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Charging demand of electric vehicles (EV) has potentially a significant influence on the power grid. If this
charging demand coincides mainly with the peak demand of the power grid, then additional active power
has to be supplied to fulfill load management purposes. Thus, it is necessary to estimate and schedule the
charging demand of the EV in order to lower the peak demand. Various estimation techniques are
available such as Gaussian mixture model and copula. This paper uses copula for data estimation because
copula imposes no restriction on the marginal distributions of the available data. Meanwhile, uncertain
estimated data requires error elimination. Clayton copula is selected for flexile part of load profile, and
Gaussian copula for non-controllable part of the load profile based on the two consecutive days (TCD)
classification. Hence, the created scenarios were applied to an optimization problem that flattens the load
profile as much as possible using general algebraic modeling system (GAMS). Then, this research
concentrates on two new semi-automatically proposals concerned with the day-ahead charging demand
response (DR) strategies. These strategies contribute to removing the estimation errors created due to the
uncertainties. In order to examine the efficiency of the proposed strategies, the day-ahead pricing (DAP)
with inclining block rates (IBR) model is assumed for retail electricity markets.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

Technology of plug in EV is potentially an effective way to solve
the fossil fuel energy crisis, green house emission and air pollution
[1]. However, increasing the EV penetration in the distribution
systems can overload the grid during the peak times. Therefore,
this additional demand will strongly influence on the generation,
transmission and distribution systems. However, the peak demand
can be reduced by redistributing it to the less congested periods
such as early mornings or late at nights. In other words, when
load-shifting strategies are applied to control flexible loads, future
investment on creation of new power plants is lowered [2,3].

Moreover, unlike the usual existing loads, the EV locates within
the class of controllable loads because they are being equipped
with batteries that enable them to store electrical energy.
Therefore, it would always be interesting to schedule the charging
time of the EV in order to fill the valley hours by reducing the peak
demand in smart grids [3,4]. Recently, many lectures have investi-
gated the influence of high penetration of the EV in the network
[5–7]. In [7], the Gaussian copula (GC) function was proposed to
estimate the charging impact of the EV on load curve stochastically
for 2020–2025.

It is assumed in [7] that all EV can be charged everywhere
across the grid. In other words, the charging profile of a huge
number of EV was modeled from the perspective of power network
using the GC. In practice, the majority of studies focus on online
scheduling and management of the charging strategies of the EV
[1,3,8–11]. Clearly, the cost of the online DR, which is known as
fully automated DR, is high and complicated in implementation;
this is due to the need for installing numerous hardware such as
smart meters, control instruments and communication equipment.
In recent years, aggregators join two or more customers to manage
their electricity in smart grids [12]. Aggregators suffer lack of
historical demand data (HDD) for estimating short-term future
data [13–15]. The HDD are collected from the meters installed
for the customers.

This research concentrates on estimating the next day hourly
charging demand of a limited number of EV from the perspective
of an aggregator or a distribution system operator (DSO) by employ-
ing both Archimedean and Elliptical copulas. Copula was chosen
for estimation because copula is capable of describing nonlinear
dependence among multivariate data independent of their mar-
ginal probability distributions mathematically. Five different types

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2015.02.001&domain=pdf
http://dx.doi.org/10.1016/j.ijepes.2015.02.001
mailto:ahmadi.danial@gmail.com
http://dx.doi.org/10.1016/j.ijepes.2015.02.001
http://www.sciencedirect.com/science/journal/01420615
http://www.elsevier.com/locate/ijepes


16 V. Tavakoli Bina, D. Ahmadi / Electrical Power and Energy Systems 71 (2015) 15–25  
of copula are examined in order to model the charging demand of
960 EV as flexible part of the load profile; analytical assessment of
the five copulas results in Clayton copula as the best copula among
them. Then, it is necessary to predict non-controllable part of the
next day load profile (960 residential units). Hence, one year
collected data are classified into five classes of two consecutive
days (TCD). Again, five different copula functions were examined
(see Table 1), resulting in the GC as the best copula for predicting
non-controllable loads. Then, a stochastic modeling is proposed
for estimating the next day hourly demand, applying all predicted
scenarios to an optimization problem that is solved by the GAMS
under a stochastic process. In addition, this paper introduces two
semi-automatic day-ahead DR strategies that concentrate on charge
scheduling of the EV. The outcomes will help aggregators to reduce
both their peak demand and electricity payment. Moreover, two
case studies are considered to verify the proposed strategies on
charging schedule; an aggregator supplies 960 residential units
located in phase 1, 2, and 3 of Ekbatan complex in western
Tehran. Then, the proposed DR strategies were applied to the pre-
pared residential case. Simulations on the carried out case studies
show the effectiveness of the two proposed algorithms. The outline
of the proposed research work performed in this paper is shown in
Fig. 1.
Modeling principles

Fig. 1 demonstrates the modeling principles of this research,
including exact data gathering, data generation, producing day-
ahead DR scenarios as well as arranging an optimization problem
to find out the best-predicted load profile. The following subsec-
tions describe the chain of modeling elements that form the entire
work.

