-
ities for changing the load profile with the purpose of lowering cost,
improving power quality or reliability of power system. Enhance-
ment in participation of the DR is widely recognized as a profit-
making pattern in distribution systems for both residential units
(to increase their benefits) and distribution companies (DISCO) (to
reduce their peak demand and costs). The target of this research is
concentrated on proposing a new strategy for optimal scheduling of
flexible loads for the next day. Then, the day ahead pricing (DAP)
is modeled using the inclining block rates (IBR), assumed for re-
tail electricity markets, to investigate the efficiency of the proposed
strategy. At the same time, the appliances stochastic time of use
(ASTOU) are taken into account in residential units for non-con-
trollable part of the load during a day stochastically. Among five
various copulas, the Gaussian copula (GC) function shows the best
performance in modeling and estimation of non-controllable load
consumption. Finally, simulations, performed with the GAMS, il-
lustrate the effectiveness of the suggested approach which is for-
mulated as a stochastic nonlinear programming (NLP) modeled by
the GC. Notice that copulas use samples of real data gathered from
residential units.

Index Terms—Appliances stochastic time of use (ASTOU), day
ahead DR strategy (DADRS), demand response (DR), GAMS,
Gaussian copula, stochastic modeling.
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Air conditioner.

Copula functions.

Electric vehicle.

Time of use.

Washing machine.

Dish washer.

Marginal price factor.

Number of random variables.

Weather related loads.

Energy consumption vector.

Scheduling horizon in energy consumption.

Time index.

Factor of inertia.
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Coefficient of performance.

Control time period.

Thermal conductivity.

Total thermal mass.

Total required energy of all WRL/flexible loads
at the th hour.
Indoor/outdoor temperature at time .

Consumed energy of appliance in the th time
index scenario.
Average of daily demand for appliance from
WRL in scenario.
Number of ASTOU, WRL, flexible loads.

Total energy for the operation of ASTOU in the
th hour.
Consumed energy of flexible loads, , during
the th time.
Energy consumption of ASTOU, , in the th
time.
Total energy required for the operation of
flexible load , per loading.
Period of time to plug in appliance .

Maximum/minimum hourly demand level of
appliance .
Average frequencies of using ASTOU in a day.

Time of use/usage time of ASTOU.

The th time of use the th ASTOU in a
residential unit.
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Usage time of the th ASTOU in the th time
of use.
Consumed energy in the th hour for appliance
(ASTOU) in scenario.

Average daily energy for appliance from the
ASTOU in scenario.
Marginal pricing in retail markets.

Cost of energy in the th hour.

Total demand of end users in the th hour.

Total demand of flexible loads for 24 h.

Total daily payment by user.

Average of daily demand in different scenarios.

Temperature of the th hour in the th day.

Temperature at time of the th selected day.

AC energy consumption at time .

Kendall's rank correlation matrix.

I. INTRODUCTION

T HE increasing peak demand causes shortage on the avail-
able power generation, congestion of transmission and

distribution infrastructure as well as growth in the price of en-
ergy in the wholesale markets [1]. Meeting the peak demand
is further associated with the potential transformer overloads,
undue circuit faults and risk of forced outages. In recent years,
the demand response (DR) has been proposed in smart grids
to reduce the peak demand. The DR is defined as “changes in
electric usage by end users from their normal consumption pat-
terns in response to changes in the price of electrical energy over
time, or incentive payments designed to induce lower electrical
energy use at times of high wholesale market prices or when
the system reliability or power quality is jeopardized” [2]. Ac-
cording to this definition, efficient use of the DR strategies plays
an important role in balancing the supply and demand; espe-
cially during the peak periods. Hence, the DR can increase the
reliability and efficiency through shifting and shedding the peak
demand [3]–[5].
Three types of DR automation levels exist for residential

units; namely, manual, semi-automated and fully-automated
DR [6]. The manual DR is an ineffective automation level
because of consumer inertia, lack of end users knowledge on
how to respond as well as in time programming of the electrical
usage by the consumers. Moreover, most of fully-automated
DR strategies are focused on scheduling the present time of use
(TOU) with critical peak pricing or real-time pricing programs.
This type of DR automation requires numerous equipment
(smart metering, control and communication infrastructure) as
well as particular arrangements for controlling flexible loads.
Therefore, fully-automated DR strategies are expensive and
complicated in implementation. Nevertheless, researchers have
presented different algorithms and strategies related to the
fully-automated DR over the past several years in the literatures
[7]–[13].
In contrast, performing a semi-automated DR requires an

event notification by the system manager through the internet

Fig. 1. Outline of the research work performed in this paper, including the
home appliances, estimation and generation of next day load profile scenarios,
finding out the optimized scenario and scheduling flexible loads.