Exact data gathering

As the first step, samples of a limited number of EV are taken
from the owners of the EV, including their traveled distances and
times to plug in. In practice, the EV owners are asked by the aggre-
gator to predict their possible traveled distances and times to plug
in for the next day. Thus, two points are crucial; first, the number of
nominated EV has to be limited due to various economical, practi-
cal and social restrictions. Hence, only 50 EV owners contribute to
the procedure of exact data gathering. Second, these predicted data
by the EV owners are uncertain data for the next day, i.e. may differ
slightly from the next day exact data.

Data generation

It is necessary to estimate data for the remaining residential EV
owners (910 out of 960) based on those of 50 taken samples.
Copula was chosen in this research for generating required data
because of the discussions raised in the following subsections.

Why copula?
In brief, the most interesting advantage of copula functions is

their capability in estimating marginal and rank correlation of
samples of random variables [16]. The modeling principles of copu-
las allow easy modeling and estimation of multivariate distribution
function. In other words, compared to other estimating methods,
copula inter-relates multivariate data nonlinearly. This research
uses copula to estimate the bivariate charging demand of the EV.
Since these variables (traveled distances and times to plug in) are
statistically dependent, a joint distribution function is built using
copula. Subsequently, predicted charging demand of the EV is
determined according to the obtained distribution functions.
Moreover, sometimes the number of monitored exact data has
to be much smaller than that of the original dataset in practice.
For example, installing GPS on all EV to collect the required data
(traveled distances and times to plug in) is costly, imposing further
possible social restrictions on the customers. Nevertheless, the
aggregator needs to estimate the required demand of recharging
all EV for the next day in order to pre-schedule flexible loads
optimally. Hence, the total charging demand of all EV has to be
predicted using a limited number monitored exact data.

Suitability of copula for creation of a large dataset
Here it is demonstrated a simulation in which a small dataset,

taken from a limited number of EV, has to be expanded in order
to prepare estimate of the load profile for all the available EV as
a large dataset. For example, assume the small dataset includes
50 exact data; once copula estimates 20 datasets of size 50 EV from
the exact dataset, while once again copula is used to create a large
dataset of size 1000 EV directly from the exact dataset. Simulations
are shown in Fig. 2(a)–(c), in which 1000 EV data are compared
correspondingly for the two ways of data estimation. Both the esti-
mated data (Fig. 2(a)) and their probability distribution functions
(Fig. 2(b)–(c)) confirm the two ways of estimating with copula
are quite the same. In fact, copula works on correlation of the exact
dataset, achieving much more acceptable data in estimation of
large datasets compared to other solutions. Thus, according the
introduced simulations, a copula function can work on predicting
a large dataset directly; e.g. predicting distances and times to plug
in for 960 houses (owning the EV) in the considered case study
straightforward. However, the estimated data by copula are uncer-
tain as well.

Mathematical description of copula

Definition of copula

Copulas are multivariate distribution functions (C) of m
variables whose one-dimensional marginal distributions are
uniformed within the interval [0,1]m with the following properties
[16]:

(a) C(1, . . ., 1, ul, 1,. . .,1) = ul for all 1 6 l 6m;
(b) C(u1, u2, . . ., um) is increasing in each component ul, l2{1, 2,

. . ., m};
(c) The range of C is the unit interval [0,1];
(d) For ul 6 vl, 1 6 l 6m, C satisfies the rectangle in equality

[17];

X2

l1¼1

. . .
X2

lm¼1

ð�1Þl1þ...þlm Cðu1;l1 ; . . . ;um;lm ÞP 0 ð1Þ

where m is the number of dependent outcomes that should be mod-
eled with all marginal distributions of the random vectors (u1, u2,
. . ., um). It can be showed from the definition that copulas are
capable of describing nonlinear dependence among multivariate
data in isolation from their marginal probability distributions
[16]. Copulas can also serve as a powerful tool for both modeling
and simulating nonlinearly-interrelated multivariate data, and
uniform continuity and existence of all partial derivatives [18].
Consider the joint probability distribution of m-random variables
Xq (q = 1, . . ., m), H(x1, . . ., xm);

Hðx1; x2; . . . ; xmÞ ¼ PrðX1 6 x1;X2 6 x2; . . . ;Xm 6 xmÞ ð2Þ

where continuous marginal probability distributions are denoted by
Fq (xq) = Pr (Xq 6 xq) = uq. According to [16], Sklar’s theorem dictates
that the relationship between H(x1, . . ., xm) and Fq (xq), (q = 1, . . ., m);

 

 



Table 1
Characteristics of archimedean and elliptical copulas and their measures of dependence.

Copula Dependence structure characteristics Archimedean
generation function

Relation between the copula parameter
and the Kendall’s s coefficient

Gaussian Symmetric about center point, weak tail dependencies, left and right tail dependencies
go to zero at extremes

– Rho ¼ sinðps=2Þ

s 2 ½�1;1�

t Symmetric about center point, weak tail dependences, left and right tail dependencies
go to zero at extremes

– Rho ¼ sinðps=2Þ

s 2 ½�1;1�

Clayton Symmetric about center point, strong left tail dependence and weak right tail
dependence, right tail dependence goes to zero at right extreme

1
a ðt
�a � 1Þ a ¼ 2s=ð1� sÞ

s 2 ð0;1Þ

Gumbel Symmetric about center point, strong right dependence, weak left tail dependence, left
tail dependence goes to zero at left extreme

ð� ln tÞa a ¼ 1=ð1� sÞ

s 2 ½0;1Þ

Frank Symmetric about center point, very weak tail dependencies, left and right tail
dependencies go to zero at extremes

� ln expð�atÞ�1
expð�aÞ�1

s ¼ 1� 4
aþ 4

a2

R a
0

t
expðtÞ�1 dt

s 2 ½�1;1�
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Fig. 1. The outline of the research work performed in this paper, including the EV, estimation and generation of next day hourly scenarios for both flexible and non-
controllable load profiles, finding out the optimized scenario and scheduling the charging demand for the EV using two suggested DR strategies.
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which can be established by using the copula function Cm (u1, . . .,
um) as follows:

Hðx1; x2; . . . ; xmÞ ¼ Cm½F1ðx1Þ; F2ðx2Þ; . . . ; FmðxmÞ�
¼ Cmðu1;u2; . . . ; umÞ ð3Þ

In mathematical terms, a copula function Cm (u1, . . ., um) is the
m-dimensional probability distribution on a unit hypercube
[0,1]m with uniform marginal probability distributions on [0,1],
and is defined as follows [18]:

Cmðu1;u2; � � � ;umÞ ¼ PrðU1 6 u1;U2 6 u2; � � � ;Um 6 umÞ ð4Þ

where um represents a sample of a standard uniform random
variables Uq (q = 1, . . .,m). Some samples of t, Gaussian, Gumbel,
Frank, and Clayton copulas which are known as the Archimedean
and Elliptical copulas are illustrated in Fig. 3 in bivariate form.
Moreover, the Kendall correlation s is one of the most accurate
methods in estimating the copula parameters. Hence, the parameter
Rho of the Gaussian (Normal) copula can be estimated as Rho
which is equal to sinðp:s=2Þ, and the parameter a of the Gumbel
copula as a ¼ 1=ð1� sÞ. Other methods and more details for estima-
tion of the Archimedean copulas parameters were summarized in
Table 1 [16–18].

The GC is known as Elliptical copula. It is the most familiar
among all copulas and is distributed over the unit cube [0,1]m.
The m-dimensional GC is defined as bellows:

Cmðu1;u2; . . . ;um; RhoÞ ¼ umðu�1ðu1Þ;u�1ðu2Þ; . . . ;u�1ðumÞ; RhoÞ
ð5Þ

where u-1(.) is the inverse cumulative distribution function of a
standard normal distribution function u (.); and um (.; Rho) is the
m-dimensional standard multivariate normal distribution function
with mean vector zero and covariance matrix equal to the correla-
tion matrix, Rho. To simulate dependent multivariate or bivariate
data using a copula must specify each of the following:
� The copula family and any shape parameters.
� The rank correlations among variables and.
� Marginal distribution for each variable.
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Fig. 2. Copula estimates a large dataset of size 1000 data from 50 exact data; once
20 sets of size 50 data (in green) and another time one set of size 1000 data (in
blue), (a) estimated data, (b) the PDF of estimated traveled distances, and (c) the
PDF of estimated times to plug in. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Sample of different bivariate copula functions ((a): t copula (Rho = 0.8, v = 5); (b):
(e): Clayton copula (a = 1)).
Seeking a proper copula for data creation
Earlier studies in [7,10] showed that the approximate plug in

times for recharging the EV have been during the afternoon when
people arrived home from work. These charging times usually
coincide with the time of the peak demand on the load profile
[7]. Fig. 4 shows the predicted times to plug in and distances trav-
eled at the night before through the internet by about 5% of 960 EV
(50 EV owners). Then, the parameters of copula functions can be
worked out by means of an approximation to Kendall’s rank corre-
lation (see relationships in Table 1). For example, the parameter
Rho of the GC is calculated for Fig. 4 as the dependencies between
the times to plug in and distances traveled as follows:

Rho ¼
1 0:73

0:73 1

� �
ð6Þ

There are two copula families, Archimedean and Elliptical,
including various functions with their own characteristics.
Table 1 lists five different types of copula functions that are exam-
ined by this research for seeking a proper one. This examination is
taken place as follows:

� The exact dataset of size 50 EV were applied to five different
copula functions listed in Table 1, resulting in five different large
datasets of size 960 EV estimates as shown in Fig. 5(b)–(f) for the
GC, t copula, Gumbel copula, Frank copula, and Clayton copula.
� Questioners were distributed among 960 EV owners to fill out

their detailed exact times to plug in and distances traveled for
all 960 EV after the occurrence in the predicted day. Fig. 5(a)
shows the realized collected dataset in order to compare it with
960 EV estimates in Fig. 5(b)–(f) by various copula functions.
Fig. 5(b)–(f) show that the produced estimates by different
copulas for charging 960 EV are very similar to those of the
exact dataset shown in Fig. 5(a).
� The predicted datasets are used to pre-schedule required

demand of the EV in the next day using the battery charge infor-
mation listed in Table 2 regarding four typical EV in the USA
market [11]. In fact, the listed data in Table 2 are used to
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Fig. 4. Predicted times to plug in and traveled distances that is estimated by 50 EV
owners.
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transform the traveled distances into active power. Therefore,
the converted load profile are demonstrated in Fig. 6 for
960 EV; both the actual and predicted data (with five copula
functions). Black solid line in Fig. 6 introduces the exact collect-
ed load profile, while other five load profiles are the estimates
by the GC, t copula, Clayton, Gumbel and Frank.
� Performances of five copulas are tested using the well-known

mean absolute percentage errors (MAPE) as below:

MAPE ¼ 1
24

X24

i¼1

di � Di

di

����
����

" #
� 100 ð7Þ

where di and Di are the real and predicted demand at the ith hour.
Table 3 shows the calculated MAPE for all five copulas with respect
to the exact data, introducing Clayton copula as the best copula
among the five studied copulas to model the load profile for
960 EV. Additionally, the fitted distributions using copula are
ranked in Table 4 according to the Akaike both information criterion
(AIC) and Hannan-Quinn information criterion (HQIC) [19]. The
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Fig. 5. Scattered plot of the times to plug in and the distances traveled for 960 users base
data; (b): GC (Rho = 0.73); (c): t copula (Rho = 0.85, v = 1.4e7); (d): Gumbel copula (a =
higher the absolute values listed in Table 4, the better the fitting.
Therefore, the Clayton copula is singled out as the best copula to
model the charging demand according to both the AIC and the
HQIC.

Hence, data generation takes place using Clayton copula for
960 EV.

The TCD seeking algorithm for the next day non-controllable
load profile

One major problem for the aggregators is the lack of the HDD to
schedule flexible loads optimally in smart grids [20]. The HDD is
needed to estimate the hourly demand in different scaled terms
[13–15]. Non-controllable loads are considerable portion of the
load profile in which the collected HDD is classified according to
the TCD. This classification scheme includes five classes for the
TCD as shown in Fig. 7(a) (Friday is considered as a holiday).
Aggregator collects the HDD over a full year for non-controllable
loads for the case study (960 units).

The HDD as the exact dataset

Fig. 7(b) shows the general form of hourly demand for the TCD,
where (d1, d2, . . ., d24) and (d25, d26, . . ., d48) illustrate the hourly
demand for today and the next day in each class, respectively
(totally 48 h). Thus, 52 collected data per year (or 1 per week)
are available for every class of the TCD. In fact, the exact dataset
for the HDD includes 48 vectors (hours) of size 52 weeks, i.e. the
HDD forms a matrix of 52 � 48 for non-controllable loads.
Actually, every hour during a year could be treated as a random
variable; totally 48 variables that are correlated with each other
at different times.
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d on the actual data and using five types of copula function to model EV ((a): actual
2.64); (e): Frank copula (a = 7.8); (f): Clayton copula (a = 1.78)).

 



Table 2
Usual EV in the USA market [15].

Model Battery
capacity

Energy
available

EV-
Range

Max. Charge
power rates

GM-Ch. Volt 16 kW h 8 kW h 40 mi 1.9 kW
3.3 kW⁄

Nissan-LEAF 24kW h 19.2kW h 100 mi 1.8 kW
3.3 kW⁄

49 kW

Volvo C30 24kW h 22.7kW h 93 mi 3.6 kW

Tesla Roadster 53kW h 37.1kW h 244 mi 1.8 kW
9.6 kW⁄

16.8 kW

* Max. charge power rates is considered mi: Mile.

Fig. 6. The charging demand profile of 960 EV based on the actual and simulated
data.

Table 3
MAPE of estimation the charging demand of EV using Archimedean copulas.

Copula t Clayton Gumbel Frank Gaussian

MAPE 11.74% 8.94% 12.65% 13.20% 18.18%

Table 4
AIC and HQIC information criteria for modeling the charging demand of EV.

Familiar of copula AIC HQIC

Clayton �4461.05 �4456.94
Gumbel �3595.62 �3593.56
Frank �3294.67 �3290.75
t �2773.45 �2769.35
Gaussian �2000.71 �1996.61

Table 5
AIC and HQIC information criteria for modeling hourly demand of TCD.

Familiar of copula AIC HQIC

Gaussian �20284.55 �16121.43
t �18927.87 �14767.97
Gumbel �3405.62 �3404.34
Frank �3354.52 �3353.24
Clayton �2562.54 �2561.26
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Selecting copula for scenario generation

These exact 48 datasets could be the variables of a multivariate
copula function. Since the number of collected data is small for
every hour (52), copula is capable of creating large datasets for
all 48 variables (see Section ‘Suitability of copula for creation of a
large dataset’). Once again, both the AIC and HQIC information cri-
teria selects the best performance for the five different copulas
(a)

Saturday-Sunday

Sunday-Monday, Monday-Thursday, and 
Thursday-Wednesday

Friday-Saturday

Tuesday-Friday

Wednesday-Tuesday

Fig. 7. The TCD structure, (a) five classes of two consecutive da
under a typical load profile. Table 5 lists the worked out AIC and
HQIC, showing the GC is the best of the five copulas to model the
hourly energy consumption for the TCD.