for the consumer in advance (a few hours). In comparison with
a fully-automated DR, a semi-automated DR needs less equip-
ment, while it is much cheaper. In practice, a semi-automated
DR can result in the same outcomes as those of fully-automated
DR by using an appropriate strategy to control flexible loads.
This paper presents a new semi-automated proposal on the

day ahead demand response strategy (DADRS) to decrease the
peak demand and increase the benefits of residential units. Gen-
erally, most of the DR-related methods, proposed previously,
investigated on the present TOU [7]–[13]. However, only a few
papers focus on scheduling flexible loads for the next day.More-
over, several TOU or day ahead strategies have been focused on
controlling flexible loads such as washing machine (WM), dish
washer (DW), electrical vehicle (EV), and so on [7], [8]by as-
suming a certain load profile for non-controllable part. This im-
plies ignoring the necessity of modeling non-controllable un-
certain loads (e.g., TV and PC) in establishing a precise pro-
file. This paper, however, proposes a novel model for energy
consumption of the appliances stochastic time of use (ASTOU)
using copula. Moreover, the consumed demand for weather re-
lated loads (WRL) is yet to be stochastically studied in litera-
tures as the fixed part of the load [e.g., air conditioner (AC)].
Clearly, the error in forecasting temperature has significant im-
pact on the load forecasting of the WRL [14], [15]. Fig. 1 pro-
vides a clear picture on how this research is arranged. Samples
of various customer loads are taken, including both non-con-
trollable loads (the ASTOU and the WRL) and flexible loads.
The required exact data are gathered over 50 days as the basis
for the analysis. Then, a copula function is used for estimating
rank correlation of the gathered samples random variables as
a multivariate distribution function for both the WRL and the
ASTOU. Consequently, new scenarios can be generated using
the estimated multivariate distribution function. It should be
noted that the new generated scenarios are useful for the sto-
chastic analysis. Thus, different scenarios are fed to the GAMS
to solve an optimization problem. The GAMS eventually pro-
vides the required operating commands for the flexible loads
through the home energy management system (HEMS). There-
fore, this paper introduces the DADRS that focuses on control-
ling flexible loads; taking into account both the energy consump-
tion of the ASTOU (e.g., TV and PC) and estimating theWRL en-
ergy consumption by including error in forecasting temperature.
This paper examines five different copulas using the real data in
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Fig. 2. Sample of different bivariate copula functions (a): t copula ; (b): Gaussian copula ; (c): Gumbel copula (d):
Frank copula ; (e): Clayton copula .

which an elliptical copula (the GC) was selected for modeling
the ASTOU. The proposed DADRS with stochastic process is
solved by the GAMS. The outcomes will help distribution com-
panies (DISCO)/aggregators to decrease their peak demand as
well as users' payment in retail markets. Finally, simulations are
presented in which 100 home consumers are considered under
three different scenarios; the case study is directed towards the
suggested estimation of the WRL and the ASTOU as well as
the DR for the flexible loads. This research also assumes the
DAP with the IBR model for the retail electricity market. Simu-
lations show that the suggested estimations of energy consump-
tion of the WRL and the ASTOU in scheduling flexible loads
contributes to further reduction in both the peak demand and the
energy cost. In brief, contributions of this research are modeling
residential non-controllable loads that are uncertain such as TV,
PC, lighting, and the WRL using the GC along with proposing
a strategy in controlling flexible load for the next day in a resi-
dential unit using the following steps:
• Samples of various ASTOU and WRL appliances were
gathered over fifty days as the real dataset.

• Each ASTOU and WRL appliance is separately modeled
using a selected copula function.

• Generating a dataset of size according to the modeled
copula for each appliance.

• Converting created scenarios for each ASTOU and/or
WRL appliance into load profiles for stochastic analysis.

• Requesting the parameters of the flexible loads from 100
residential units.

• Applying the gathered flexible loads together with simu-
lated scenarios (profiles) of the ASTOU and the WRL to

the GAMS for stochastic analysis using the proposed ob-
jective function (17).

• The GAMS eventually provides the required operating
commands for the flexible loads through the home energy
management system (HEMS). The outcomes will help
distribution companies (DISCO)/aggregators to decrease
their peak demand as well as users' payment in retail
markets.

II. OVERVIEW ON APPLICATION OF COPULAS

Here it is described benefits of copulas for data creation. Cop-
ulas are functions that join or couple multivariate distribution
functions to their one-dimensional marginal distribution func-
tions. As shown in Fig. 1, the main task of copula is to esti-
mate a multivariate distribution function based on the marginal
and rank correlation of the taken sample data. Then, various
scenarios are generated according to the estimated multivariate
distribution function. In mathematical terms, copulas are multi-
variate distribution functions of random variables whose
one-dimensional marginal distributions are uniform within the
interval , where is the number of dependent outcomes
that should be modeled. It can be shown from definition that
copulas are capable of describing nonlinear dependence among
multivariate data independent from their marginal probability
distributions [16]. Copulas can also serve as a powerful tool
for both modeling and simulating nonlinearly-interrelated mul-
tivariate data, and uniform continuity and existence of all partial
derivatives [18]. Some samples of t, Gaussian, Gumbel, Frank,
and Clayton copulas which are known as the Archimedean and
Elliptical copulas are illustrated in Fig. 2 in bivariate form.

 
 

 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON POWER SYSTEMS

A. Why Copula?

In brief, the most interesting advantage of copula functions
is their capability in estimating marginal and rank correlation
of samples of random variables, joining these distribution func-
tions to their one-dimensional marginal distributions (see de-
tailed description on definitions and properties in [16]–[18]).
So, the modeling principles of copulas allow easy modeling and
estimation of multivariate distribution function. In other words,
compared to other estimating methods, copula inter-relates non-
linearly multivariate data. The following steps are taken to gen-
erate data with copula:
• fitting an appropriatemarginal distribution, probability dis-
tribution function (PDF), to each variable according to the
real dataset;

• obtaining the CDF of each PDF worked out in the previous
step in order to transform actual random variables to the
uniform distribution (i.e., );

• calculating Kendall's rank correlation using the CDF;
then the characteristics of the copula (Rho) is calculated
according to the employed copula function;

• generating datasets of size on a unit hypercube
( is the number of random variables) with uniform mar-
ginal probability distributions according to the calculated
Rho;

• applying inverse CDF (ICDF) to transform the generated
uniform dataset of size to an actual dataset of size .
This created dataset has the same characteristics as those
of gathered real data.

Sometimes the number of initial real dataset cannot be ex-
tended as many as required in practice. For example, the number
of taken samples from the owner of the PC is limited due to var-
ious economical, practical and social restrictions. It should be
noted that estimating the required demand of the PC in the next
day could help end user to provide and optimally pre-schedule
flexible loads. However, limited number of samples taken from
the PC has to be expanded in order to enable the customer to
estimate the load profile for the PC.
Here it is demonstrated a simulation in which the samples of

the PC in 50 days are available as exact data; once copula esti-
mates 20 sets of 50 data from the exact data, and another time
1000 data are estimated directly from 50 exact data. Simulations
are shown in Fig. 3(a)–(c), in which 1000 dataset are compared
correspondingly for the two ways of data estimation. Both the
estimated data and their PDF confirm that the two ways of esti-
mating with copula are quite the same.

B. Comparing Copula With Traditional Models

Unlike copula, traditional models (e.g., normal and
log-normal) ignore dependence among random variables.
To compare these traditional models with copula, assume a
real dataset includes 1000 exact datasets gathered from 1000
TVs (these data were collected from a national organization),
each containing four variables (see detailed definitions in
Section III-A within Section III). These datasets were used to
work out the exact 24-h load profiles for 1000 TVs as shown
in Fig. 4(a)–(c) by blue curves. This load profile is regarded as
the exact reference that estimates of other modeling methods
are compared with. Fig. 4(a) depicts 24-h load profiles, while

Fig. 3. Copula estimates 20 sets of 50 data (in green) and one set of 1000 data
(in blue) from 50 exact data: (a) estimated data, (b) the PDF of the estimated
time of turning the PC on, and (c) the PDF of estimated usage time of turning
the PC on.

Fig. 4(b) and (c) illustrates division of Fig. 4(a) into two 12-h
load profiles in order to get a better visual resolution.
Then, assume 50 exact datasets from 50 TVs are applied

to two traditional models (normal and log-normal) as well as
copula to estimate 1000 datasets. Again, these generated 1000
datasets using normal, log-normal and copula were converted
into three load profiles. Green curves in Fig. 4(a)–(c) demon-
strate the load profile based on 1000 estimated datasets using
copula, red lines are the load profile derived from 1000 esti-
mated datasets using normal distribution and black lines illus-
trate the load profile rooted on 1000 estimated datasets using
log-normal distribution.
It can be seen from Fig. 4 that copula predicts a much closer

load profile to the exact load profile compared to those of tradi-
tional models. To get a meaningful comparison, performances
of copula, normal and log-normal distributions are tested in this
paper using the well-known mean absolute percentage errors
(MAPE) as follows ([19]):

(1)

where and are the exact reference and predicted demand
at the th hour, respectively. The MAPE of the three predic-
tion models are worked out in Table I for the three pictures in
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TABLE I
MAPE AND ABSOLUTE ERROR RELATED TO ESTIMATED LOAD PROFILES OF 1000 TVs (NORMAL, LOG-NORMAL

DISTRIBUTIONS, AND COPULA) WITH RESPECT TO THE EXACT REFERENCE (SEE FIG. 4)

Fig. 4. Load profile of 1000 TVs based on actual, simulated data using copula,
normal, and log-normal between (a): 00:00 a.m. to 24:00 p.m.; (b): 00:00 a.m.
to 10:00 a.m.; (c): 12:00 a.m. to 24:00 p.m.

Fig. 4. It is clear that copula performs much better than tradi-
tional normal and log-normal models. Table I also shows the
absolute errors (maximum, minimum and average errors) in kW
for the two divided load profiles in Fig. 4(b) and (c) with re-
spect to the exact reference. Both the MAPE and absolute er-
rors in Table I confirm copula as the best statistical distribution
to model the load profile for TV.