Scenario generation by the GC

The parameters of the multivariate GC consist of 48 random
variables in the TCD. Table 1 introduces a relationship that works
out the dependencies between all these 48 variables; Table 6
shows the calculated correlation matrix. Having calculated the
parameter RHO, the exact dataset (52 � 48) can be applied to the
GC to generate as many scenarios as needed in practice. Here
1000 scenarios were generated in order to expand the exact data-
set to a large 1000 � 48 dataset. Fig. 8 illustrates the estimated
1000 scenarios for a specific TCD (Tuesday–Wednesday).

Seeking for the TCD analogy

The first 24 columns in the large dataset shows today predicted
scenarios, while the next 24 columns introduce the next day sce-
narios. It should be added that every row of the first 24 columns
(of 1000 � 48 dataset) could be compared with that of the avail-
able today load profile (of 52 � 48 dataset). The most similar rows
to the available today profile are selected according to the MAPE
definition in (7). This paper assumes the maximum allowable
MAPE to be equal to 8% (MAPE 6 8%) as the entrance condition
for the best scenarios in choosing the next day load profile. All
selected TCD-based scenarios are forwarded to the next step in
Section ‘Scenario selection and the DR proposals’ to select the next
day load profile (the last 24 columns) stochastically.

Scenario selection and the DR proposals

Since 187 TCD-based scenarios along with the predicted EV data
are available, a stochastic process is required to work on the avail-
able data. Thus, an optimization problem can be formed in order to
minimize the peak demand as well as the cost of electricity.

Optimization problem

Assume ei and D j
i are the charging demand of the EV (flexible

load) and predicted demand of non-controllable loads (for the jth
scenario) at the ith hour in the next day, respectively

(ei þ D j
i = total demand at the ith hour). Also, Pj is the required
(b) 

d1 d2 d24 d25 d48d47... ...

ys, and (b) the general form of hourly demand in the TCD.
 



Table 6
Coefficient matrix, Rho, of the 48 variables GC (m = 48).

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20 u21 . . . u47 u48

u1 1 0.82 0.84 0.83 0.85 0.85 0.74 0.85 0.73 0.72 0.76 0.8 0.75 0.67 0.59 0.66 0.7 0.61 0.61 0.51 0.41 . . . 0.46 0.49
u2 0.82 1 0.9 0.81 0.89 0.89 0.77 0.75 0.67 0.76 0.8 0.82 0.78 0.76 0.7 0.72 0.72 0.67 0.7 0.64 0.55 . . . 0.54 0.57
u3 0.84 0.9 1 0.95 0.96 0.97 0.87 0.91 0.89 0.91 0.9 0.89 0.89 0.83 0.79 0.82 0.83 0.83 0.83 0.66 0.56 . . . 0.59 0.58
u4 0.83 0.81 0.95 1 0.97 0.94 0.9 0.95 0.89 0.88 0.84 0.86 0.88 0.79 0.76 0.83 0.87 0.87 0.78 0.66 0.54 . . . 0.59 0.51
u5 0.85 0.89 0.96 0.97 1 0.97 0.9 0.92 0.87 0.86 0.83 0.86 0.86 0.79 0.78 0.85 0.85 0.81 0.76 0.7 0.61 . . . 0.55 0.53
u6 0.85 0.89 0.97 0.94 0.97 1 0.9 0.91 0.89 0.92 0.89 0.89 0.89 0.82 0.78 0.84 0.87 0.85 0.83 0.68 0.59 . . . 0.65 0.64
u7 0.74 0.77 0.87 0.9 0.9 0.9 1 0.88 0.8 0.79 0.84 0.79 0.85 0.84 0.83 0.88 0.93 0.87 0.81 0.87 0.8 . . . 0.56 0.49
u8 0.85 0.75 0.91 0.95 0.92 0.91 0.88 1 0.89 0.86 0.86 0.91 0.88 0.79 0.71 0.78 0.86 0.85 0.79 0.68 0.58 . . . 0.6 0.51
u9 0.73 0.67 0.89 0.89 0.87 0.89 0.8 0.89 1 0.94 0.85 0.86 0.9 0.77 0.69 0.78 0.81 0.87 0.87 0.57 0.45 . . . 0.6 0.52
u10 0.72 0.76 0.91 0.88 0.86 0.92 0.79 0.86 0.94 1 0.88 0.88 0.9 0.77 0.66 0.74 0.79 0.86 0.88 0.55 0.42 . . . 0.68 0.56
u11 0.76 0.8 0.9 0.84 0.83 0.89 0.84 0.86 0.85 0.88 1 0.94 0.92 0.92 0.76 0.75 0.83 0.87 0.91 0.64 0.54 . . . 0.7 0.66
u12 0.8 0.82 0.89 0.86 0.86 0.89 0.79 0.91 0.86 0.88 0.94 1 0.92 0.85 0.67 0.73 0.81 0.84 0.85 0.58 0.46 . . . 0.65 0.64
u13 0.75 0.78 0.89 0.88 0.86 0.89 0.85 0.88 0.9 0.9 0.92 0.92 1 0.87 0.67 0.75 0.82 0.89 0.92 0.69 0.52 . . . 0.76 0.63
u14 0.67 0.76 0.83 0.79 0.79 0.82 0.84 0.79 0.77 0.77 0.92 0.85 0.87 1 0.87 0.83 0.85 0.83 0.82 0.7 0.61 . . . 0.68 0.65
u15 0.59 0.7 0.79 0.76 0.78 0.78 0.83 0.71 0.69 0.66 0.76 0.67 0.67 0.87 1 0.93 0.88 0.8 0.67 0.67 0.66 . . . 0.53 0.6
u16 0.66 0.72 0.82 0.83 0.85 0.84 0.88 0.78 0.78 0.74 0.75 0.73 0.75 0.83 0.93 1 0.96 0.88 0.73 0.7 0.64 . . . 0.6 0.62
u17 0.7 0.72 0.83 0.87 0.85 0.87 0.93 0.86 0.81 0.79 0.83 0.81 0.82 0.85 0.88 0.96 1 0.95 0.81 0.74 0.65 . . . 0.66 0.64
u18 0.61 0.67 0.83 0.87 0.81 0.85 0.87 0.85 0.87 0.86 0.87 0.84 0.89 0.83 0.8 0.88 0.95 1 0.91 0.68 0.54 . . . 0.73 0.65
u19 0.61 0.7 0.83 0.78 0.76 0.83 0.81 0.79 0.87 0.88 0.91 0.85 0.92 0.82 0.67 0.73 0.81 0.91 1 0.71 0.57 . . . 0.7 0.59
u20 0.51 0.64 0.66 0.66 0.7 0.68 0.87 0.68 0.57 0.55 0.64 0.58 0.69 0.7 0.67 0.7 0.74 0.68 0.71 1 0.95 . . . 0.37 0.26
u21 0.41 0.55 0.56 0.54 0.61 0.59 0.8 0.58 0.45 0.42 0.54 0.46 0.52 0.61 0.66 0.64 0.65 0.54 0.57 0.95 1 . . . 0.23 0.21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . .

u47 0.46 0.54 0.59 0.59 0.55 0.65 0.56 0.6 0.6 0.68 0.7 0.65 0.76 0.68 0.53 0.6 0.66 0.73 0.7 0.37 0.23 . . . 1 0.8
u48 0.49 0.57 0.58 0.51 0.53 0.64 0.49 0.51 0.52 0.56 0.66 0.64 0.63 0.65 0.6 0.62 0.64 0.65 0.59 0.26 0.21 . . . 0.8 1
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Fig. 8. Predicted 1000 scenarios for a typical TCD (created by the GC).
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electrical energy to recharge the EV during the jth hour based on
the predicted times to plug in and traveled distances using
Clayton copula. If Ptotal is the total electricity needed to completely
charge all EV based on the predicted data, and then the resultant
charging schedule minimizes not only the peak demand but also
the cost of electricity. The optimization problem is proposed as
follows:

min f ðzÞ ¼
X

s

X23

i¼1

ðDs
iþ1 þ eiþ1Þ � ðDs

i þ eiÞ
� �2 ð8Þ

s:t:

ei 6
Xi

j¼1

Pj

X24

i¼1

ei ¼
X24

j¼1

Pj ¼ Ptotal

8>>>>><
>>>>>:
The proposed objective function in (8) minimizes the difference

between total demands of every two consecutive hours, flattening
the total load profile as much as possible. The first constraint in (8)
restricts the selection of the flexible load ei at the ith hour to small-
er than or equal to the sum of predicted EV demand by Clayton
copula. The second constraint forces the sum of all selected flexible
loads by the optimization problem for 24 h is identical to all
predicted demands for 24 h. The GAMS solves (8) as a stochastic
process to optimally schedule the charging times of the EV.
These resultant outcomes introduce ei for 24 h that exclude any
DR strategies. At the same time, bivariate and multivariate copula
functions predict both the charging demands of 960 EV and non-
Start

i=1, wi=0

PiP≤ei
Pi=ei+wi

NO

a=PiP-ei
j=iPi=PiP+wi

Yes

i=
i+

1 A=∑en
n=1+i, ...,24

Bj+1=ej+1×aA-1
j<24

j=j+1

wj+1=wj+1+Bj+1

NO

Yes

i>24

End

NO

Yes

Fig. 9. The first proposed algorithm to schedule the charging demand of the EV.
controllable loads. Thus, one should expect estimation errors that
affect the desired scheduling considerably. Hence, it is necessary to
focus on proposing the DR strategies for the day-ahead load profile. 
The DR proposals

This section introduces two new DR strategies in order to flatten
the load profile as much as possible. Before describing the DR pro-
posals, the following pre-assumptions obtained either by the opti-
mization problem (8) or the real demands:

� ei: The next day pre-scheduled demands for charging the EV
during the ith hour based on the selected scenario using the
GAMS (see optimization problem described by (8)).
� PiP: Today real demand, compared to outcomes of the GAMS (ei),

required for charging the EV during the ith hour as realized
available data.
� Pi: Modified today scheduled demand for the EV during the ith

hour for removing the estimating errors.

The first proposed DR algorithm
Here a semi-automatically day-ahead DR strategy is proposed

that requires bidirectional communication infrastructure.
Main steps of the first proposal are as follows (see flowchart of
Fig. 9):

� Step 1: If PiP 6 ei, then the charging demand of the EV is set to PiP

at the ith hour for the next day.
� Step 2: If PiP > ei, then the additional electrical energy required

to charge the EV during the ith hour, PiP � ei, will be shifted to
the remaining hours (j 2 fiþ 1; iþ 2; . . . ;24g) proportional to

ejP24

n¼iþ1
en
ðPiP � eiÞ as shown in Fig. 9.