TABLE II
AIC AND HQIC INFORMATION CRITERIA FOR MODELING THE TIME OF

TURNING THE PC ON AND USAGE TIME OF IT

C. Selection of a Proper Copula

Here five different copulas are examined in order to select
the best one in creating large datasets for both PC and TV.
These copulas are nominated from the Elliptical (Student's t
and Gaussian) as well as the Archimedean (Gumbel, Frank, and
Clayton) that are more common in this area. Two assessing re-
lationships are defined in [20]and [21]to compare the capability
of a given copula in data creation; the Hannan-Quinn Informa-
tion Criterion (HQIC) and Akaike Information Criterion (AIC).
A copula associated with the smallest value of the selected in-
formation criterion, is considered to be the best-fit copula [20].
Tables II and III show values of the AIC and HQIC informa-
tion (calculated with MATLAB) for the created large datasets
(using the algorithm in Section II-A) from exact data related to
PC (1000 2 from 50 2) and TV (1000 4 from 50 4), respec-
tively. It can be seen from Tables II andIII that the GC is the best
copula for modeling both the PC and TV according to the AIC
and HQIC.
The GC or elliptical copula is the most familiar among all

copulas and is distributed over the unit cube . The -di-
mensional GC is defined as follows:

(2)

where (.) is the inverse cumulative distribution function
(ICDF) of a standard normal distribution function (.); and
(.; Rho) is the -dimensional standard multivariate normal

distribution function with mean vector zero and covariance
matrix equal to the correlation matrix, Rho [16].
In what follows, the ASTOU are modeled using bivariate and

multivariate GC. In this case, energy consumption of flexible
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TABLE III
AIC AND HQIC INFORMATION CRITERIA FOR MODELING THE TV

loads (e.g., EVs) in the next day is optimally scheduled con-
sidering electrical energy consumption of WRL (e.g., AC) and
ASTOU.

III. PROBLEM FORMULATION

Here appliances are categorized in an smart home and
modeled for estimating their energy consumptions. This will
then allow optimal scheduling of flexible loads in the next day.
Equipment in smart homes can be divided into three categories;
WRL, flexible loads and loads with uncertainty (the ASTOU
that are related to the consumer behavior). The following sec-
tion describes the proposed models. First, the consumed power
of the ASTOU, such as TV and PC, is modeled using bivariate
and multivariate GC. Further, an hourly electrical consumption
is considered for the WRL, estimated based on the stochastic
modeling using the GC. The goal is to improve the efficiency
of the proposed DADRS.

A. Residential Loads

Assume a household customer is participated in the day ahead
DR programming. In [8], an energy consumption vector is de-
fined for each instrument, , as follows:

(3)

where , , and are the number of ASTOU, the WRL,
and flexible loads, respectively, is the energy consumption
of the appliance at a certain hour , and is
the scheduling horizon for energy consumption. Notice that
shows the number of hours ahead, which takes demand policies
into account. In this paper, is assumed to be 24 (hours) in
order to cover scheduling horizon of a day.
1) Loads With Uncertainty: Both the ASTOU and the WRL

were named as the loads with uncertain parameters in a residen-
tial unit. The error of forecasting weather can be modeled using
the GC. Also, modeling energy consumption of the ASTOU and
the WRL has an appropriate influence on scheduling flexible
loads for the next day. Thus, it is necessary to model accurately
the ECV of all home appliances for improving the next day DR.

a) Proposed Model for Energy Consumption of the
ASTOU: Dependence structure of random variables is among
the most interesting topics in recent years. Unlike the con-
ventional approaches, copula theorem efficiently models the

Fig. 5. Proposed model for the ASTOU energy consumption.

dependencies between random variables [16]. In [22], the GC
is named as a popular family of copulas, where parameters of
the GC function (Rho) can be estimated by means of Kendall's
rank correlation ([17]) as follows:

(4)

There are three important factors in order to model the ECV
of the ASTOU with copula; these are the average frequency of
using the ASTOU in 24 h , time of turning the ASTOU
on , and usage time after loading the ASTOU .
Fig. 5 shows the required data for modeling the ASTOU energy
consumption. Here is the nearest rounded integer less than
or equal to , and are the th time of
turning on the th ASTOU and its usage duration, respectively,

. To make the proposition more sensible,
assume hourly consumed energy of a TV was monitored for
50 days; also, and were collected. These gathered real
data are used to model the ECV of the TV for the coming day
by the multivariate GC. The average frequency of using the TV
is in 24 h. Thus, parameters in Fig. 5 are
restricted to , , , and , where these are the first and
the second time of turning the TV on along with their usage
times. Therefore, to estimate the load profile of the TV for the
next day, the GC [defined in (1)]takes the dependencies of these
four random variables into account to generate new data based
on the available collected data. The parameter of the GC (Rho)
can be estimated by means of an approximation to Kendall's
rank correlation. This was done to obtain dependencies between
the four parameters , , , and as follows:

(5)

The coefficient matrix (5) shows that the highest rank corre-
lation is equal to 0.92 between and . So, a nearly linear
relationship can be seen in Fig. 6(b) between and . For
example, if the device is turned on for the first time in the early
morning, it will be used most likely for the second time in
the early afternoon or vice versa. Here it is explained a model
in which a multivariate (four random variables) GC can be
employed to generate different scenarios using the established
correlations. These scenarios can be defined as the ECV for
the considered TV as an ASTOU example. Hence, various
scenarios were simulated using the developed multivariate
GC (1000 scenarios) as the ECV for the TV (see Fig. 6). The
generated ECV are useful for the stochastic process in the final
proposed DADRS. The six pictures in Fig. 6 illustrate how
much the generated 1000 scenarios are correlated according
to dependence of two out of four variables. Notice that the
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Fig. 6. One thousand different simulated scenarios for the TV electrical consumption as a visual demonstration of the data presented in (8); scattered plot of the
simulated data for (a) , (b) , (c) , (d) , (e) , and (f) .

generated scenarios uphold the GC approximate correlations in
(5).
The total demand for the operation of loads with uncertainty

that are estimated as a stochastic modeling by the GC
at the th hour can be expressed as follows:

(6)
where , , , and

are the ASTOU loads including TV, PC, and lighting,
respectively, and is energy consumption and average
daily demand of appliance at the th hour and scenario .

b) Weather Related Loads (WRL): Generally, estimation
of energy consumption of the WRL for hours ahead can be per-
formed using mathematical formulation. At the same time, pre-
dicted weather conditions (e.g., temperature, lighting, and hu-
midity) are the main collecting parameters affecting the WRL.
The more accurate the prediction of weather conditions, the
better it helps end users to satisfactorily predict WRL energy
consumption. This would lead achieving a greater control on
flexible loads. Thus, let be the total demand for the oper-
ation of all WRL at the th hour of the day
ahead as follows:

(7)

(8)

where and are the consumed energy of appli-
ance at the th hour, and the average daily

demand of the th appliance in scenario . The WRL in a
residential unit are refrigerators, freezers, water heaters and the
AC. The proposed method can also be applied to the WRL for
generating various scenarios; here scenarios are generated only
for the AC as an example . Since
prediction of temperature can be collected from meteorological
agencies [23], weather prediction errors are assumed to be up
to thirty percent (see [23]). This is considered in [23]for accu-
rate prediction of outdoor temperature especially on rainy days.
The energy consumption of the AC is obtained from (9) at the

hour where plus and minus are applied to the heat and cool
space-conditioning, respectively [15]:

(9)

where is the AC energy consumption in kW at the th hour,
is the factor of inertia, is equal to , and
are the indoor and outdoor temperatures in at the th
hour, respectively, is the thermal conductivity in ,
and is the coefficient of performance. Note that is equal
to , where is the controlling period (it is assumed

h in this paper for the DR since the load is controlled
hourly) and is the total thermal mass in kWh/ C.
2) Flexible Loads: Assume the parameter

is introduced as the total energy required per op-
eration of the flexible appliance . Additionally, let
denotes the starting and finishing times during which is
plugged in by an end user. For example, energy consumption
of a WM with warm setting is expressed by kWh
under a typical frontloading [8]. As another example, full
charging of the battery of an EV can be scheduled by choosing

and (early morning in the next day).
Hence, the following relationship is considered for modeling
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energy consumption of flexible loads when parameters ,
and are determined by customers [8]:

(10)

Further, home instruments have special maximum and min-
imum hourly demand levels. Let us denote them by and

for the appliance . For example, in [8], the pre-deter-
mined maximum power level for an EV is 3.3 kWh. Thus, these
hourly demand levels are indicated by residential units for the
day ahead DR programming as follows:

(11)

where is the consumed energy of appliance during the
region . Moreover, the total demands for the operation of flex-
ible loads at the th hour can be obtained as follows:

(12)
where , , , and are
power consumptions of flexible loads including WM, DW, and
EV at the th hour, respectively.

B. Market Model

A model for retail markets may also be included in order to
investigate the efficiency of the proposed DADRS. One main
goal could be the encouragement of end users to distribute their
demand in the non-peak periods. In the IBR modeling the mar-
ginal prices are increased by growing electrical consumption of
users. Thus, the DAP with the IBR model could be employed
for the retail electricity market. Benefits of the DAP with IBR
model are:
• Investment cost is reduced because of no need to the ad-
vanced technologies.

• Households' consumptions are shifted to different times of
a day, paying less to aggregators or retailers. Hence, the
peak to average ratio is reduced for the load profile.

• It would be hard for the users to manage loads in various
suggested market. However, users are able to schedule the
operation of their flexible appliances among easily under
the DAP with the IBR. Moreover, managing home appli-
ances requires less investment with the DAP with the IBR
compared to other market models.