The second proposed DR algorithm
The second proposed strategy requires unidirectional commu-

nication infrastructure to perform semi-automatically DR as
shown in Fig. 10. First, the optimization problem in (8) was solved
for 23 hourly demands (ei; i 2 f1;2; . . . ;23g). The main steps are as
follows:
Start

i=1, g=0

PiP≤ei
Pi=PiP

g=PiP -ei

i=i+1

NO

Yes

i<24

End

NO Yes

Pi=ei

PiP=PiP+g i=i+1

Pi =PiP

Fig. 10. The second proposed algorithm to schedule the charging of EV.
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Fig. 11. Hourly load profile of the 960 residential consumers (non-controllable
part) excluding their EV in 11/29/2011.

V. Tavakoli Bina, D. Ahmadi / Electrical Power and Energy Systems 71 (2015) 15–25 23 
� Step 1: If PiP 6 ei, then the exact consumed energy would be
equal to PiP.
� Step 2: If PiP > ei, then the additional demand will be shifted to

the next hour.
� Step 3: The rest of the additional charging demand in the cur-

rent day is shifted to the Mth hour which was not pre-scheduled
in order to guarantee the full charging of all EV.

The next section examines all proposed algorithms along with
estimations and optimization in order to verify the suggestions.
Case studies and discussions

Assume the case study investigates the load profile of 960
households that participated in the day-ahead DR programming.
This investigation tracks assessment of data prediction for flexible
(EV) and non-controllable loads, seeking for the TCD-based analogy
and the two DR strategies. The performed simulations demonstrate
the efficiency of the proposed strategies. Let us assume all 960 EV
are charged up to the maximum charge power rates (MCPR)
according to the listed data in Table 2. Two circumstances are stud-
ied in simulations as below:

� The group of EV includes 960 vehicles of the same brand, name-
ly GM-Chevy Volt. Table 2 shows that the MCPR for GM-Chevy
Volt is 3.3 kW h.
� The group of EV includes 960 vehicles of the same brand, name-

ly Tesla Roadster. Table 2 shows that the MCPR for Tesla
Roadster is 9.6 kW h.

Data generation

Two copula functions are responsible for creating the required
data; first, Clayton copula that predicts distances travelled as well
as times to plug in by 960 EV from an exact small dataset (see
Sections ‘Exact data gathering’ and ‘Data generation’). The small
dataset gathered from 50 EV owners on November 29, 2011 that
gave their estimates on the two named variables for November
30, 2011. Then, Clayton copula generates the large dataset of size
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Fig. 12. 1000 estimated hourly demand of TCD for 960 residential units excluding
their EV.
960 EV for November 30, 2011. Second, the GC is used to create
non-controllable load profile. Available historical data are the
hourly non-controlled demand for one year up to November 29,
2011. Then, these data were applied to the GC in order to correlate
random variables and generate new data. Table 6 shows the
calculated parameters (52 � 48) of the multivariate GC (Rho) for
the target TCD (November 29 and 30, 2011). Eventually, the GC
creates a dataset of size 1000 � 48, where 187 out of 1000
scenarios were chosen (MAPE 6 8%) based on the hourly demand
in November 29, 2011. Fig. 11 illustrates the non-controlled
demand on November 29, 2011excluding the EV charging demand.
Fig. 12 shows the created 1000 � 48 datasets in blue lines (by the
GC) as well as 187 � 48 selected datasets in green lines
(MAPE 6 8%). Black line in Fig. 12 depicts the actual non-controlled
demand on November 29 and 30, 2011.

 

Case study 1: 960 EV of brand GM Chevy-Volt

The first case study simulates prediction of the day-ahead load
profile (960 residential units) including non-controllable loads plus
the flexible EV charging powers. First, flexible part (the EV) of the
load profile excludes any DR strategies as shown by black dashed
lines in Fig. 13(a) (see details of both flexible and non-controllable
loads in Fig. 13(b)). Then, the flexible part goes through the two DR
proposals; blue dotted lines (the DR strategy in Fig. 9) and red dot-
ted lines (the DR strategy in Fig. 10) in Fig. 13(a) demonstrate the
outcomes (see details of both flexible and non-controllable loads in
Fig. 13(c)–(d)). Meanwhile, it is useful to obtain the effect of actual
data (after the occurrence) when optimized by (8) and undergone
by the two DR strategies. (Note that actual data is practically
unavailable before the occurrence.) Blue1 line in Fig. 13(a) provides
the realized load profile (see details of both flexible and non-control-
lable loads in Fig. 13(e)). Hence, the closeness of the predicted data
can be examined with those of the actual data in Fig. 13(a).