In practice, retail marginal prices are sent to the aggregator
according to Table IV, where the DAP of retail market will be
released to the end users using a digital or manual communica-
tion infrastructure (e.g., internet or telephone). Therefore, total
electricity cost of a residential unit at the hour is worked
out as follows:

(13)

where denotes a marginal pricing related to total demand at
the hour, and are the total energy consumption of
the residential unit and the end user payment at the th hour, re-
spectively. Table V shows a typical 12- level tariff rate structure

TABLE IV
DAP WITH THE IBR MODEL FOR RETAIL MARKETS

TABLE V
TYPICAL EXAMPLE GIVEN IN [24]FOR THE DAP WITH THE IBR IMPLEMENTED

IN THE RETAIL MARKET

Fig. 7. Daily load profile of a typical aggregator for 100 residential units, where
the red line is the optimal consumption pattern and the blue line is the typical
load profile.

for the DAP with the IBR introduced in [23]. Marginal pricing
of each level over the marginal pricing of its previous level is
called marginal price factor (MPF). This paper uses Table V to
examine the performance of the proposed DADRS.

C. Objective Function

The goal of this research is to propose a DADRS in order to
reduce the peak demand as well as cost of the user in the re-
tail market. Ideally, it is desired that the typical load profile of
a sample feeder in the distribution system (blue line in Fig. 7)
turns into a flat profile (red line in Fig. 7). Thus, the total con-
sumed energy by the two profiles is equal, i.e., the gray area
for the flat profile and the area under the blue load profile are
identical. Hence, the peak demand would be optimally reduced.
Therefore, this paper concentrates on moving the typical load
profile (blue line) toward the optimal one (red line) by control-
ling flexible loads of residential units.
To establish the objective function, assume a residential unit

purchases electrical energy from an aggregator according to the
DAPwith IBRmodel. Then, the following steps should be taken
to form the objective function:
1) Using (6), (7), and (12), the total hourly energy consump-
tion of a residential unit is expressed as
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(14)

2) Using (6) and (8), the average daily consumption in dif-
ferent scenarios can be expressed as

(15)

3) Considering (13), the total daily energy cost of a residential
customer can be summated as follows:

(16)

4) A residential payment is minimized when the hourly en-
ergy consumption during 24 h remains identical to .
This can be expressed in mathematical terms using (16):

(17)

5) Satisfying (17) together with minimizing (16) would result
in minimization of the difference between blue and red
lines in 24 h (see Fig. 7). In other words, the objective
function is expressed as

(18)

It should be noted that the proposed objective function (18)
introduces the proposed DADRS based on multivariate uncer-
tainty analysis using the multivariate GC, in order to schedule
flexible loads.

IV. CASE STUDY AND DISCUSSIONS

Here it is introduced a case study that works on the collected
exact data from residential loads with uncertainty over 50 days,
including TV, PC, lighting, and AC. Then, the aforementioned
generation of various scenarios for the ASTOU and WRL are
applied to the exact data, where eventually the optimized sce-
nario is singled out to manage flexible loads (WM,DW, and EV)
in a residential unit.

A. Loads With Uncertainty

Two types of loads with uncertainty are considered in the case
study; the ASTOU and the WRL.
1) The ASTOU: In this case study, lighting, PC, and TV are

considered as the ASTOU, where their maximum demands are
400 W, 300 W, and 250 W, respectively. Empirical data show
that a PC is often turned on once a day on average. Thus, two
parameters are required to model the load profile of the PC; first,
time of turning the PC on and the usage time after turning it on.
These parameters were taken sample for fifty days as shown in
Fig. 8(a). Then, the estimatedECV of the PCwere simulated for
1000 different scenarios as shown in Fig. 8(b) using the bivariate
GC . Similar procedure was repeated for both lighting
and TV.
2) WRL: Various scenarios of the hourly temperatures were

defined by dividing each day into 24 temperatures related to 24
h. Each temperature, as shown in Fig. 9 by , denotes the tem-
perature at the th hour in the th day. Then, 24 temperatures in

Fig. 8. Scatter plot for usage time versus time of use for a PC: (a) actual data for
50 selected days [time of use and usage
time (mean 200, )], and (b) simulated scenarios generated
using the GC [time of use and usage time
(mean 216, )].

Fig. 9. General form of hourly temperature in a day.

Fig. 9 were collected for fifty days which were close to the next
day from the historical data in recent years. This was fed to a
24 variables GC. Simulations show that if the next day under
estimation is May 19, then hourly temperatures from May 3 to
May 18 in recent years are suggested for collecting the histor-
ical data. Further, 24 variables of the GC are related to 24 hours
of a day, which their dependencies determine the parameters of
the multivariate GC (Rho). The parameter Rho was calculated,
which are listed in Table VI. It can be seen that the hourly tem-
peratures in a day are correlated with each other based on the
obtained Rho.
Assume the proposed stochastic DADRS is applied to a resi-

dential unit on May 19, 2011. Parameters of this residential unit
are and based on ( and ).
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TABLE VI
COEFFICIENT MATRIX, RHO, FOR THE 24-VARIABLE GC

Fig. 10. Temperatures of 100 simulated scenarios on May 19, 2011.

Hence, using the structure of Fig. 9, 100 scenarios were sim-
ulated using 24-variate GC (with the calculated Rho, shown in
Table VI) for the hourly temperatures onMay 19, 2011 as shown
in Fig. 10. It was also considered 30% error for the collected
hourly temperature prediction. Additionally, marginal distribu-
tions for 24 h in fifty days were used by the multivariate GC.
Fig. 10 illustrates actual hourly temperatures (dashed line),

100 simulated scenarios for hourly temperatures in blue and the
hourly-predicted temperatures in red onMay 19, 2011. The fore-
casting error, the difference between red and black curves, is
29.5% in line with the assumption considered in literatures (e.g.,
[23]).
In Fig. 11, the red line and dash black line illustrate the AC

electrical consumption pattern [see (9)]according to the hourly
predicted temperatures and actual hourly temperatures shown in
Fig. 10, respectively; 100 blue lines in Fig. 11 show 100 hourly
estimated energy consumption of the AC in the next day based
on the hourly estimated temperatures (the blue lines in Fig. 11).
However, and in (9) are controlled to be and

Fig. 11. AC energy consumptions for 100 simulated scenarios on May 19,
2011.

, respectively. As it can be seen from Figs. 10 and 11, these
100 simulated scenarios (generated by the GC) have lower error
compared to estimated temperature by the meteorological or-
ganization. Thus, it is expected to schedule flexible loads in the
next day by the GC better than conventional approach.

B. Flexible Loads

It is necessary to have power consumption ratings and the
time interval to plug in for flexible loads in order to schedule
the DADRS in residential units. Table VII illustrates the DW,
the WM and the EV along with their typical consumption en-
ergies. For example, the DW consumes 750 Watt-hour to clean
breakfast dishes. Therefore, the total hourly demand for flexible
loads in a residential unit is calculated according to (12).

C. Studied Objective Function

Here the proposed objective function (18) is specifically rear-
ranged according to the studied consumptions of the uncertain
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TABLE VII
FLEXIBLE APPLIANCES AND THEIR CONSUMPTION PATTERNS

loads. Based on the stochastic process, it is aimed to satisfy the
following objective function using (6) and (8):

(19)

Here the flexible loads for the coming day could be pre-sched-
uled. Notice that in (19) can be concluded by using (14).
The resultant objective function in (19) was programmed using
MATLAB (linked with the GAMS). This link allows using pro-
grammed statistical modules of MATLAB to model all relation-
ships among the ASTOU, which can be optimally scheduled for
all flexible loads by the GAMS.

D. Simulations and Discussions

Fig. 12 illustrates simulations obtained from a residential
unit that participated in the proposed DADRS. Black line in
Fig. 12 shows the load profile excluding the DADRS which was
collected from the actual data. Gray (dashed) line introduces
the load profile including the proposed DADRS in (19) when
both the ASTOU and the AC consumed demands were not
modeled. Blue (dash-dot) line demonstrates the load profile
including the proposed DADRS in (19) when both the ASTOU
and the AC consumptions were modeled.
Fig. 13 depicts the consumed energy of various appliances

in a residential unit. Fig. 13(a) shows the load profile for dif-
ferent appliances using the proposed DADRS with stochastic
modeling of both the ASTOU and the AC. Fig. 13(b) illus-
trates those of Fig. 13(a) by excluding the simulated scenarios
and Fig. 13(c) provides those of Fig. 13(a) by excluding the
DADRS. Comparing these three pictures reveals that the en-
ergy cost of a residential unit decreased from $4.73 (without
the DR) to $2.44 and $1.78 per day when applying the pro-
posed DADRS including and excluding the ASTOU and the
AC models, respectively. Here MPF is equal to 1.2, resulting in
about 48.4% and 62.4% reduction in energy cost for the third
and fourth rows in Table VIII as well as around 31.1% and
47.26% drop in the daily peak demands. Table IX provides per-
centage of saving costs for different MPF. Simulations summa-
rized in Tables X and XI confirm that the proposed DADRS sat-
isfactorily reduces both costs and the peak demand of residential
customers. Moreover, the efficiency of the proposed DADRS

Fig. 12. Load profile for the participated residential units in the proposed
DADRS.

Fig. 13. Comparison of load profiles, (a) including the proposed DADRS
through the simulated scenarios using the GC, (b) including the proposed
DADRS excluding the simulated scenarios, and (c) excluding the DADRS.

TABLE VIII
END USER'S ELECTRICAL ENERGY COST ($) UNDER THREE DIFFERENT TYPES

OF FLEXIBLE LOADS MANAGEMENT

will be improved stochastic modeling is applied to the ASTOU
and WRL.
The total demand is decomposed for each appliance from

19:00 until 22:00 (the peak period) as shown in Fig. 13. This
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TABLE IX
ENERGY SAVING FIGURES BY ESTIMATING THE ASTOU AND WRL

TABLE X
ENERGY CONSUMPTION IN THE PEAK PERIOD ( )

OF ALL APPLIANCES (IN FIG. 12) UNDER THREE DIFFERENT
TYPES OF FLEXIBLE LOAD MANAGEMENT

TABLE XI
PERCENTAGE OF ENERGY SAVING (%) DURING THE PEAK PERIOD FOR ALL
APPLIANCES (IN FIG. 12) UNDER THE TWO STUDIED DR CONDITIONS