According to the simulations (see Fig. 13), the predicted
demand is acceptably close to the actual scheduling. To put it on
a firm basis, the peak demands in Fig. 13(a) are lowered by
22.435% (0.46 MW) when applying the proposed DR strategies.
Additionally, a typical 12-level tariff rate structure introduced in
[21] for the DAP with IBR as listed in Table 7. This could be used
as an assessing means of the proposed day-ahead DR algorithms.
Comparing different load profiles in Fig. 13(a) reveals that the
energy cost of the aggregator is $26,631 per day when excluding
the DR. Energy cost reduces to $21,736 per day for the DR strategy
in Fig. 9 and $21,721 per day for the DR strategy in Fig. 10.
Interestingly, the actual energy cost is $21,643 per day for the actu-
al data after the occurrence (very close to those of the predicted
data). Therefore, the cost of energy by scheduling the charging of
the EV is reduced by 18.53%, 18.44% and 18.88% for the first DR
strategy, the second DR strategy and the actual data, respectively.
Case study 2: 960 EV of brand Tesla-Roadster

The second case study was also simulated like that of the first
case. Fig. 14(a) describes exactly the same situation as that of
Fig. 13(a), but for the second case study in which brand of the EV
has changed. In addition, Fig. 14(b) introduces one non-
controllable load profile along with four flexible load profiles for
the EV (excluding the DR, including two proposed DR strategies
and actual data plus DR). Comparing the load profiles ‘excluding
the DR’ with those of ‘including the DR’ in Fig. 14(a) shows that
the peak demand decreases by 17.84% (0.446 MW). Moreover,
1 For interpretation of color in Fig. 13, the reader is referred to the web version of
this article.

 



Fig. 13. The load profile of 960 end-users under four different types of charging management in the first case study, (a) total load profiles, (b) load profile decomposition for
the case ‘‘excluding the DR’’, (c) load profile decomposition for the case ‘‘The first DR algorithm’’, (d) load profile decomposition for the case ‘‘The second DR algorithm’’, and
(e) load profile decomposition for the case ‘‘Actual data plus the DR’’.

Table 7
Assumed DAP with IBR model for retail market.

Demand (MW) Price ($/MW) Demand (MW) Price ($/MW)

0.0–0.5 110.00 1.7–1.8 445.01
0.5–0.8 126.50 1.8–1.9 511.76
0.8–1 145.47 1.9–2 588.52
1–1.1 167.29 2–2.1 676.80
1.1–1.2 192.39 2.1–2.2 778.32
1.2–1.3 221.24 2.2–2.3 895.07
1.3–1.4 254.43 2.3–2.4 1029.33
1.4–1.5 292.60 2.4–2.5 1183.73
1.5–1.6 336.49 2.5–2.6 1361.30
1.6–1.7 386.96 2.6–2.8 1565.49

Fig. 14. Four different types of flexible load management (the EV) in the second
case study, (a) total load profiles, and (b) flexible parts of the load profiles.

Table 8
Energy cost ($) of an aggregator in a day with and without applying different DR
strategies.

Scenario Excluding
DR

1st proposed DR
algorithm

2nd proposed DR
algorithm

Optimal
DR

1 26,631 21,736 21,721 21,643
2 26,542 21,732 21,771 21,721
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the mentioned tariff rate structure in Table 7 applied to the load
profile to obtain the energy cost. Comparing different load profiles
in Fig. 14(a) demonstrates that the energy cost of the aggregator is
$26,542 per day when excluding the DR. Energy cost reduces to
$21,732 per day for the DR strategy in Fig. 9 and $21,771 per day
for the DR strategy in Fig. 10. Interestingly, the actual energy cost
is $21,721 per day for the actual data after the occurrence (very
close to those of the predicted data). Therefore, the cost of energy
by scheduling the charging of the EV is reduced by 18.12%,
17.97% and 18.16% for the first DR strategy, the second DR strategy
and the actual data, respectively. Table 8 illustrates comparing load
profiles in Fig. 13 with those of Fig. 14 as well as the aggregator
payments for the two case studies. It can be concluded from
Table 8 that the predicted data with the proposed DR algorithms
produce very close outcomes to those of the actual data plus the
DR program.
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Conclusion

This paper uses Clayton copula to predict distances travelled as
well as times to plug in for a large dataset of size 960 EV (flexible part
of the next day load profile) from an exact small dataset. In addition,
the GC creates large datasets of size 1000 � 48 from available small
datasets of size 52 � 48 for each TCD-based combination (non-
controllable part of the next day load profile for 960 residential
units). Copula functions are selected based on three tests, namely
MAPE, AIC and HQIC. Then, 1000 scenarios of 48 h load profile is nar-
rowed down to 187 scenarios by applying the condition MAPE 6 8%.
Further, an optimization problem is arranged in which flexible load
(one scenario) plus non-controllable load (187 scenarios) is flatten
for two consecutive hours as much as possible. Resultant non-
controllable scenario is fixed for the rest of study, while the flexible
load (the EV) goes through two suggested DR strategies. The main
idea is to flatten the whole day-ahead load profile in order to lower
the peak demand, reducing the energy payment by the aggregator.
Hence, two case studies are arranged in which a 12-level tariff rate
structure is considered for the DAP with IBR that investigate the
proposed DR strategies. Moreover, actual data after occurrence are
collected, where passes through a DR program. This helps evaluation
of the DR strategies to be compared analytically according to the
DAP with the IBR. Simulations and analytical comparisons confirm
the closeness of the predicted load profile along with the suggested
DR strategies to the actual data plus the DR program.
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