TABLE XII
SPECIFICATIONS IN THE USA MARKET (SEE [4]AND [37])

compares the capability of the proposed models and the DR
strategy for the day ahead DR by introducing the impact of each
modeled equipment on reducing the peak of the load profile.
Tables X and XI show the energy consumption and percentage
of energy saving for each flexible load (EV, DW, and WM) as
well as the ASTOU and the WRL, respectively. It can be seen
that the energy consumption of the residential unit is decreased
from 19.48 kW (without the DR) to 12.82 kW (excluding the
model of ASTOU and WRL); this is further lowered to 9.82
kW when the proposed DADRS includes modeling the ASTOU
(TV, PC and lighting) and the WRL (AC) at the peak period.
Table XII lists the share of modeling both fixed and flexible
loads on energy saving for the WRL, the ASTOU, the EV, the
DW, and the WM in percent.

Fig. 14. Measured for 100 residential units.

Additionally, the load profile of 100 residential units was in-
vestigated to verify the proposed DADRS considering the un-
certainty modeling. Every residential unit uses all the three cat-
egorized loads including an AC for the WRL, a WM (3.6 kWh),
a DW (1.5 kWh for dinner, 0.75 kWh for breakfast, and 2 kWh
for lunch), and an EV (see Table XII for EV ratings in the USA
market [37]) for flexible loads and a TV (100 Wh~250 Wh), a
PC (300Wh~500Wh), and lighting as the ASTOU. Their power
range varies from 100 W for a TV up to 8~ 20 kW for an EV in
each residential unit. To simulate the load profile, the following
information on 100 residential units were required:
• For how long the EV were driven and when they were
plugged in; it is assumed that all EV owners leave for work
at different times (i.e., no parked EV is considered).

• The factor of inertia as well as the ratio which
is shown in Fig. 14 for 100 households.

• The delivery time of cleaned dishes and clothes.
The above required data were collected through the dis-

tributed questionnaires among 100 residential units. Hence,
households provided the required consumption bounds in-
cluding the energy consumption region for each device along
with their plug in and plug out times (e.g., for the WM and
DW). Moreover, three scenarios are defined according to the
battery charge data for the EVs listed in Table XII, with the
following suggested combinations in penetration of different
EV:

Scenario 1: Assume 100 EV include 34 Gm-Ch. Volt, 33
Nissan-LEAF and 33 Volvo C30; they were all usually
plugged in at 6:00 pm, ready at 7:00 am on the next day.
Scenario 2: Assume 100 EV include 34 Gm-Ch. Volt, 33
Nissan-LEAF, and 33 Volvo C30; 80 out of 100 EV were
usually plugged in at 6:00 pm, ready at 7:00 am on the next
day. The remaining 20 EV were plugged in, staying at the
state of being parked for 24 h.
Scenario 3: Assume 100 EVs are all of GM-Ch. Volt type.

The stated three scenarios were simulated for both including
and excluding the DADRS. Fig. 15(a) shows 24-h-ahead load
profile for 100 residential units including the WRL (in green),
flexible loads (in blue), and the ASTOU (in red) without ap-
plying any DR strategies using the first and second scenarios.
Fig. 15(b) considers the third scenario with the same character-
istics as those of Fig. 15(a). Fig. 16(a)–(c) shows 24-h-ahead
load profiles for 100 residential units including the WRL (in
green), flexible loads (in blue), and the ASTOU (in red) with ap-
plying the DRDAS for the three scenarios. Comparing simula-
tions in Fig. 15 with those of Fig. 16 confirms that the daily peak
demands (for 100 residential units) were reduced by 41.85%,
45.92%, and 23.36% for the three scenarios, respectively.
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Fig. 15. Load profile for 100 residential units excluding the DADRS obtained
by (a) the first and the second scenarios and (b) the third scenario.

Fig. 16. Load profile for 100 residential units including the proposed DADRS
based on stochastic modeling for (a) the first scenario, (b) the second scenario,
and (c) the third scenario.

V. CONCLUSION

This paper is concentrating on a semi-automated home en-
ergy management system, proposing a practical strategy of the
day ahead demand response. This can be applied to pre-schedule
flexible loads in the next day. Thus, the energy consumption of
the ASTOU and the WRL were both estimated based on the
stochastic modeling, using the GC as a new efficient tool for the
day ahead DR. Typical residential loads are classified into three

named categories, where proper models are developed for a res-
idential unit. Then, exact real collected data are fed to a copula
function in order to correlate random variables and generate new
data. Simulations show that the initial cost, the electrical energy
cost of a household and the peak demand are reduced when the
proposed DADRS is applied. Moreover, an aggregator is con-
sidered that feeds 100 residential units. These 100 units filled out
the provided questioner to get the required data such as turning
on times and their respected durations. Applying the DADRS
to the prepared case for 100 residential units with three defined
scenarios confirm that it can control flexible loads with the least
influence on the customers lifestyle. Simulations also show that
the proposed DADRS by applying the suggested models of the
ASTOU and the WRL in scheduling flexible loads result in sig-
nificant decrease not only in the users' costs but also in the peak
demand for various load scenarios.
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